用户名: 密码: 验证码:
Si及Si/ZnO纳米线阵列的制备与光学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅材料作为一种神奇的材料,在微电子器件中得到广泛的应用,极大地推动了信息技术的迅速发展。随着硅电子器件有源区的特征尺寸缩小到纳米量级,人们对于研究硅纳米材料产生了极大的兴趣。其中一维硅纳米材料,由于具有优良的电学性能、光学性能以及与硅微电子工艺的兼容性,得到了极大的重视。另外,多孔硅具有室温光致发光特点的发现,引起了研究人员对于硅纳米材料发光机理以及硅基光电器件的研究兴趣。
     本文在此基础上研究如何大规模,低成本制备硅纳米线阵列,并研究其光学性质。通过调控制备条件,获得了发光与否可控的硅纳米线阵列。研究了其发光机理,通过将其发光与局域等离子共振相结合,获得了硅纳米线阵列的发光增强。另外,我们利用不同方法制备得到了氧化锌纳米棒阵列以及纳米线,通过将氧化锌与硅纳米线阵列相结合,我们获得了Si/ZnO核壳结构。主要工作如下:
     1.采用金属辅助化学腐蚀的方法,通过改变反应衬底、反应溶液浓度以及反应时间等,获得了制备硅纳米线阵列的最佳反应参数。并可通过改变反应条件制备多孔硅纳米线阵列。
     2.通过透射电镜、扫描电镜以及荧光光谱等测试,分析硅纳米线发光的原因。并对其发光机理做了进一步分析,提出发光机理的模型。
     3.利用还原柠檬酸钠的方法制备金纳米颗粒,并将其局域等离子共振特性与硅纳米线的发光结合起来,使得硅纳米线阵列的发光增强达10倍。
     4.分别利用水热法及气相沉积法制备得到氧化锌纳米棒阵列以及纳米线。在低温下,两种样品的荧光光谱在3.34 eV附近均有一宽包。通过结合变激发强度荧光光谱以及表面钝化等分析,我们确定了其发光来源于自由电子到中性受主的复合。另外,我们利用MOCVD法在硅纳米阵列上包覆了氧化锌壳层,获得了Si/ZnO核壳结构纳米线阵列。
Silicon is a wonderful material for modern electronic devices. As a fundamental material used in micro-electronics, it speeds up the development of information technology. The continuously shrinking size of silicon devices has raised interest in the properties of silicon at the nanoscale, especially one-dimensional structures such as nanowires. Silicon nanowires are under active investigation because of their unique electrical, optical properties and good compatible properties with integrated circuits. Besides, the discovery of the photoluminescence (PL) properties of porous silicon also intrigues numerous studies to understand the origin of PL, and a vast variety of applications emerged.
     In this thesis, we prepared wafer-scale silicon nanowire arrays with low costs; investigated the luminescence mechanism of porous silicon nanowire arrays; and obtained the enhancement luminescence of porous silicon nanowire arrays by coupling with localized surface plasmons. In addition, ZnO nanorod arrays and nanowires were grown by hydrothermal and vapor phase deposition methods, respectively. Si/ZnO core-shell nanowire array were prepared by combination of metal-assisted chemical etching and MOCVD. The main results are as follow:
     1. Silicon nanowire arrays were synthesized by metal-assisted chemical etching. The reaction parameters were optimized by controlling the reaction substrate, solution concentration and reaction time. We also obtained the porous silicon nanowire arrays by changing the reaction condition.
     2. TEM, SEM and PL characterization techniques are employed to investigate the origin and the luminescence mechanism. We proposed a schematic model to explain the luminescence mechanism.
     3. Au nanoparticles were synthesized by reducing sodium citrate. The luminescence intensity of nanowire arrays was enhanced ten times coupling with localized surface plasmons of Au.
     4. ZnO nanorod arrays and nanowires were grown by hydrothermal and vapor phase deposition methods, respectively. At low temperature, the photoluminescence (PL) spectra of both samples are dominated by a broad peak around 3.34 eV. Combined with excitation density-dependent PL spectra and surface passivation process, it is indicated that the 3.34 eV emission could be attributed to free electron-to neutral acceptor transitions. In addition, Si/ZnO core-shell nanowire array were prepared by combination of metal-assisted chemical etching and MOCVD methods.
引文
[1]J. D. Meindl, Q. Chen, and J. A. Davis. Limits on silicon nanoelectronics for terascale integration. Science,2001,293(5537):2044-2049.
    [2]C. M. Lieber. The incredible shrinking circuit-Researchers have built nanotransistors and nanowires. Now they just need to find a way to put them all together. Scientific American, 2001,285(3):58-64.
    [3]D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong. Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE, 2001,89(3):259-288.
    [4]S. Iijima. Helical Microtubules of Graphitic Carbon. Nature,1991,354(6348):56-58.
    [5]S. Iijima, and T. Ichihashi. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature,1993, 363(6430):603-605.
    [6]T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science,2000, 289(5476):94-97.
    [7]P. L. McEuen, M. S. Fuhrer, and H. K. Park. Single-walled carbon nanotube electronics. IEEE Transactions on Nanotechnology,2002,1(1):78-85.
    [8]A. M. Morales, and C. M. Lieber. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science,1998,279(5348):208-211.
    [9]Y. Cui, and C. M. Lieber. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science,2001,291(5505):851-853.
    [10]Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber. Logic gates and computation from assembled nanowire building blocks. Science,2001,294(5545): 1313-1317.
    [11]Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science,2001,293(5533): 1289-1292.
    [12]M. S. Dresselhaus, and I. L. Thomas. Alternative energy technologies. Nature,2001, 414(6861):332-337.
    [13]M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley. Advanced technology paths to global climate stability:Energy for a greenhouse planet. Science,2002,298(5595): 981-987.
    [14]J. Chow, R. J. Kopp, and P. R. Portney. Energy resources and global development. Science, 2003,302(5650):1528-1531.
    [15]N. S. Lewis. Toward cost-effective solar energy use. Science,2007,315(5813):798-801.
    [16]J. Potocnik. Renewable energy sources and the realities of setting an energy agenda. Science, 2007,315(5813):810-811.
    [17]K. W. J. Barnham, M. Mazzer, and B. Clive. Resolving the energy crisis:nuclear or photovoltaics? Nature Materials,2006,5(3):161-164.
    [18]G. W. Crabtree, and N. S. Lewis. Solar energy conversion. Physics Today,2007,60(3):37-42.
    [19]E. A. Alsema. Energy pay-back time and CO2 emissions of PV systems. Progress In Photovoltaics,2000,8(1):17-25.
    [20]M. A. Green. Crystalline silicon photovoltaic cells. Advanced Materials,2001,13(12-13): 1019-1022.
    [21]J. H. Zhao, A. H. Wang, M. A. Green, and F. Ferrazza.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters,1998, 73(14):1991-1993.
    [22]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger. Polymer Photovoltaic Cells-Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995,270(5243):1789-1791.
    [23]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger. Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007, 317(5835):222-225.
    [24]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner. Photovoltaic technology:The case for thin-film solar cells. Science,1999,285(5428):692-698.
    [25]D. E. Carlson, and C. R. Wronski. Amorphous Silicon Solar-Cell. Applied Physics Letters, 1976,28(11):671-673.
    [26]C. W. Tang.2-Layer Organic Photovoltaic Cell. Applied Physics Letters,1986,48(2): 183-185.
    [27]A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat. Thin-film silicon solar cell technology. Progress In Photovoltaics,2004,12(2-3): 113-142.
    [28]M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O'Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young. Crystalline silicon on glass (CSG) thin-film solar cell modules. Solar Energy,2004,77(6): 857-863.
    [29]J. S. Ward, K. Ramanathan, F. S. Hasoon, T. J. Coutts, J. Keane, M. A. Contreras, T. Moriarty, and R. Noufi. A 21.5% efficient Cu(In,Ga)Se-2 thin-film concentrator solar cell. Progress In Photovoltaics,2002,10(1):41-46.
    [30]H. E. A. Elgamel. High efficiency polycrystalline silicon solar cells using low temperature PECVD process. IEEE Transactions On Electron Devices,1998,45(10):2131-2137.
    [31]B. Oregan, and M. Gratzel. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature,1991,353(6346):737-740.
    [32]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature,1998,395(6702):583-585.
    [33]P. Prene, E. Lancelle-Beltran, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Advanced Materials,2006,18(19):2579-2582.
    [34]A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin. ZnO nanotube based dye-sensitized solar cells. Nano Letters,2007,7(8):2183-2187.
    [35]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters,2006,6(2):215-218.
    [36]H. Zhou, A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Butler, I. Haneef, P. Hiralal, A. Nathan, and G. A. J. Amaratunga. Arrays of Parallel Connected Coaxial Multiwall-Carbon-Nanotube-Amorphous-Silicon Solar Cells. Advanced Materials,2009, 21(38-39):3919-3923.
    [37]W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos. Hybrid nanorod-polymer solar cells. Science, 2002,295(5564):2425-2427.
    [38]M. Schierhorn, S. W. Boettcher, A. Ivanovskaya, E. Norvell, J. B. Sherman, G. D. Stucky, and M. Moskovits. Fabrication and electrochemical photovoltaic response of CdSe nanorod arrays. Journal of Physical Chemistry C,2008,112(23):8516-8520.
    [39]Z. Y. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials,2009,8(8):648-653.
    [40]J. A. Czaban, D. A. Thompson, and R. R. LaPierre. GaAs Core-Shell Nanowires for Photovoltaic Applications. Nano Letters,2009,9(1):148-154.
    [41]O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk. Design of light scattering in nanowire materials for photovoltaic applications. Nano Letters,2008,8(9): 2638-2642.
    [42]B. D. Yuhas, and P. D. Yang. Nanowire-Based All-Oxide Solar Cells. Journal Of The American Chemical Society,2009,131(10):3756-3761.
    [43]A. I. Hochbaum, and P. D. Yang. Semiconductor Nanowires for Energy Conversion. Chemical Reviews,2010,110(1):527-546.
    [44]C. Xu, X. D. Wang, and Z. L. Wang. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies. Journal Of The American Chemical Society, 2009,131(16):5866-5872.
    [45]H. Xin, O. G. Reid, G. Q. Ren, F. S. Kim, D. S. Ginger, and S. A. Jenekhe. Polymer Nanowire/Fullerene Bulk Heterojunction Solar Cells:How Nanostructure Determines Photovoltaic Properties. ACS Nano,2010,4(4):1861-1872.
    [46]B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, and C. M. Lieber. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. "Nature, 2007,449(7164):885-889.
    [47]M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials,2010,9(3):239-244.
    [48]Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber. High performance silicon nanowire field effect transistors. Nano Letters,2003,3(2):149-152.
    [49]M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature,2002,415(6872): 617-620.
    [50]C. K. Chan, H. L. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, and Y. Cui. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008,3(1):31-35.
    [51]V. T. Renard, M. Jublot, P. Gergaud, P. Cherns, D. Rouchon, A. Chabli, and V. Jousseaume. Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Nature Nanotechnology,2009,4(10):654-657.
    [52]L. T. Canham. Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers. Applied Physics Letters,1990,57(10):1046-1048.
    [53]R. G. Treuting, and S. M. Arnold. Orientation Habits of Metal Whiskers. Acta Metallurgica, 1957,5(10):598-598.
    [54]R. S. Wagner, and W. C. Ellis. Vapor-Liquid-Solid Mechanism of Single Crystal Growth (New Method Growth Catalysis from Impurity Whisker Epitaxial-Large Crystals Si E). Applied Physics Letters,1964,4(5):89-90.
    [55]S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Physical Review Letters,2006,96(9):096105.
    [56]S. Akhtar, K. Usami, Y. Tsuchiya, H. Mizuta, and S. Oda. Vapor-liquid-solid growth of small-and uniform-diameter silicon nanowires at low temperature from Si2H6. Applied Physics Express,2008,1(1):014003
    [57]S. Hofmann, R. Sharma, C. T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R. E. Dunin-Borkowski, J. Drucker, P. Bennett, and J. Robertson. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Materials,2008,7(5):372-375.
    [58]S. Sharma, and M. K. Sunkara. Direct synthesis of single-crystalline silicon nanowires using molten gallium and silane plasma. Nanotechnology,2004,15(1):130-134.
    [59]F. Iacopi, P. M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, and H. Griffiths. Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts:an effective alternative to Au-mediated growth. Nanotechnology,2007,18(50):505307.
    [60]Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, and C. M. Lieber. Diameter-controlled synthesis of single-crystal silicon nanowires. Applied Physics Letters,2001,78(15): 2214-2216.
    [61]Y. F. Wang, K. K. Lew, T. T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, and T. S. Mayer. Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Letters,2005,5(11):2139-2143.
    [62]L. Pan, K. K. Lew, J. M. Redwing, and E. C. Dickey. Effect of diborane on the microstructure of boron-doped silicon nanowires. Journal Of Crystal Growth,2005,277(1-4):428-436.
    [63]H. Schmid, M. T. Bjork, J. Knoch, H. Riel, W. Riess, P. Rice, and T. Topuria. Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. Journal Of Applied Physics,2008,103(2):024304.
    [64]V. Schmidt, S. Senz, and U. Gosele. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Letters,2005,5(5):931-935.
    [65]X. Y. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. Jin-Phillipp, and F. Phillipp. Synthesis of ordered single crystal silicon nanowire arrays. Advanced Materials,2001,13(16): 1238-1241.
    [66]T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and U. Gosele. Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template. Advanced Materials,2007,19(7):917-920.
    [67]J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel. Control of thickness and orientation of solution-grown silicon nanowires. Science,2000,287(5457):1471-1473.
    [68]D. C. Lee, T. Hanrath, and B. A. Korgel. The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents. Angewandte Chemie-international Edition, 2005,44(23):3573-3577.
    [69]A. T. Heitsch, D. D. Fanfair, H. Y. Tuan, and B. A. Korgel. Solution-liquid-solid (SLS) growth of silicon nanowires. Journal Of The American Chemical Society,2008,130(16):5436-5437.
    [70]L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y. Tan. Silicon nanowhiskers grown on<111>Si substrates by molecular-beam epitaxy. Applied Physics Letters,2004,84(24):4968-4970.
    [71]N. D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, and U. Gosele. Growth phenomena of Si and Si/Ge nanowires on Si(111) by molecular beam epitaxy. Journal Of Crystal Growth,2006,290(1):6-10.
    [72]V. Sivakov, G. Andra, U. Gosele, and S. Christiansen. Epitaxial vapor-liquid-solid growth of silicon nano-whiskers by electron beam evaporation. Physica Status Solidi a-Applications and Materials Science,2006,203(15):3692-3698.
    [73]V. Sivakov, F. Heyroth, F. Falk, G. Andra, and S. Christiansen. Silicon nanowire growth by electron beam evaporation:Kinetic and energetic contributions to the growth morphology. Journal Of Crystal Growth,2007,300(2):288-293.
    [74]P. Das Kanungo, N. Zakharov, J. Bauer, O. Breitenstein, P. Werner, and U. Goesele. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy. Applied Physics Letters,2008,92(26):263107.
    [75]H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee, and S. T. Lee. Temperature dependence of Si nanowire morphology. Advanced Materials,2001,13(5):317-320.
    [76]Y. F. Zhang, Y. H. Tang, H. Y. Peng,N. Wang, C. S. Lee,I. Bello, and S. T. Lee. Diameter modification of silicon nanowires by ambient gas. Applied Physics Letters,1999,75(13): 1842-1844.
    [77]G. W. Zhou, Z. Zhang, Z. G. Bai, S. Q. Feng, and D. P. Yu. Transmission electron microscopy study of Si nanowires. Applied Physics Letters,1998,73(5):677-679.
    [78]N. Wang, Y. H. Tang, Y. F. Zhang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee. Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation. Chemical Physics Letters,1998,283(5-6):368-372.
    [79]Y. H. Yang, S. J. Wu, H. S. Chin, P. I. Lin, and Y. T. Chen. Catalytic growth of silicon nanowires assisted by laser ablation. Journal Of Physical Chemistry B,2004,108(3): 846-852.
    [80]N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee. Nucleation and growth of Si nanowires from silicon oxide. Physical Review B,1998,58(24):16024-16026.
    [81]N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Lee. SiO2-enhanced synthesis of Si nanowires by laser ablation. Applied Physics Letters,1998,73(26):3902-3904.
    [82]R. Q. Zhang, Y. Lifshitz, and S. T. Lee. Oxide-assisted growth of semiconducting nanowires. Advanced Materials,2003,15(7-8):635-640.
    [83]Y. F. Zhao, and B. I. Yakobson. What is the ground-state structure of the thinnest Si nanowires? Physical Review Letters,2003,91(3):035501.
    [84]C. P. Li, C. S. Lee, X. L. Ma, N. Wang, R. Q. Zhang, and S. T. Lee. Growth direction and cross-sectional study of silicon nanowires. Advanced Materials,2003,15(7-8):607-609.
    [85]Y. H. Tang, T. K. Sham, A. Jurgensen, Y. F. Hu, C. S. Lee, and S. T. Lee. Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy. Applied Physics Letters,2002,80(20):3709-3711.
    [86]Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber. Doping and electrical transport in silicon nanowires. Journal Of Physical Chemistry B,2000,104(22):5213-5216.
    [87]Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang. Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. Journal Of Physical Chemistry B,2001,105(13):2507-2514.
    [88]F. M. Kolb, H. Hofmeister, R. Scholz, M. Zacharias, U. Gosele, D. D. Ma, and S. T. Lee. Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism. Journal Of The Electrochemical Society,2004,151(7):G472-G475.
    [89]F. M. Kolb, H. Hofmeister, M. Zacharias, and U. Gosele. On the morphological instability of silicon/silicon dioxide nanowires. Applied Physics A-materials Science & Processing,2005, 80(7):1405-1408.
    [90]W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee. Synthesis of large areas of highly oriented, very long silicon nanowires. Advanced Materials, 2000,12(18):1343-1345.
    [91]J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang. Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates. Applied Physics Letters,2000, 76(17):2346-2348.
    [92]Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee. Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation. Chemical Physics Letters,2001,337(1-3):18-24.
    [93]R. Juhasz, N. Elfstrom, and J. Linnros. Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Letters,2005,5(2): 275-280.
    [94]S. F. Hu, W. C. Weng, and Y. M. Wan. Fabrication of silicon nanowire structures based on proximity effects of electron-beam lithography. Solid State Communications,2004,130(1-2): 111-114.
    [95]Y. K. Choi, T. J. King, and C. M. Hu. A spacer patterning technology for nanoscale CMOS. IEEE Transactions On Electron Devices,2002,49(3):436-441.
    [96]Y. K. Choi, J. Zhu, J. Grunes, J. Bokor, and G. A. Somorjai. Fabrication of sub-10-hm silicon nanowire arrays by size reduction lithography. Journal Of Physical Chemistry B,2003, 107(15):3340-3343.
    [97]C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui. Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Applied Physics Letters,2008, 93(13):133109.
    [98]K. J. Morton, G. Nieberg, S. F. Bai, and S. Y. Chou. Wafer-scale patterning of sub-40nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching. Nanotechnology,2008,19(34):345301
    [99]E. Garnett, and P. D. Yang. Light Trapping in Silicon Nanowire Solar Cells. Nano Letters, 2010,10(3):1082-1087.
    [100]D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, and M. Kamenova. Preparation of thin porous silicon layers by stain etching. Thin Solid Films,1997,297(1-2):9-12.
    [101]X. Li, and P. W. Bohn. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Applied Physics Letters,2000,77(16):2572-2574.
    [102]K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Advanced Materials,2002,14(16):1164-1167.
    [103]K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu. Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Advanced Functional Materials,2003,13(2):127-132.
    [104]K. Q. Peng, and J. Zhu. Simultaneous gold deposition and formation of silicon nanowire arrays. Journal Of Electroanalytical Chemistry,2003,558:35-39.
    [105]K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang, and S. T. Lee. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Applied Physics Letters,2007,90(16):163123.
    [106]K. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J. Zhu. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angewandte Chemie-international Edition,2005,44(18):2737-2742.
    [107]K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee. Fabrication and photovoltaic property of ordered macroporous silicon. Applied Physics Letters,2009,95(14):143119.
    [108]W. K. Choi, T. H. Liew, and M. K. Dawood. Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching. Nano Letters,2008,8(11): 3799-3802.
    [109]J. de Boor, N. Geyer, J. V. Wittemann, U. Gosele, and V. Schmidt. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology, 2010,21(9):095302.
    [110]Z. H. Zhong, D. L. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science,2003,302(5649):1377-1379.
    [111]H. Fang, X. D. Li, S. Song, Y. Xu, and J. Zhu. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology,2008,19(25):255703.
    [112]L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand. Silicon nanowire solar cells. Applied Physics Letters,2007,91(23):233117
    [113]E. C. Garnett, and P. D. Yang. Silicon nanowire radial p-n junction solar cells. Journal Of The American Chemical Society,2008,130(29):9224-9225.
    [114]T. J. Kempa, B. Z. Tian, D. R. Kim, J. S. Hu, X. L. Zheng, and C. M. Lieber. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices. Nano Letters,2008,8(10):3456-3460.
    [115]K. Q. Peng, Z. P. Huang, and J. Zhu. Fabrication of large-area silicon nanowire p-n junction diode arrays. Advanced Materials,2004,16(1):73-76.
    [116]V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen. Silicon Nanowire-Based Solar Cells on Glass:Synthesis, Optical Properties, and Cell Parameters. Nano Letters,2009,9(4):1549-1554.
    [117]F. Patolsky, and C. M. Lieber. Nanowire nanosensors. Materials Today,2005,8(4):20-28.
    [118]J. Hahm, and C. M. Lieber. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters,2004,4(1):51-54.
    [119]F. Patolsky, G. F. Zheng, O. Hayden, M. Lakadamyali, X. W. Zhuang, and C. M. Lieber. Electrical detection of single viruses. proceedings of the national academy of sciences of the united states of america,2004,101(39):14017-14022.
    [120]A. Uhlir. Electrolytic Shaping of Germanium and Silicon. Bell System Technical Journal, 1956,35(2):333-347.
    [121]Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi. Formation and Properties of Porous Silicon and Its Application. Journal Of The Electrochemical Society,1975,122(10): 1351-1355.
    [122]L. Canham. Silicon Optoelectronics at the End of the Rainbow. Physics World,1992,5(3): 41-44.
    [123]A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller. Electroluminescence in the Visible Range during Anodic-Oxidation of Porous Silicon Films. Applied Physics Letters,1991,59(3):304-306.
    [124]F. Koch. Insulating Films on a Quantum Semiconductor-Light-Emitting Porous Silicon. Microelectronic Engineering,1995,28(1-4):237-245.
    [125]A. Richter, P. Steiner, F. Kozlowski, and W. Lang. Current-Induced Light-Emission from a Porous Silicon Device. IEEE Electron Device Letters,1991,12(12):691-692.
    [126]N. Koshida, and H. Koyama. Visible Electroluminescence from Porous Silicon. Applied Physics Letters,1992,60(3):347-349.
    [127]P. M. Fauchet, L. Tsybeskov, S. P. Duttagupta, and K. D. Hirschman. Stable photoluminescence and electroluminescence from porous silicon. Thin Solid Films,1997, 297(1-2):254-260.
    [128]J. P. Zheng, K. L. Jiao, W. P. Shen, W. A. Anderson, and H. S. Kwok. Highly Sensitive Photodetector Using Porous Silicon. Applied Physics Letters,1992,61(4):459-461.
    [129]C. C. Tsai, K. H. Li, J. C. Campbell, and A. Tasch. Photodetectors Fabricated from Rapid-Thermal-Oxidized Porous Si. Applied Physics Letters,1993,62(22):2818-2820.
    [130]P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, and M. Peneva. High-efficiency solar cell using a thin porous silicon layer. Thin Solid Films,1997,297(1-2): 299-303.
    [131]M. Araki, H. Koyama, and N. Koshida. Fabrication and fundamental properties of an edge-emitting device with step-index porous silicon waveguide. Applied Physics Letters, 1996,68(21):2999-3000.
    [132]G. Maiello, S. LaMonica, A. Ferrari, G. Masini, V. P. Bondarenko, A. M. Dorofeev, and N. M. Kazuchits. Light guiding in oxidised porous silicon optical waveguides. Thin Solid Films, 1997,297(1-2):311-313.
    [133]P. A. Snow, E. K. Squire, P. S. J. Russell, and L. T. Canham. Vapor sensing using the optical properties of porous silicon Bragg mirrors. Journal Of Applied Physics,1999,86(4): 1781-1784.
    [134]E. K. Squire, P. A. Snow, P. S. Russell, L. T. Canham, A. J. Simons, and C. L. Reeves. Light emission from porous silicon single and multiple cavities. Journal Of Luminescence,1998, 80(1-4):125-128.
    [135]L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini. Controlled Photon-Emission in Porous Silicon Microcavities. Applied Physics Letters,1995,67(22):3280-3282.
    [136]S. Chan, and P. M. Fauchet. Tunable, narrow, and directional luminescence from porous silicon light emitting devices. Applied Physics Letters,1999,75(2):274-276.
    [137]Y. Q. Qu, L. Liao, Y. J. Li, H. Zhang, Y. Huang, and X. F. Duan. Electrically Conductive and Optically Active Porous Silicon Nanowires. Nano Letters,2009,9(12):4539-4543.
    [138]K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan, and S. Lee. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chemistry-a European Journal,2006,12(30):7942-7947.
    [139]H. Fang, X. D. Li, S. Song, Y. Xu, and J. Zhu. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology,2008,19(25):6.
    [140]C. Y. Chen, C. S. Wu, C. J. Chou, and T. J. Yen. Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature. Advanced Materials,2008,20(20): 3811-3815.
    [141]K. Q. Peng, A. J. Lu, R. Q. Zhang, and S. T. Lee. Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching. Advanced Functional Materials,2008,18(19): 3026-3035.
    [142]M. Schade, N. Geyer, B. Fuhrmann, F. Heyroth, and H. S. Leipner. High-resolution analytical electron microscopy of catalytically etched silicon nanowires. Applied Physics A-materials Science & Processing,2009,95(2):325-327.
    [143]A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. D. Yang. Single Crystalline Mesoporous Silicon Nanowires. Nano Letters,2009,9(10):3550-3554.
    [144]M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Journal of Physical Chemistry C,2008,112(12):4444-4450.
    [145]K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J. Zhu. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small,2005,1(11):1062-1067.
    [146]A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang. Enhanced thermoelectric performance of rough silicon nanowires. Nature,2008,451(7175):163-167.
    [147]P. Furjes, A. Kovacs, C. Ducso, M. Adam, B. Muller, and U. Mescheder. Porous silicon-based humidity sensor with interdigital electrodes and internal heaters. Sensors And Actuators B-chemical,2003,95(1-3):140-144.
    [148]A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, and A. Boyer. Porous silicon layer coupled with thermoelectric cooler:a humidity sensor. Sensors And Actuators A-physical,2000,79(3):189-193.
    [149]M. P. Stewart, and J. M. Buriak. Chemical and biological applications of porous silicon technology. Advanced Materials,2000,12(12):859-869.
    [150]G. D'Arrigo, M. Fichera, and S. Libertino. Porous-Si based bio reactors for glucose monitoring and drugs production. Microfluidics, Biomems, and Medical Microsystems,2003, 4982:178-184.
    [151]S. Zairi, C. Martelet, N. Jaffrezic-Renault, F. Vocanson, R. Lamartine, R. M'gaieth, H. Maaref, and M. Gamoudi. p-type porous-silicon transducer for cation detection:effect of the porosity, pore morphology, temperature and ion valency on the sensor response and generalisation of the Nernst equation. Applied Physics A-materials Science & Processing, 2001,73(5):585-593.
    [152]M. Rocchia, E. Garrone, F. Geobaldo, L. Boarino, and M. J. Sailor. Sensing CO2 in a chemically modified porous silicon film. Physica Status Solidi a-Applications and Materials Science,2003,197(2):365-369.
    [153]C. Baratto, G. Faglia, E. Comini, G. Sberveglieri, A. Taroni, V. La Ferrara, L. Quercia, and G. Di Francia. A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors And Actuators B-chemical,2001,77(1-2):62-66.
    [154]M. C. Daniel, and D. Astruc. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews,2004,104(1):293-346.
    [155]Y. N. Xia, and N. J. Halas. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin,2005,30(5):338-344.
    [156]G. Mie. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Annalen Der Physik,1908,25(3):377-445.
    [157]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature,1998,391(6668):667-669.
    [158]A. J. Haes, and R. P. Van Duyne. A nanoscale optical blosensor:Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal Of The American Chemical Society,2002,124(35): 10596-10604.
    [159]I. H. El-Sayed, X. H. Huang, and M. A. El-Sayed. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Letters,2005,5(5):829-834.
    [160]C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters,2002, 88(7):077402
    [161]V. P. Zharov, J. W. Kim, D. T. Curiel, and M. Everts. Amplified laser-nanocluster interaction in DNA, viruses, bacteria, and cancer cells:Potential for nanodiagnostics and nanotherapy. Lasers In Surgery And Medicine,2006:16-16.
    [162]W. I. Park, and G. C. Yi. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Advanced Materials,2004,16(1):87-90.
    [163]L. Wischmeier, T. Voss, I. Ruckmann, J. Gutowski, A. C. Mofor, A. Bakin, and A. Waag. Dynamics of surface-excitonic emission in ZnO nanowires. Physical Review B,2006,74(19): 195333.
    [164]J. Grabowska, A. Meaney, K. K. Nanda, J. P. Mosnier, M. O. Henry, J. R. Duclere, and E. McGlynn. Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems:Limiting effects on device potential. Physical Review B,2005,71(11):115439.
    [165]X. D. Meng, Z. M. Shi, X. B. Chen, X. H. Zeng, and Z. X. Fu. Temperature behavior of electron-acceptor transitions and oxygen vacancy recombinations in ZnO thin films. Journal Of Applied Physics,2010,107(2):023501.
    [166]D. Stichtenoth, J. Durr, C. Ronning, L. Wischmeier, and T. Voss. Characterization of the donor-acceptor-pair transition in nitrogen-implanted zinc oxide. Journal Of Applied Physics, 2008,103(8):083513.
    [167]J. Fallert, R. Hauschild, F. Stelzl, A. Urban, M. Wissinger, H. J. Zhou, C. Klingshirn, and H. Kalt. Surface-state related luminescence in ZnO nanocrystals. Journal Of Applied Physics, 2007,101(7):073506.
    [168]M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer. Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide. Physical Review B,2008,77(12):125215.
    [169]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Applied Physics Letters,2002,81(10):1830-1832.
    [170]K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Advanced Functional Materials,2006,16(3):387-394.
    [171]W. Chern, K. Hsu, I. S. Chun, B. P. de Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li. Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays. Nano Letters,10(5): 1582-1588.
    [172]M. Dovrat, N. Arad, X. H. Zhang, S. T. Lee, and A. Sa'ar. Optical properties of silicon nanowires from cathodoluminescence imaging and time-resolved photoluminescence spectroscopy. Physical Review B,2007,75(20):205343.
    [173]H. Shibata. Negative thermal quenching curves in photoluminescence of solids. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1998,37(2): 550-553.
    [174]C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang. Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures. Chemistry Of Materials,2008,20(24):7570-7574.
    [175]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman. Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications,1994, (7):801-802.
    [176]A. Manna, P. L. Chen, H. Akiyama, T. X. Wei, K. Tamada, and W. Knoll. Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chemistry Of Materials,2003,15(1):20-28.
    [177]H. J. Zhou, J. Fallert, J. Sartor, R. J. B. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H. B. Zeng, and W. P. Cai. Ordered n-type ZnO nanorod arrays. Applied Physics Letters,2008,92(13):132112.
    [178]C. Bekeny, T. Voss, B. Hilker, J. Gutowski, R. Hauschild, H. Kalt, B. Postels, A. Bakin, and A. Waag. Influence of ZnO seed crystals and annealing on the optical quality of low-temperature grown ZnO nanorods. Journal Of Applied Physics,2007,102(4):044908.
    [179]A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Physical Review B,2004,70(19):195207.
    [180]J. P. Richters, T. Voss, D. S. Kim, R. Scholz, and M. Zacharias. Enhanced surface-excitonic emission in ZnO/Al2O3 core-shell nanowires. Nanotechnology,2008,19(30):4.
    [181]D. G. Thomas, J. J. Hopfield, and Augustyn.Wm. Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors. Physical Review,1965,140(1 A):A202.
    [182]B. P. Zhang, N. T. Binh, Y. Segawa, Y. Kashiwaba, and K. Haga. Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates. Applied Physics Letters, 2004,84(4):586-588.
    [183]L. J. Wang, and N. C. Giles. Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. Journal Of Applied Physics,2003, 94(2):973-978.
    [184]B. K. Meyer, J. Stehr, A. Hofstaetter, N. Volbers, A. Zeuner, and J. Sann. On the role of group I elements in ZnO. Applied Physics A-materials Science & Processing,2007,88(1): 119-123.
    [185]D. S. Kim, J. P. Richters, R. Scholz, T. Voss, and M. Zacharias. Modulation of carrier density in ZnO nanowires without impurity doping. Applied Physics Letters,2010,96(12): 123110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700