用户名: 密码: 验证码:
抗溺水性气体多孔电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFCs)的大规模商业化要求降低成本,增加电池的耐久性、可靠性以及实现其性能的最优化。合适的水管理对于实现PEMFCs的性能最优化和长耐久性发挥着至关重要的作用。然而一旦正极中氧还原反应(ORR)和电渗拖曳所产生的液态水的速率超过其通过反向扩散、蒸发、水蒸气扩散及液态水毛细传输等方法所排出水的速率时,就会发生水淹。而水淹一旦发生,就会阻止氧气扩散到催化剂活性位进行还原反应;取而代之的则是H+得到电子还原为氢气,由于后者的还原电位比前者低1.23伏,使得正极电位急剧下降,从而产生所谓的“负差效应”,进而对PEMFCs的输出性能带来重大的有时甚至是灾难性的损害。在过去的20年里,水淹问题已经得到了广泛的研究,包括数学模型的预测和实验诊断等。对于缓解水淹的研究,目前绝大部分的工作都放在了系统设计和工程方面,如设计电池的组件和优化操作条件等。然而这些策略都通常不可避免的会带来严重的寄生功率损耗。而对水淹的发源地——催化层自身的水淹研究却少有涉及。
     实际上既然水淹是发生在膜电极组件(MEA)里的,那么MEA组分的材料设计与工程对于水管理而言应该是一种比较简单的办法,况且它不会带来寄生负载,应该成为缓解水淹策略的首选。而本文就是通过修饰电极催化层的微观结构对MEA中组分(如正极和负极)的材料设计和工程做出了新的尝试。
     首先,本文在传统Pt/C电极的基础上添加MnO_2制成MnO_2-Pt/C复合电极,在因水淹导致的氧饥饿状态下,由与氧还原反应(ORR)有着相近Nernstian电位的MnO_2的还原反应维持正极反应以消除负差效应。研究结果表明在传统Pt/C电极中引入MnO_2不仅能够在一定程度上减轻因氧饥饿导致的负差效应,在富氧条件下它还能协同Pt/C催化剂共同促进催化氧还原反应。MnO_2-Pt/C复合电极和Pt/C电极的阻抗谱研究进一步证实了复合电极中的MnO_2在氧饥饿情况下扮演的是替代氧作为电子接受体的角色。此外无论是在富氧状态还是氧饥饿状态下,放电过的MnO_2完全能够恢复到它的初始状态。
     其次,通过将防水油——二甲基硅油渗入到传统Pt/C气体多孔电极中发明了一种新型抗溺水性气体多孔电极(AFE),其中二甲基硅油主要分布在直径范围为20-70 nm的孔隙中。含有AFE正极的质子交换膜燃料电池不管在水淹状态下(大电流密度和氧气过增湿)还是在正常操作条件下都展示出了优于含有传统正极的燃料电池的输出性能。这种抗溺水性气体多孔电极在抗水淹方面的成功主要在于它解决的是发生在多孔电极自身中的水淹问题而非在双极板流场中水的积聚问题,该技术路线解决了发生在直径为20-70 nm孔隙中的水淹问题,而在这些孔隙中水淹经常发生而且常规措施对此却无能为力。
     再次,采用电化学阻抗谱(EIS)并结合催化层中的薄膜/水淹团块模型(thin film/flooded-agglomerate model)对抗溺水性Pt/C气体多孔电极(AFE)的抗溺水性能进行了分析,其结果表明:AFE在完全水淹状态下之所以体现出了优异的抗溺水性能是因为在水淹之前二甲基硅油预先占据了催化层中部分用于氧传输的团块(agglomerate)孔隙,进而在水淹来临之后阻止了这些具有团块扩散(agglomerate diffusion)性质的孔向薄膜扩散(thin film diffusion)性质孔的转化,从而为氧扩散提供了具有高溶解氧能力且不会为水占据的固定专用通道。
     第四部分,通过将二甲基硅油渗入到传统MnO_2/C氧电极中发明了一种有序化的抗溺水性氧电极,首次实现了氧传输通道和OH-离子扩散通道的分离。实验结果表明这种有序化的抗溺水性氧电极特别是在大电流密度下体现出了显著的抗水淹性能,它解决了碱性燃料电池和金属/空气电池氧电极中的PTFE降解和碱性电解质物理湿润现象所导致的催化层水淹问题。
     最后,在传统的PtRu/C电极(CPRE)中加入二甲基硅油(DMS)后制成了一种新型防止液封效应的DMFC用阳极(PLSE)。这种新型电极显示出了优异的防止液封效应的能力。当用PLSE替代CPRE后,单电池的输出功率从42.2 mW cm-2提高到了51.6 mW cm-2。PLSE这种阳极结构的成功之处在于CO_2在这种防水油DMS中的溶解度和扩散系数都要高于在甲醇水溶液中的溶解度和扩散系数。兼之DMS的憎水性,DMS为CO_2的扩散传质提供了专用快速通道,实现了CO_2传输通道和甲醇溶液扩散通道的分离,有效抑制了甲醇溶液对CO_2传输的液封效应。
At present, despite the great advances in proton exchange membrane fuel cells (PEMFCs) technology over the past two decades through intensive research and development activities, their large-scale commercialization is still hampered by the higher materials cost and lower reliability and durability. In this context, proper water management is of vital importance to achieve maximum performance and durability from PEMFCs. However, when the liquid water generation rate at the cathode, by electro-osmotic drag and the ORR, exceeds the liquid water removal rate from the cathode by back diffusion to the anode, evaporation, water vapor diffusion and liquid water capillary transport through the GDL, the water flooding appears. With water accumulation and the cathode flooded, oxygen starvation,and even oxygen depletion would occur at the cathode. In this case, protons H+ reduction reaction (PRR) carries on at the cathode of PEMFC rather than oxygen reduction reaction (ORR). The potential of PRR is 1.23V less than that of ORR; it would cause a remarkable decline of cathode potential as ORR was replaced by PRR. The output voltage of a single cell with oxygen starvation would be likely reversed. This phenomenon was defined as“voltage reversal effect”(VRE) in this paper, which will lead to a significant, sometimes catastrophic, decrease in cell performance. Over the last two decades, extensive research work has been carried out on water flooding, including prediction through numerical modeling, detection by experimental measurements. The flooding mitigation strategies are mainly focused on system design and engineering such as the design of cell components and the manipulation of operating conditions, which is often accompanied by significant parasitic power loss. However, there are few reports that aimed to overcome water flooding happening in the pores of a porous electrode so far, which is just the headstream of water flooding.
     In fact, since water flooding happens within the membrane electrode assemblies (MEA), a simpler approach for water management through material design and engineering of the components of the MEA is preferred because it does not usually have an associated parasitic load. Thus, as a new attempt of material design and engineering of the cathode and/or anode to address water management in the PEMFCs, modification of the microstructures of the catalyst layer has been carried out in this paper.
     Firstly, a MnO_2–Pt/C composite electrode was designed to solve the VRE caused by oxygen starvation, which was based upon the fact that the electrochemical reduction of MnO_2 has almost the same Nernstian potential as the ORR. It has been found that the introduction of MnO_2 into the Pt/C catalyst not only can alleviate, to a certain extent, the problem VRE in the case of oxygen starvation, but also play a synergistic role with Pt/C in catalysis of the ORR in the case of oxygen rich conditions. The impedance spectra of the MnO_2–Pt/C and Pt/C electrodes further confirm that MnO_2 in the composite electrode does substitute for oxygen as an electron-acceptor in the case of oxygen starvation. The discharged MnO_2 can recover to its initial state regardless of oxygen rich or oxygen starvation conditions. Thus, it may be possible to apply the proposed composite MnO_2–Pt/C electrode for practical use.
     Secondly, an anti-flooding electrode (AFE) was prepared by introduction of water-proof oil, dimethyl-silicon-oil (DMS) into the conventional Pt/C electrode. The experiments results indicate that the DMS mainly distributes in the pores with diameter ranging from 20 to 70 nm. The single PEMFC cell with the AFE cathode displays much better power output not only in the case of water flooding but also in the case of a well-designed operational condition than the cell with the conventional cathode. The novel anti-flooding electrode displays outstanding anti-flooding capability, especially in the case of a large current density and over-humidification. The success of the AFE in anti-flooding lies in that (1) it solves the water flooding to the porous electrode itself rather than the water accumulation in the gas channels of the bipolar plate, and (2) it solves the water flooding of the pores with a diameter of 20 to 70 nm, in which water flooding frequently happens and is not easy to remove by the routine ways.
     In the part three, electrochemical impedance spectroscopy (EIS) studies have been carried out in order to evaluate the anti-flooding capacity of the AFE. From the dependences of the EIS on the overpotentials, the impedance properties were analyzed in terms of the thin film/flooded-agglomerate dynamics in the catalyst layer. The EIS study demonstrated that the excellent anti-flooding capability of the AFE in the case of completely flooding lies in that AFE alleviates the thin film diffusion effect in the case of flooding due to the DMS has occupied partial pores in the agglomerate before they are flooded by product water, thus prevents the conversion of oxygen diffusion type from faster agglomerate diffusion to slower thin film diffusion to some extent, and therefore provides the unoccupied channels with high solubility of oxygen in such DMS-filled channels for oxygen transportation.
     In the part four, an ordered anti-flooding oxygen electrode was prepared by adding water-proof oil DMS into the conventional MnO_2/C electrode, thus the channels for oxygen transportation and OH- ions are orderly allotted between the channels/pores occupied by DMS and electrolyte, which makes the oxygen and OH- hold their own fixed and stabile transport channels, respectively. The success of the ordered anti-flooding oxygen electrode in anti-flooding lies in that it solves the water flooding to the catalyst layer of oxygen electrode used in AFE and metal/air batteries due to the PTFE degradation and physical wetting phenomenon in alkaline electrolyte.
     Finally, A novel anode for preventing liquid sealing effect in the DMFC was invented by adding water-proof oil DMS into the conventional PtRu/C electrode. The novel electrode displays outstanding capability in preventing liquid sealing effect. The performance of DMFC was increased from 42.2 to 51.6 mW cm-2 with substitution of the PLSE for the CPRE. The success of the novel anode structure lies in that the solubility and diffusion coefficient of CO_2 in the water-proof oil DMS are higher than in methanol-water solution. Then, the hydrophobic DMS supplies the unoccupied channels for CO_2 transportation, which are separated from the chnnels for methanol solution diffusion. Therefore, the introduction of MDS effectively prevents the Liquid Sealing Effect (LSE) to CO_2.
引文
[1] G. Velayutham, J. Kaushik, N. Rajalakshmi, K.S. Dhathathreyan. Effect of PTFE Content in Gas Diffusion Media and Microlayer on the Performance of PEMFC Tested under Ambient Pressure [J]. Fuel Cells, 2007, 7 (4): 314-318.
    [2] W. He. Two-phase flowand electrode flooding in PEM fuel cell electrodes [D]. University of Kansas, 2003.
    [3]黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用[M].冶金工业出版社,2002.
    [4]衣宝廉.燃料电池-原理、技术、应用[M].化学工业出版社,北京,2003:160.
    [5] G.J.M. Janssen, M.L.J. Overvelde. Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient [J]. J. Power Sources, 2001, 101 (1): 117-125.
    [6] G. Maggio, V. Recupero, L. Pino. Modeling polymer electrolyte fuel cells: an innovative approach [J]. J. Power Sources, 2001, 101 (2): 275-286.
    [7] D.L. Wood, J.S. Yi, T.V. Nguyen. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells [J]. Electrochim. Acta, 1998, 43 (24): 3795-3809.
    [8] M.S. Wilson, C. Zawodzinski, S. Gottesfeld. Proceedings of the Second International Symposium on Proton Conducting Membrane Fuel Cells [R]. vol. II, Pennington, USA, 1998.
    [9] C.Y. Wang. Fundamental models for fuel cell engineering [J]. Chem. Rev., 2004, 104: 4727-4766.
    [10] H. Li, Y.H. Tang, Z.W. Wang, Z. Shi, S.H. Wu, D.T. Song, J.L. Zhang, K. Fatih, J.J. Zhang, H.J. Wang, Z.S. Liu, R. Abouatallah, A. Mazza. A review of water flooding issues in the proton exchange membrane fuel cell [J]. J. Power Sources, 2008, 178: 103-117.
    [11] J. St-Pierre, D.P. Wilkinson, S. Knights, M. Bos, J. New Mater. Electrochem. Syst., 2000, 3: 99.
    [12] Matti Noponen. Experimental Studies and Simulations on Proton Exchange Membrane Fuel Cell Based Energy Storage Systems [D]. Helsinki: Helsinki University of Technology, 2000.37-38.
    [13]陈羚,程旋,范钦柏等.质子交换膜燃料电池性能及催化剂表征.第十二届全国电化学会议论文集, 2003年11月,上海, C130.
    [14] K. Tüber, D. Pócza, C. Hebling. Visualization of water buildup in the cathode of a transparentPEM fuel cell [J]. J. Power Sources, 2003, 124: 403-414.
    [15] X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang. Visualization of liquid water transport in a PEFC [J]. Electrochem. Solid-State Lett., 2004, 7: A408-A411.
    [16] F.Y. Zhang, X.G. Yang, C.Y. Wang. Liquid water removal from a polymer electrolyte fuel cell [J]. J. Electrochem. Soc., 2006, 153 (2): A225-232.
    [17]刘璿,郭航,叶芳,马重芳.质子交换膜燃料电池流道淹没与传质强化[J].工程热物理学报, 2006, 27(增刊2): 53-56.
    [18] X. Liu, H. Guo, C.F. Ma. Water flooding and two-phase flow in cathode channels of proton exchange membrane fuel cells [J]. J. Power Sources, 2006, 156: 267.
    [19] X. Liu, H. Guo, F. Ye, C.F. Ma. Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells [J]. Electrochimica Acta, 2007, 52 (11): 3607-3614.
    [20] H.P.Ma, H.M. Zhang, J. Hu, Y.H. Cai, B.L.Yi. Diagnostic tool to detect liquid water removal in the cathode channels of proton exchange membrane fuel cells [J]. J. Power Sources, 2006, 162: 469-473.
    [21]马海鹏,张华民,胡军,才华英,衣宝廉. PEMFC阴极排水的研究[J].电池, 2006, 36(4): 249-251.
    [22] D. Spernjak, A.K. Prasad, S.G. Advani. Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell [J]. J. Power Sources, 2007, 170 (2): 334-344.
    [23] J. Stumper, M. Lohr, S. Hamada. Diagnostic tools for liquid water in PEM fuel cells [J]. J. Power Sources, 2005, 143 (1-2): 150-157.
    [24] R.J. Bellows, M.Y. Lin, M. Arif, A.K. Thompson, D. Jacobson. Neutron imaging technique for in situ measurement of water transport gradients within Nafion in polymer electrolyte fuel cells [J]. J. Electrochem. Soc., 1999, 146 (3): 1099-1103.
    [25] R. Satija, D.L. Jacobson, M. Arif, S.A. Werner. In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells [J]. J. Power Sources, 2004, 129 (2): 238-245.
    [26] N. Pekula, K. Heller, P.A. Chuang, A. Turhan, M.M. Mench, J.S. Brenizer, K. Unlu, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip., 2005, 542: 134.
    [27] J.J. Kowal, A. Turhan, K. Heller, J. Brenizer, M.M. Mench. Liquid water storage, distribution, and removal from diffusion media in PEFCS [J]. J. Electrochem. Soc., 2006, 153 (10): A1971–A1978.
    [28] M.A. Hickner, N.P. Siegel, K.S. Chen, D.N. McBrayer, D.S. Hussey, D.L. Jacobson, M. Arif. Real-time imaging of liquid water in an operating proton exchange membrane fuel cell [J]. J. Electrochem. Soc., 2006, 153 (5): A902–A908.
    [29] T.A. Trabold, J.P. Owejan, D.L. Jacobson, M. Arif, P.R. Huffman. In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 1– Experimental method and serpentine flow field results [J]. Int. J. Heat Mass Transfer, 2006, 49 (25-26): 4712-4720.
    [30] K.W. Feindel, S.H. Bergens, R.E. Wasylishen. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy [J]. J. Am. Chem. Soc., 2006, 128: 14192-14199.
    [31] K.W. Feindel, L. P.-A. LaRocque, D. Starke, S.H. Bergens, R.E. Wasylishen. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy [J]. J. Am. Chem. Soc., 2004, 126: 11436-11437.
    [32] F. Barbir, H. Gorgun, X. Wang. Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells [J]. J. Power Sources, 2005, 141 (1): 96-101.
    [33] W. He, G. Lin, T. Van Nguyen. Diagnostic tool to detect electrode flooding in pronon exchange membrane fuel cells [J]. AIChE J., 2003, 49:3221-3229.
    [34] A.D. Bosco, M.H. Fronk. US Patent Ch.6, 103, 409 (2000).
    [35] M.F. Mathias, S.A. Grot. US Patent Ch.6, 376, 111 (2002).
    [36] A. Hakenjos, H. Muenter, U.Wittstadt, C. Hebling. A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding [J]. J. Power Sources, 2004, 131 (1-2): 213-216.
    [37] J. Stumper, S.A. Campbell, D.P. Wilkinson, M.C. Johnson, M. Davis. In-situ methods for the determination of current distributions in PEM fuel cells [J]. Electrochim. Acta, 1998, 43 (24): 3773-3783.
    [38] J.M. Le Canut, R.M. Abouatallah, D.A. Harrington. Detection of membrane drying, fuel cell flooding, and anode catalyst poisoning on PEMFC stacks by electrochemical impedance spectroscopy [J]. J. Electrochem. Soc., 2006, 153 (5): A857–A864.
    [39] A.A. Kulikovsky, J. Divisek, A.A. Kornyshev. Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones [J]. J.Electrochem. Soc., 1999, 146 (11): 3981-3991.
    [40] J.S. Yi, T.V. Nguyen. Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors [J]. J.Electrochem. Soc., 1999, 146 (1): 38-45.
    [41] S. Dutta, S. Shimpalee, J.W. Van Zee. Three-dimensional numerical simulation of straight channel PEM fuel cells [J]. J.Appl. Electrochem., 2000, 30 (2): 135-146.
    [42] T. Berning, D.M. Lu, N. Djilali. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J]. J. Power Sources, 2002, 106 (1-2): 284-294.
    [43] K.Z. Yao, K. Karan, K.B. McAuley, P. Oosthuizen, B. Peppley, T. Xie. A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells [J]. Fuel Cells, 2004, 4(1-2): 3-29.
    [44] D.M. Bernardi, M.W. Verbrugge. A mathematical-model of the solid-polymer-electrolyte fuel-cell [J]. J. Electrochem. Soc., 1992, 139 (9): 2477-2491.
    [45] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld. Polymer-electrolyte fuel-cell model [J]. J. Electrochem. Soc., 1991, 138 (8): 2334-2342.
    [46] M. Doyle, T.F. Fuller, J. Newman. Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell [J]. J. Electrochem. Soc., 1993, 140 (6): 1526-1533.
    [47] J.J. Baschuk, X.G. Li. Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J]. J. Power Sources, 2000, 86: 181-196.
    [48] S. Um, C.Y. Wang. Computational study of water transport in proton exchange membrane fuel cells [J]. J. Power Sources, 2006, 156: 211-223.
    [49] U. Pasaogullari, C.Y. Wang. Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bi-Layer Cathode Gas Diffusion Media [J]. J. Electrochem. Soc., 2005, 152: A380-A390.
    [50] H. Wu, X.G. Li, P. Berg. Numerical analysis of dynamic processes in fully humidified PEM fuel cells [J]. Int. J. Hydrogen Energy, 2006, 32 (12): 2022-2031.
    [51] A.A. Shah, G.-S. Kim, W. Gervais, A. Young, K. Promislow, J. Li, S. Yi. The effects of water and microstructure on the performance of polymer electrolyte fuel cells [J]. J. Power Sources, 2006, 160: 1251-1268.
    [52] W. He, J.S. Yi, T.V. Nguyen. Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields [J]. AIChE J., 2000, 46 (10): 2053-2064.
    [53] T. Berning, N. Djilali. A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J]. J. Electrochem. Soc., 2003, 150 (12): A1589-A1598.
    [54] M.C. Kimble, N.E. Vanderborgh. Reactant gas flow fields in advanced PEM fuel cell designs [J]. Proc. Intersoc. Energy Convers. Eng. Conf., 1992, 27 (3): 413-417.
    [55] L.X. You, H.T. Liu. A two-phase flow and transport model for the cathode of PEM fuel cells [J]. Int. J. Heat Mass Transfer, 2002, 45 (11): 2277-2287.
    [56] Z.H. Wang, C.Y. Wang, K.S. Chen. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells [J]. J. Power Sources, 2001, 94 (1): 40-50.
    [57] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. vonSpakovsky. A two-dimensional computational model of a PEMFC with liquid water transport [J]. J. Power Sources, 2004, 128 (2): 173-184.
    [58] G.Y. Lin, W.S. He, T.Van Nguyen. Modeling liquid water effects in the gas diffusion and catalyst Layers of the cathode of a PEM fuel cell [J]. J. Electrochem. Soc., 2004, 151 (12): A1999-A2006.
    [59] C.Y. Wang, in: W. Liersich, A. Lamm, H.A. Gasteiger (Eds.). Handbook of Fuel Cells—Fundamentals Technology and Applications, vol. 3 [M]. Chichester: John Wiley&Sons, 2003, pp.337-347.
    [60] J.H. Nam, M. Kaviany. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium [J]. Int. J. Heat Mass Transfer, 2003, 46 (24): 4595-4611.
    [61] Z.X. Liu, Z.Q. Mao, C. Wang. A two dimensional partial flooding model for PEMFC [J]. J. Power Sources, 2006, 158: 1229-1239.
    [62] Z.G. Zhang, J.S. Xiao, D.Y Li, M. Pan, R.Z. Yuan. Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM Fuel cells [J]. J. Power Sources, 2006, 160: 1041-1048.
    [63] J.S. Yi, J. Deliang Yang, C. King. Water management along the flow channels of PEM fuel cells [J]. AIChE J., 2004, 50 (10): 2594-2603.
    [64] P.K. Sinha, P.P. Mukherjee, C.Y. Wang. Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells [J]. J. Mater. Chem., 2007, 17: 3089-3103.
    [65] P.C. Sui, Ned Djilali. Analysis of Water Transport in Proton Exchange Membranes Using a Phenomenological Model [J]. J. Fuel Cell Sci. Technol., 2005 2 (3): 149-155.
    [66] D. Natarajan, T. Van Nguyen. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell [J]. J. Power Sources, 2003, 115 (1): 66-80.
    [67] S. Shimpalee, U. Beuscher, J.W. Van Zee. Analysis of GDL flooding effects on PEMFC performance [J]. Electrochim. Acta, 2007, 52 (24): 6748-6754.
    [68] I.E. Baranov, S.A. Grigoriev, D. Ylitalo, V.N. Fateev, I.I. Nikolaev. Transfer processes in PEM fuel cell: Influence of electrode structure [J]. Int. J. Hydrogen Energy, 2006 31 (2): 203-210.
    [69] S. Maharudrayya, S. Jayanti, A.P. Deshpande. Proceedings of the FUELCELL2005, Third International Conference of Fuel Cell Science, Engineering and Technology, 2005, p. 1.
    [70] K. Tüber, D. Pocza, C. Hebling. Visualization of water buildup in the cathode of a transparent PEM fuel cell [J]. J. Power Sources, 2003, 124 (2): 403-414.
    [71] G.G. Park, Y.J. Sohn, T.H.Yang, Y.G.Yoon, W.Y. Lee, C.S. Kim. Effect of PTFE contents inthe gas diffusion media on the performance of PEMFC [J]. J. Power Sources, 2004, 131 (1-2): 182-187.
    [72] C.S. Kong, D.-Y. Kim, H.-K. Lee, Y.-G. Shul, T.-H. Lee. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells [J]. J. Power Sources, 2002, 108: 185-191.
    [73] M. Eikerling, A.A. Komyshev. Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells [J]. J. Electroanal Chem., 1998, 453 (1-2): 89-106.
    [74] H.S. CHU, C. YEH, F. CHEN. Effects of porosity changes of gas diffuser on performance of proton exchange membrane fuel cell [J]. J. Power Sources, 2003, 123: 1-9.
    [75] M.V. Williams, E. Begg, L.J. Bonville. Characterization of gas diffusion layers for PEMFC [J]. J. Electrochem. Soc., 2004, 151 (8): A1173-A1180.
    [76] H.-K. Lee, J.-H. Park, D.-Y. Kim, T.-H. Lee. A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC [J]. J. Power Sources, 2004, 131: 200-206.
    [77] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure [J]. J. Appl. Electrochem., 2000, 30: 641-646.
    [78] H.K. Atiyeh, K. Karan, B. Peppley, A. Phoenix, E. Halliop, J. Pharoah. Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell [J]. J. Power Sources, 2007 170 (1): 111-121.
    [79] E. Antolini, R.R. Passos, E.A. Ticianelli. Effects of the cathode gas diffusion layer characteristics on the performance of polymer electrolyte fuel cells [J]. J. Appl. Electrochem., 2002, 32: 383-388.
    [80] Z. Qi, A. Kaufman. Improvement of water management by a microporous sublayer for PEM fuel cells [J]. J. Power Sources, 2002, 109 (1): 38-46.
    [81] J.H. Nam, K.-J. Lee, G.-S. Hwang, C.-J. Kim, M. Kaviany. Microporous layer for water morphology control in PEMFC [J]. Int. J. Heat Mass Transfer, 2009, 52 (11-12): 2779-2791.
    [82] U. Pasaogullari, C.Y. Wang. Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells [J]. Electrochim. Acta, 2004, 49: 4359-4369.
    [83] A.Z. Weber, J. Newman. Effects of microporous layers in polymer electrolyte fuel cells [J]. J. Electrochem. Soc., 2005, 152 (4) A677–A688.
    [84] U. Pasaogullari, C.Y. Wang, K.S. Chen. Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bi-Layer Cathode Gas Diffusion Media [J]. J. Electrochem. Soc., 2005, 152: A1574–A1582.
    [85] G.Y. Lin, T. Van Nguyen. A two-dimensional two-phase model of a PEM fuel cell [J]. J.Electrochem. Soc., 2006, 153 (2): A372–A382.
    [86] V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells [J]. J. Appl. Electrochem., 1996, 26: 297-304.
    [87] J.M. Song, S.Y. Cha, W.M. Lee. Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method [J]. J. Power Sources, 2001, 94 (1): 78-84.
    [88] K.H. Choi, D.H. Peck, C.S. Kim, D.R. Shin, T.H. Lee. Water transport in polymer membranes for PEMFC [J]. J. Power Sources, 2000, 86 (1-2): 197-201.
    [89] J. Chen, T. Matsuura, M. Hori. Novel gas diffusion layer with water management function for PEMFC [J]. J. Power Sources, 2004, 131 (1-2): 155-161.
    [90] Q. Yan, H. Toghiani, J. Wu. Investigation of water transport through membrane in a PEM fuel cell by water balance experiments [J]. J. Power Sources, 2006, 158 (1): 316-325.
    [91] X.L. Wang, H.M. Zhang, J.L. Zhang, H.F. Xu, Z.Q. Tian, J. Chen, H.X. Zhong, Y.M. Liang, B.L. Yi. Micro-porous layer with composite carbon black for PEM fuel cells [J]. Electrochim. Acta, 2006, 51 (23): 4909-4915.
    [92] Y. Cai, J. Hu, H. Ma, B. Yi, H. Zhang. Effect of water transport properties on a PEM fuel cell operating with dry hydrogen [J]. Electrochim. Acta, 2006, 51 (28): 6361-6366.
    [93] N. Holmstr?m, J. Ihonen, A. Lundblad, G. Lindbergh. The Influence of the Gas Diffusion Layer on Water Management in Polymer Electrolyte Fuel Cells [J]. Fuel Cells, 2007, 7 (4): 306-313.
    [94] K. Karan, H. Atiyeh, A. Phoenix, E. Halliop, J. Pharoah, B. Peppley. An experimental investigation of water transport in PEMFCs - The role of microporous layers [J]. Electrochem. Solid-State Lett., 2007 10 (2): B34–B38.
    [95] Y.G. Yoon, W.-Y. Lee, T.-H. Yang, G.-G. Park, C.-S. Kim. Current distribution in a single cell of PEMFC [J]. J. Power Sources, 2003, 118: 193-199.
    [96] T. Hottinen, O. Himanen, P. Lund. Effect of cathode structure on planar frii-breathing PEMFC [J]. J. Power Sources, 2004, 138: 205-210.
    [97] M.G. Santarelli, M.F. Torchio. Experimental analysis of the effects of the operating variables on the performance of a single PEMFC [J]. Energy Conversion and Management, 2007, 48: 40-51.
    [98] M. Santarelli, M. Torchio, M. Cali, V. Giaretto. Experimental analysis of the cathode flow stoichiometry on the electrical performance of a PEMFC stack [C]. World Hydrogen Technology Convention, Singapore, October 2005.
    [99] M.G. Santarelli, M.F. Torchio, M. Calí, V. Giaretto. Experimental analysis of cathode flow stoichiometry on the electrical performance of a PEMFC stack [J]. Int. J. Hydrogen Energy, 2007, 32 (6): 710-716.
    [100] S.W. Cha, R. O,Hayre, Y.-Il Park, F.B. Prinz. Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells [J]. J. Power Sources, 2006, 161: 138-142.
    [101] Z.X. Liu, L.Z. Yang, Z.Q. Mao, W.L. Zhuge, Y.J. Zhang, L.S. Wang. Behavior of PEMFC in starvation [J]. J. Power Sources, 2006, 157: 166-176.
    [102] M. Noponen. Experimental Studies and Simulations on Proton Exchange Membrane Fuel Cell Based Energy Storage Systems: [thesis]. Helsinki: Helsinki University of Technology, 2000. 37-38.
    [103] R Ion CARL. Exchange membrane fuel cell power plant with water management pressure differentials [P]. US patent: 5700595, 1997.
    [104] A SB JOHN, JW DOUGLAS, B CALVIN. Porous carbon bodies with increased wet ability by water [P]. US patent: 5840414, 1998.
    [105] R Ion CARL. Exchange membrane fuel cell power plant with water management pressure differentials [P]. US patent: 5853909, 1998.
    [106]侯明,吴金锋,衣宝廉,曲天锡.质子交换膜燃料电池新型静态排水结构[J].电源技术, 2002, 26 (3) :131-133.
    [107]衣宝廉,侯明.一种采用静态排水的质子交换膜燃料电池组[P].中国发明专利: 001305360,2000.
    [108] DULLIENFA著,杨富民,黎用启译.多孔介质——流体渗移与孔隙结构[M].北京:石油工业出版社,1990. 4-22.
    [109] BEAR著,李竟生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.346-359.
    [110] T.Van Nguyen. ECS Trans. 3 (2006) 1171.
    [111] Nguyen T V. A gas distributor design for proton-exchange-membrane fuel cells [J]. J. Electrochem. Soc., 1996, 143 (5): L103-L105.
    [112] W.R. Merida, G. McLean, N. Djilali. Non-planar architecture for proton exchange membrane fuel cells [J]. J. Power Sources, 2001 102 (1-2): 178-185.
    [113] X. Li, I. Sabir, J. Park. A flow channel design procedure for PEM fuel cells with effective water removal [J]. J. Power Sources, 2007 163 (2): 933-942.
    [114] D. Xue, Z. Dong. Optimal fuel cell system design considering functional performance and production costs [J]. J. Power Sources, 1998, 76 (1): 69-80.
    [115] R.S. Gemmen, C.D. Johnson. Evaluation of fuel cell system efficiency and degradation at development and during commercialization [J]. J. Power Sources, 2006, 159 (1): 646-655.
    [116] Z. Qi, A. Kaufman. PEM fuel cell stacks operated under dry-reactant conditions [J]. J. Power Sources, 2002, 109 (2): 469-476.
    [117] L. Wang, A. Husar, T. Zhou, H. Liu. A parametric study of PEM fuel cell performances [J]. Int. J. Hydrogen Energy, 2003, 28 (11): 1263-1272.
    [118] M.W. Knobbe, W. He, P.Y. Chong, T.Van Nguyen. Active gas management for PEM fuel cell stacks [J]. J. Power Sources, 2004, 138 (1-2): 94-100.
    [119] C. Xu, T.S. Zhao. A new flow field design for polymer electrolyte-based fuel cells [J]. Electrochem. Commun., 2007, 9 (3): 497-503.
    [120] S. Ge, X. Li, I.M. Hsing. Internally humidified polymer electrolyte fuel cells using water absorbing sponge [J]. Electrochim. Acta, 2005 50 (9): 1909-1916.
    [121] R. Eckl, W. Zehtner, C. Leu, U. Wagner. Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack [J]. J. Power Sources, 2004, 138 (1-2): 137-144.
    [122] S.H. Ge, X.G. Li, I.M. Hsing. Water management in PEMFCs using absorbent wicks [J]. J. Electrochem. Soc., 2004, 151 (9): B523–B528.
    [123] S. Miachon, P. Aldebert. Internal hydration H2/O2 100 cm2 polymer electrolyte membrane fuel cell [J]. J. Power Sources, 1995, 56 (1): 31-36.
    [124] A.P. Meyer, G.W. Scheffler, P.R. Margiott, US Patent Ch.5, 503, 994 (1996).
    [125] X.-D. Wang, Y.-Y. Duan, W.-M. Yan, X.-F. Peng. Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs [J]. J. Power Sources, 2008, 175 (1): 397-407.
    [126] W.-M. Yan, C.-H. Yang, C.-Y. Soong, F. Chen, S.-C. Mei. Experimental studies on optimal operating conditions for different flow field designs of PEM fuel cells [J]. J. Power Sources, 2006, 160 (1): 284-292. .
    [127] N.E. Vanderborgh, J.C. Hestrom, US Patent Ch.4, 973, 530 (1990).
    [128] D.P. Wilkinson, H.H. Voss, K. Prater. Water management and stack design for solid polymer fuel cells [J]. J. Power Sources, 1994, 49 (1-3): 117-127.
    [129] H.H. Voss, D.P. Wilkinson, P.G. Pickup, M.C. Johnson, V. Basura. Anode water removal: A water management and diagnostic technique for solid polymer fuel cells [J]. Electrochim. Acta, 1995, 40 (3): 321-328.
    [130] J. Scholta, G. Escher, W. Zhang, L. Küppers, L. J?rissen, W. Lehnert. Investigation on the influence of channel geometries on PEMFC performance [J]. J. Power Sources, 2006, 155 (1):66-71.
    [131] J.S. Yi, T.V. Nguyen. An along-the-channel model for proton exchange membrane fuel cells [J]. J. Electrochem. Soc., 1998, 145 (4): 1149-1159.
    [132] H.H. Voss, D.P. Wilkinson, D.S. Watkins, US Ch.5, 441, 819 (1995).
    [133] T. Van Nguyen, M.W. Knobbe. A liquid water management strategy for PEM fuel cell stacks [J]. J. Power Sources, 2003, 114 (1): 70-79.
    [134] J. St-Pierre, D.P.Wilkinson, H. Voss, R. Pow. New Materials for Fuel Cell and Modern Battery Systems II: Proceedings of the Second International Symposium on NewMaterials for Fuel Cell and Modern Battery Systems, Montreal, Canada, 1997, p. 318.
    [135] A. Mughal, X. Li. Experimental diagnostics of PEM fuel cells [J]. Int. J. Environ. Stud., 2006, 63: 377-389.
    [136] N.J. Fletcher, C.Y. Chow, E.G. Pow, B.M. Wozniczka, H.H. Voss, G. Hornburg, D.P. Wilkinson, US Patent Ch.5, 547, 776 (1996).
    [137] D.P. Wilkinson, H.H. Voss, N.J. Fletcher, M.C. Johnson, E.G. Pow, US Patent Ch.5, 773, 160 (1998).
    [138] C.R. Buie, J.D. Posner, T. Fabian, S.W. Cha, D. Kim, F.B. Prinz, J.K. Eaton, J.G. Santiago. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping [J]. J. Power Sources, 2006, 161 (1): 191-202.
    [139] S. Litster, C.R. Buie, T. Fabian, J.K. Eaton, J.G. Santiago. Active water management for PEM fuel cells [J]. J. Electrochem. Soc., 2007, 154 (10): B1049–B1058.
    [140] D.J.L. Brett, S. Atkins, N.P. Brandon, V. Vesovic, N. Vasileiadis, A. Kucernak. Localized impedance measurements along a single channel of a solid polymer fuel cell [J]. Electrochem. Solid-State Lett., 2003, 6 (4): A63–A66.
    [141] D.J.L. Brett, S. Atkins, N.P. Brandon, V. Vesovic, N. Vasileiadis, A.R. Kucernak. Measurement of the current distribution along a single flow channel of a solid polymer fuel cell [J]. Electrochem. Commun., 2001, 3 (11): 628-632.
    [142]孙大强,毛宗强.质子交换膜燃料电池膜电极组件的研究[J].电源技术, 2003, 27(2): 9.
    [143]张祖训.汪尔康.电化学原理和方法[M].科学出版社, 2000.
    [144]杨辉,卢文庆.应用电化学[M].科学出版社,2001.
    [145]吴浩青,李永舫.电化学动力学[M].高等教育出版社,北京;施普林格出版社,德国,1998,6:133-134.
    [146]曹楚南,张鉴清.电化学阻抗谱导论[M].科学出版社,北京,2002:24-27.
    [147]吕鸣祥,黄长保,宋玉瑾.化学电源[M].天津大学出版社,天津,1992.
    [148] Zha Quanxing(查全性).Introduction of Electrodics(电极过程动力学导论).2nd edition.Beijing: Science Press, 1987, 88.
    [149] J.S. Yang, J.J. Xu. Nano-porous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions [J]. Electrochem. Commun., 2003, 5: 306-311.
    [150]曹余良,杨汉西,艾新平等. MnO2电极上氧还原的电催化机理[J].电化学,2003, 9(3):336-343.
    [151] Y.L. Cao, H.X. Yang, X.P. Ai, L.F. Xiao. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution [J]. J. Electroanal. Chem., 2003, 557: 127–134.
    [152] Z.D.Wei, J. Tan, F. Yin, C.G. Chen,W. Zhu, Z.Y. Tang, H.T. Guo. Diagnosis of specific surface area in fuel cell air electrodes [J]. J. Appl. Electrochem., 2001, 31: 883-889.
    [153] D.B. Zhou, H.V. Poorten. Electrochemical characterisation of oxygen reduction on teflon-bonded gas diffusion electrodes [J]. Electrochim. Acta, 1995, 40 (12): 1819-1826.
    [154] M.X. Lu. Chemical Power Sources [M]. Tianjin University Press, Tianjin, 1992: p. 66.
    [155] R.H. Song, C.S. Kim, D.R. Shin. Effects of flow rate and starvation of reactant gases on the performance of phosphoric acid fuel cells [J]. J. Power Sources, 2000, 86 (1-2): 289-293.
    [156] H. Yamada, T. Hatanaka, H. Murata, Y.Morimoto. Measurement of flooding in gas diffusion layers of polymer electrolyte fuel cells with conventional flow field [J]. J. Electrochem. Soc., 2006, 153 (9): A1748-A1754.
    [157] S.M. Xing, Y.L. Wang. Synthetic Technics and Product Application of Organic Silicon [M].Chemical Industry Press, Beijing, 2000.
    [158] J. A. Bean. Lange’s Handbook of Chemistry, 15th edition [M]. McGraw-Hill, NY, 2001.
    [159] R.H. Li. Elements of Mass Transfer [M]. Beijing Aviation College Press, Beijing, 1987.
    [160] J. Giner, C. Hunter. Mechanism of operation of Teflon-bonded gas diffusion electrode– a mathematical model [J]. J. Electrochem. Soc., 1969, 116 (8): 1124.
    [161] A.J. Bard, L. R. Faulkner. Electrochemical Methods [M]. Wiley & Sons, New York, 1980.
    [162] I. Roche, E. Cha?net, M. Chatenet, J. Vondrák. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism [J]. J. Phys. Chem. C, 2007, 111: 1434-1443.
    [163] V. S. Murthi, R.C. Urian, S. Mukerjee. Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts [J]. J. Phys. Chem. B, 2004, 108: 11011-11023.
    [164] D.A. Boysen, T. Uda, C. R. I. Chisholm, S. M. Haile. High-performance solid acid fuel cells through humidity stabilization [J]. Science, 2004, 303: 68-.70
    [165] R.H. Wu, M.J. Sun. Surface and Interface of High Polymer [M]. Science Press, Beijing, 1998.
    [166] T.E. Springer, T.A. Zawodinski, M.S. Wilson, S. Gottesfeld. Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy [J]. J. Electrochem. Soc., 1996, 143 (2): 587-599.
    [167] S.L.A. da Silva, E. Ticianelli. Studies of the limiting polarization behavior of gas diffusion electrodes with different platinum distributions and hydrophobic properties [J]. J. Electroanal. Chem., 1995, 391 (1-2): 101-109.
    [168] S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, T.H. Lee. Effects of Nafion impregnation on performances of PEMFC electrodes [J]. Electrochim. Acta, 1998, 43 (24): 3693-3701.
    [169] T. Abe, H. Shima, K. Watanabe, Y. Ito. Study of PEFCs by AC impedance, current interrupt, and dew point measurements - I. Effect of humidity in oxygen gas [J]. J. Electrochem. Soc., 2004, 151 (1): A101-A105.
    [170] W. Mérida, D.A. Harrington, J.M. Le Canut, G. McLean. Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy [J]. J. Power Sources, 2006, 161 (1): 264-274.
    [171] S.K. Roy, M.E. Orazem. Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques [J]. J. Power Sources, 2008, 184 (1): 212-219.
    [172] M.A. Rubio, A. Urquia, R. Kuhn, S. Dormido. Electrochemical parameter estimation in operating proton exchange membrane fuel cells [J]. J. Power Sources, 2008, 183 (1): 118-125.
    [173] T. Kurz, A. Hakenjos, J. Kr?mer, M. Zedda, C. Agert. An impedance-based predictive control strategy for the state-of-health of PEM fuel cell stacks [J]. J. Power Sources, 2008, 180 (2): 742-747.
    [174] M.A. Rubio, A. Urquia, S. Dormido. Diagnosis of PEM fuel cells through current interruption [J]. J. Power Sources, 2007, 171 (2): 670-677.
    [175] S.W. Cha, R. O’Hayre, Y. Park, F.B. Prinz. Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells [J]. J. Power Sources, 2006, 161 (1): 138-142.
    [176] T. Fabian, J.D. Posner, R. O’Hayre, S.-W. Cha, J.K. Eaton, F.B. Prinz, J.G. Santiago. The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell [J]. J. Power Sources, 2006, 161 (1): 168-182.
    [177] A. Hakenjos, M. Zobel, J. Clausnitzer, C. Hebling. Simultaneous electrochemical impedance spectroscopy of single cells in a PEM fuel cell stack [J]. J. Power Sources, 2006, 154 (2): 360-363.
    [178] I.A. Schneider, D. Kramer, A. Wokaun, G.G. Scherer. Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy [J]. Electrochem. Commun., 2005, 7 (12): 1393-1397.
    [179] N. Fouquet, C. Doulet, C. Nouillant, G. Dauphin-Tanguy, B. Ould-Bouamama. Model based PEM fuel cell state-of-health monitoring via ac impedance measurements [J]. J. Power Sources, 2006, 159 (2): 905-913.
    [180] X.Z. Yuan, H.J. Wang, J.C. Sun, J.J. Zhang. AC impedance technique in PEM fuel cell diagnosis—A review [J]. Int. J. Hydrogen Energy, 2007, 32 (17): 4365-4380.
    [181] M. Ciureanu, R. Roberge. Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathodes [J]. J. Phys. Chem. B, 2001, 105: 3531-3539.
    [182] D. Natarajan, T.V. Nguyen. Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects [J]. AIChE J., 2005, 51 (9): 2587-2598.
    [183] H. Meng, C.-Y. Wang. New Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells [J]. J. Electrochem. Soc., 2005, 152: A1733-1741.
    [184] X.Z. Yuan, J.C. Sun, M. Blanco, H.J. Wang, J.J. Zhang, D.P. Wilkinson. AC impedance diagnosis of a 500 W PEM fuel cell stack: Part I: Stack impedance [J]. J. Power Sources, 2006, 161 (2): 920-928.
    [185] F. Jaouen, G. Lindbergh, G. Sundholm. Investigation of mass-transport limitations in the solid polymer fuel cell cathode - I. Mathematical model [J]. J. Electrochem. Soc., 2002, 149 (4): A437-A447.
    [186] J. Ihonen, F. Jaouen, G. Lindbergh, A. Lundblad, G. Sundholm. Investigation of mass-transport limitations in the solid polymer fuel cell cathode - II. Experimental [J]. J. Electrochem. Soc., 2002, 149 (4): A448-A454.
    [187] Y. Bultel, L. Genies, O. Antoine, P. Ozil, R. Durand. Modeling impedance diagrams of active layers in gas diffusion electrodes: diffusion, ohmic drop effects and multistep reactions [J]. J. Electroanal. Chem., 2002, 527 (1-2): 143-155.
    [188] T.J.P. Freire, E.R. Gonzalez. Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells [J]. J. Electroanal. Chem., 2001, 503 (1-2): 57-68.
    [189] B. Andreaus, A.J. McEvoy, G.G. Scherer. Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy [J]. Electrochim. Acta, 2002, 47 (13-14): 2223-2229.
    [190] Y. Bultel, K. Wiezell, F. Jaouen, P. Ozil, G. Lindbergh. Investigation of mass transport in gas diffusion layer at the air cathode of a PEMFC [J]. Electrochim. Acta, 2005, 51 (3): 474-488.
    [191] F. Alcaide, E. Brillas, P.-L. Cabot. EIS analysis of hydroperoxide ion generation in an uncatalyzed oxygen-diffusion cathode [J]. J. Electroanal. Chem., 2003, 547 (1): 61-73.
    [192] A. Fischer, J. Jindra, H. Wendt. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells [J]. J. Appl. Electrochem., 1998, 28: 277-282.
    [193] O. Antoine, Y. Bultel, R. Durand. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion? [J]. J. Electroanal. Chem., 2001, 499 (1): 85-94.
    [194] J.R. Macdonald (Ed.). Impedance Spectroscopy [M]. Wiley, New York, 1987.
    [195] O. Antoine, Y. Bultel, R. Durand, P. Ozil. Electrocatalysis, diffusion and ohmic drop in PEMFC: Particle size and spatial discrete distribution effects [J]. Electrochim. Acta, 1998, 43 (24): 3681-3691.
    [196] M. Eikerling, A.A. Kornyshev. Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells [J]. J. Electroanal. Chem., 1999, 475 (2): 107-123.
    [197] M.C. Lefebvre, R.B. Martin, P.G. Pickup. Characterization of ionic conductivity profiles within proton exchange membrane fuel cell gas diffusion electrodes by impedance spectroscopy [J]. Electrochem. Solid-State Lett., 1999, 2 (6): 259-261.
    [198] A. Lasia, in: B.E. Conway, R.E. White, J.O’M. Bockris (Eds.), Modern Aspects of Electrochemistry, vol. 32 [M]. Plenum Press, New York, 1999: p. 143.
    [199] I.D. Raistrick. Impedance studies of porous electrodes [J]. Electrochim. Acta, 1990, 35 (10): 1579-1586.
    [200] G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters. The analysis of electrode impedances complicated by the presence of a constant phase element [J]. J. Electroanal. Chem., 1984, 176 (1-2): 275-295.
    [201] W.-K. Paik, T.E. Springer, S. Srinivasan. Kinetics of fuel cell reaction at the platinum/solid polymer electrolyte interface [J]. J. Electrochem. Soc., 1989, 136 (3): 644-649.
    [202] S. Park, J.-W. Lee, B.N. Popov. Effect of carbon loading in microporous layer on PEM fuel cell performance [J]. J. Power Sources, 2006, 163 (1): 357-363.
    [203] J.B. Hou, W. Song, H.M. Yu, Y. Fu, Z.G. Shao, B.L. Yi. Electrochemical impedance investigation of proton exchange membrane fuel cells experienced subzero temperature [J]. J. Power Sources, 2007, 171 (2): 610-616.
    [204] Su-II Pyun, Y.G. Ryu. A study of oxygen reduction on platinum-dispersed porous carbon electrodes at room and elevated temperatures by using a.c. impedance spectroscopy [J]. J. Power Sources, 1996, 62 (1): 1-7.
    [205] H. Arai, S. Müller, O. Haas. AC impedance analysis of bifunctional air electrodes for metal-air batteries [J]. J. Electrochem. Soc., 2000, 147 (10): 3584-3591.
    [206] M. Cifrain, K. V. Kordesch. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes [J]. J. Power Sources, 2004, 127 (1-2): 234-242.
    [207] P. Gouérec, L. Poletto, J. Denizot, E. Sanchez-Cortezon, J. H. Miners. The evolution of the performance of alkaline fuel cells with circulating electrolyte [J]. J. Power Sources, 2004, 129 (2): 193-204.
    [208] E. Gülzow, N. Wagner, M. Schulze. Preparation of Gas Diffusion Electrodes with Silver Catalysts for Alkaline Fuel Cells [J]. Fuel cells, 2003, 3 (1-2): 67-72.
    [209] D. R. Sena, E. R. Gonzalez, E. A. Ticianelli. Effect of phosphoric acid concentration on the oxygen reduction and hydrogen oxidation reactions at a gas diffusion electrode [J]. Electrochim. Acta, 1992, 37 (10): 1855-1858.
    [210] N. Wagner, M. Schulze, E. Gülzow. Long term investigations of silver cathodes for alkaline fuel cells [J]. J. Power Sources, 2004, 127 (1-2): 264-272.
    [211] M. Schulze, C. Christenn. XPS investigation of the PTFE induced hydrophobic properties of electrodes for low temperature fuel cells [J]. Appl. Surf. Sci., 2005, 252 (1): 148-153.
    [212] M. Schulze, M. Lorenz, T. Kaz. XPS study of electrodes formed from a mixture of carbon black and PTFE powder [J]. Surf. Interf. Anal., 2002, 34 (1): 646-651.
    [213] M. Schulze, K. Bolwin, E. Gülzow, W. Schnurnberger. XPS analysis of PTFE decomposition due to ionizing-radiation [J]. Fresenius J. Anal. Chem., 1995, 353 (5-8): 778-784.
    [214] E. Gülzow, M. Schulze. Degradation of nickel anodes during operation in alkaline fuel cells, in: Proceedings of the Fuel Cell Seminar [C]. Palm Springs, November, 2002.
    [215] M. Schulze, N. Wagner, T. Kaz, K. A. Friedrich. Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells [J]. Electrochim. Acta, 2007, 52 (6): 2328-2336.
    [216] M. Schulze, E. Gülzow, G. Steinhilber. Activation of nickel-anodes for alkaline fuel cells [J]. Appl. Surf. Sci., 2001, 179 (1-4): 251-256.
    [217] S. D. Song, H. M. Zhang, X. P. Ma, Z.-G. Shao, Y. N. Zhang, B. L. Yi. Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell [J]. Electrochem. Commun., 2006, 8 (3): 399-405.
    [218] M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni. Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries [J]. Electrochim. Acta, 2000, 46 (2-3): 423-432.
    [219] G.-Q. Zhang, X.-G. Zhang, Y.-G. Wang. A new air electrode based on carbon nanotubes and Ag–MnO2 for metal air electrochemical cells [J]. Carbon, 2004, 42 (15): 3097-3102.
    [220] MA Al-Saleh, S Gultekin, AS Al-Zakri, H Celiker. Effect of carbon dioxide on theperformance of Ni/PTFE and Ag/PTFE electrodes in an alkaline fuel cell [J]. J. Appl. Electrochem., 1994, 24: 575-580.
    [221] D. R. Lide. Handbook of Chemistry and Physics, ed. 81st [M]. CRC Press, Boca Raton, FL, 2000–2001: pp. 8–103.
    [222] K. V. Kordesc. Brennstoffbatterien [M]. Springer–Verlag, Wien, New York, 1984.
    [223] PD Michael. An assessment of the prospects for fuel cell-powered cars [M]. ETSU, United Kingdom, 2000.
    [224] K Kordesch, S Gunter. Fuel cells and their applications [M]. Wiley-VCH, Berlin, Germany, 1996.
    [225] AJ Appleby, FR Foulkes. Fuel cell handbook [M]. Krieger Publishing Company, Malabar, Florida, 1993.
    [226] G. F. McLean, T. Niet, S. Prince-Richard, N. Djilali. An assessment of alkaline fuel cell technology [J]. Int. J. Hydrogen Energy, 2002, 27 (5): 507-526.
    [227] H. Huang, W. K. Zhang, M. C. Li, Y. P. Gan, J. H. Chen, Y. F. Kuang. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries [J]. J. Colloid Interface Sci., 2005, 284 (2): 593-599.
    [228] Ch.-Ch. Yang, S.-T. Hsu, W.-Ch. Chien, M. Ch. Shih, Sh.-J. Chiu, K.-T. Lee, Ch. L. Wang. Electrochemical properties of air electrodes based on MnO2 catalysts supported on binary carbons [J]. Int. J. Hydrogen Energy, 2006, 31 (14): 2076-2087.
    [229] M. Bursell, M. Pirjamali, Y. Kiros. La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes [J]. Electrochim. Acta, 2002, 47 (10): 1651-1660.
    [230] W.H. Zhu, B.A. Poole, D.R. Cahela, B.J. Tatarchuk. New structures of thin air cathodes for zinc–air batteries [J]. J. Appl. Electrochem, 2003, 33: 29-36.
    [231] Y. Kiros, S. Schwartz. Pyrolyzed macrocycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells [J]. J. Power Sources, 1991, 36 (4): 547-555.
    [232] G. Velayutham, J. Kaushik, N. Rajalakshmi, K.S. Dhathathreyan. Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested under ambient pressure [J]. Fuel cells, 2007, 7 (4): 314-318.
    [233] E. Gülzow. Alkaline fuel cells [J]. Fuel cells, 2004, 4 (4): 251-255.
    [234] Z. D. Wei, W. Z. Huang, S. T. Zhang, J. Tan. Carbon-based air electrodes carrying MnO2 in zinc–air batteries [J]. J. Power Sources, 2000, 91 (2): 83-85.
    [235] S. Ahn, BJ. Tatarchuk. Air electrode: identification of intraelectrode rate phenomena via ac impedance [J]. J. Electrochem. Soc., 1995, 142: 4169-4175.
    [236] L. Genies, Y. Bultel, R. Faure, R. Durand. Impedance study of the oxygen reduction reactionon platinum nanoparticles in alkaline media [J]. Electrochim. Acta, 2003, 48 (25-26): 3879-3890.
    [237] L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells [J]. Electrochim. Acta, 1998, 43 (24): 3675-3680.
    [238] MF Garc?a, JM Sieben, AS Pilla, MME Duarte, CE Mayer. Methanol/air fuel cells: catalytic aspects and experimental diagnostics [J]. Int. J. Hydrogen Energy, 2008, 33: 3517-3521.
    [239] JY Park, JH Lee, JH Sauk, IH Son. The operating mode dependence on electrochemical performance degradation of direct methanol fuel cells [J]. Int. J. Hydrogen Energy, 2008, 33: 4833-4843.
    [240] T Shudo, K Suzuki. Performance improvement in direct methanol fuel cells using a highly porous corrosion-resisting stainless steel flow field [J]. Int. J. Hydrogen Energy, 2008, 33: 2850-2856.
    [241] P Agnolucci. Economics and market prospects of portable fuel cells [J]. Int. J. Hydrogen Energy, 2007, 32: 4319-4328.
    [242] XS Zhao, XY Fan, SL Wang, SH Yang, BL Yi, Q Xin, GQ Sun. Determination of ionic resistance and optimal composition in the anode catalyst layers of DMFC using AC impedance [J]. Int. J. Hydrogen Energy, 2005,30: 1003-1010.
    [243] EH Jun, UH Jung, TH Yang, DH Peak, DH Jung, SH Kim. Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell [J]. Int. J. Hydrogen Energy, 2007, 32: 903-907.
    [244] ZG Shao, WF Lin, FY Zhu, PA Christensen, MQ Li, HM Zhang. Novel electrode structure for DMFC operated with liquid methanol [J]. Electrochem. Commun., 2006, 8: 5-8.
    [245] A Oedegaard, C Hebling, A Schmitz, S M?ller-Holst, R Tunold. Influence of diffusion layer properties on low temperature DMFC [J]. J. Power Sources, 2004, 127: 187-196.
    [246] H Yang, TS Zhao, Q Ye. In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields [J]. J. Power Sources, 2005, 39: 79-90.
    [247] AA Kulikovsky. Model of the flow with bubbles in the anode channel and performance of a direct methanol fuel cell [J]. Electrochem. Commun., 2005, 7: 237-243.
    [248] CG Suo, XW Liu, XC Tang, YF Zhang, B Zhang, P Zhang. A novel MEA architecture for improving the performance of a DMFC [J]. Electrochem. Commun., 2008, 10: 1606-1609.
    [249] Krishnamurthy B, Deepalochani S. Effect of PTFE content on the performance of a Direct Methanol fuel cell [J]. Int. J. Hydrogen Energy, 2009, 3 (1): 446-452.
    [250] GQ Lu, CY Wang. Electrochemical and flow characterization of a direct methanol fuel cell[J]. J. Power Sources, 2004, 134: 33-40.
    [251] F Xie, C Chen, H Meng, PK Shen. Effect of the anodic diffusion layer on the performance of liquid fuel cells [J]. Fuel Cells, 2007, 7: 319-322.
    [252] A Lindermeir, G Rosenthal, U Kunz, U Hoffmann. On the question of MEA preparation for DMFCs [J]. J. Power Sources, 2004, 129: 180-187.
    [253] J Zhang, GP Yin, QZ Lai, ZB Wang, KD Cai, P Liu. The influence of anode gas diffusion layer on the performance of low-temperature DMFC [J]. J. Power Sources, 2007, 168: 453-458.
    [254] MD Lundin, MJ McCready. Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility [J]. J. Power Sources, 2007, 172: 553-559.
    [255] F.Q.Liu, C.-Y.Wang. Water and methanol crossover in direct methanol fuel cells-Effect of anode diffusion media [J]. Electrochim. Acta, 2008, 53: 5517-5522.
    [256] E.Guilminot, A. Corcella, M.Chatenet, F. Maillard. Comparing the thin-film rotating disk electrode and the ultramicroelectrode with cavity techniques to study carbon-supported platinum for proton exchange membrane fuel cell applications [J]. J. Electroanal. Chem., 2007, 599: 111-120.
    [257] Q. Zhang, Z.F. Li, S.W. Wang, W. Xing, R.J. Yu, X.J. Yu. The electro-oxidation of dimethyl ether on platinum-based catalyst [J]. Electrochim. Acta, 2008, 53: 8298-8304.
    [258] G. Wu, B-Q. Xu. Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi- and single-walled carbon nanotubes [J]. J. Power Sources, 2007, 174: 148-158.
    [259] NL Cheng. Handbook of solvent, 4th edition [M]. Chemical Engineering Press, Beijing, 2007: 1166-1167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700