用户名: 密码: 验证码:
空气自呼吸式直接甲醇燃料电池两相流动及传输特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的能量转化是通过热机过程来实现的,热机过程受卡诺循环的限制,不但转化效率低、导致严重的能源浪费,而且产生大量的有害物质以及噪声,造成严重的环境污染问题。而燃料电池发电技术与热机发电过程不同,它是一种直接将储存于燃料或氧化剂中的化学能直接转化为电能的能量转换装置,发电过程步骤少、没有燃烧过程及转动部件,不受卡诺循环的限制,是一种清洁高效的发电技术。近年来,随着移动电话、个人数字助手、笔记本电脑等便携式电子产品的迅猛发展,而且产品新的耗电型功能也不断增强,目前现有的充电电池技术已无法满足日益增长的高能耗需求。空气自呼吸式直接甲醇燃料电池(DMFC)因具有系统结构简单、能量密度高、环境友好、更换燃料方便、可在常温下工作等优点,成为便携式设备最有前景的可替代电源,是电化学和能源科学领域的研究热点。
     与主动式DMFC相比,空气自呼吸式DMFC反应物传递速率较慢,导致电化学反应速率较低,电池结构上的差异不但使得性能远不及主动式的DMFC,也造成了电池内部的热质传输特性有所不同。因此,对空气自呼吸式DMFC内两相流动及传输特性进行研究具有非常重要的意义。
     本文从工程热物理学科角度出发,采用自制的膜电极组件对空气自呼吸式DMFC性能及传输特性进行实验研究,包括电池的环境适应性实验,阴极侧水滴积聚特性及其对放电性能影响的可视化实验,电池在搁置、恒电流放电及放电结束后电压稳定整个测试过程中电池的温度特性实验等,进一步深入研究了阳极微孔层的浸润性对电池性能及放电时间的影响;针对阳极侧主动进料的空气自呼吸式DMFC,考虑了扩散层/催化层界面处液相饱和度的不连续性及催化层内的质量传递,建立了一个全面描述电池内两相流动及传质的数学模型,分析甲醇及水渗透的机理。主要研究成果如下:
     1)对组装的电池采取加入甲醇溶液搁置24 h活化的方法,电池性能提高到活化前的4倍;提出了一种更为简便且高重现性的微孔层制备方法—抽滤法,制得的微孔层更为平整,可获得较高的性能和较长的恒电流放电持续时间。
     2)研究了催化剂类型、扩散层材料、甲醇溶液浓度、集流板结构等因素对电池性能及传质的影响,实验结果表明:采用高担量的催化剂或碳布制作的膜电极可以强化反应物的传质且易于获得较高的电池性能;适当提高甲醇浓度、采用平行集流板可获得较高的电池性能。
     3)对环境温度及相对湿度对电池性能的影响进行了研究,实验结果表明:在相同湿度下,空气自呼吸式DMFC电池性能随着环境温度的升高而增加;在相同温度下,环境相对湿度对电池性能的影响与环境温度的大小有关,温度较低时,湿度的影响不大,随着温度的升高,其影响也越来越大。
     4)研究了恒电流放电过程中阴极侧的水滴积聚特性,实验结果表明:液滴总在某些特定的位置出现,被水完全覆盖的呼吸孔中液体还会不断增多;在低电流密度下,电池恒流放电时间主要受阴极水积聚的影响;在高电流密度下,甲醇的消耗为控制电池放电时间的主要因素;适当提高甲醇浓度、降低放电电流密度及环境湿度均可延长放电持续时间。
     5)对放电前后及放电期间整个测试过程中电池的温度特性进行了实验研究,结果表明:加入燃料后,电池与环境之间的温差迅速上升,升高的速度渐缓,最后达到稳定,放电期间,温差先升高后降低,且温差随着放电电流密度的增大而增大,但在大放电电流密度下,因放电时间较短未出现下降的趋势,放电结束后,温差骤降;此外,在整个测试过程中温差随甲醇浓度的增大而增大。
     6)对采用不同浸润性的阳极微孔层时的电池性能及放电持续时间进行比较,发现:在快速扫描模式下,阳极采用亲水的微孔层制备的电池性能优于憎水的微孔层,但在慢速扫描模式下,中高电流密度时,由于阴极侧水滴的积聚,阻碍了氧气的传递,阳极采用憎水的微孔层可获得较好的性能;在恒电流放电初期,阳极采用亲水的微孔层制备的电池性能较好,但随着放电的进行,因采用憎水的阳极微孔层不易发生阴极水淹,电池性能更佳且放电持续时间较长。
     7)建立了空气自呼吸式DMFC二维两相传质模型,将计算结果与实验数据进行了比较,二者基本吻合。结果表明:在相同电流密度下,甲醇渗透通量随甲醇浓度的增加而增加;在浓度为4M和2M时甲醇渗透通量随电流密度的增加而增加,而在1M时随着电流密度的增加先增加后减少。低电流密度下,扩散在甲醇渗透中起主导作用,而高电流密度下电渗是甲醇渗透最主要的传输方式;电渗和压差在低电流密度时对于水的渗透都起了重要的作用,而在高电流密度时电渗作用占了主导地位。阴极侧总的水通量随着电流密度的增加明显增加,且在低电流密度时,主要来源于渗透的甲醇发生氧化反应生成的水,而在高电流密度下,从阳极渗透到阴极的水占了绝大部分。
The traditional energy conversion process is usually carried out by the heat engines, which is limited by the Carnot cycle leading to low efficiency and serious energy waste. Meanwhile, severe environmental pollution problem arises from the generated deleterious species and noise during the process. However, unlike the power generation process of heat engines, fuel cells are energy conversion devices in which the chemical energy is directly converted into electricity without the intermediate of thermal energy. They are regarded as clean power generation technique with high efficiency due to less energy conversion steps, no combustion process and rotated components, and without the limitation of Carnot cycle. In recent years, with the rapid development of electric devices such as mobile phones, personal digital assistants and laptop computers, which demand much more power due to new functions, the present battery technology is unlikely to keep pace with these growing power demands. The air-breathing direct methanol fuel cell (DMFC) which are considered as an attractive alternative to the conventional power sources for portable devices because of its simple system, high energy density, environmental friendly emissions, fast refueling and low operating temperature, are becoming a research hotspot in the field of electrochemistry and energy science.
     Compared with the active DMFC, the electrochemical reaction rate of the air-breathing DMFC is lower resulted from the slow mass transport of reactants. The different structure from active ones causes not only the poorer performance but also the various heat and mass transport characteristics. Thus, it is necessary to investigate the two-phase flow and transport characteristics inside the air-breathing DMFC.
     The cell performance and mass transport characteristics of an air-breathing DMFC were investigated with a home-made membrane electrode assembly (MEA). The effect of ambient conditions on the cell performance was discussed experimentally. The water droplets accumulation in the cathode and its effect on discharging performance were studied with the aid of visualization technique. The operating temperature characteristics in the whole test including before, during, and after the discharging process were recorded in the present study. The effect of wettability of anode microporous layer (MPL) on the performance and operation duration was also tested. A mathematical model was developed to comprehensively describe the two-phase flow and mass transport and analyze the mechanism of methanol and water crossover inside an air-breathing DMFC with active fuel supply. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and the catalyst layer are particularly considered. The main results are summarized below:
     1) The performance of air-breathing DMFC was improved to four times after being activated by adding methanol solution into reservoir and then resting for 24 h. A simpler filtration method with high reproducibility to fabricate MPL was proposed, through which more flat MPL, higher cell performance and longer operation duration could be obtained.
     2) The effects of catalyst, diffusion layer material, methanol concentration and current collector structure on the cell performance and mass transfer characteristics were discussed. The experimental results show that the mass transfer of reactants and the cell performance are enhanced by using catalyst with high noble metal loading or carbon cloth in the MEA. The better performance can also be obtained by increasing methanol concentration properly or testing with parallel current collectors.
     3) The influences of ambient temperature and relative humidity on the cell performance were investigated. The results reveal that at the same relative humidity, the performance of air-breathing DMFC increases with the increasing of ambient temperature. At the same temperature, the effect of relative humidity on the cell performance is related to the value of the ambient temperature. There is no evident effect of relative humidity observed at a low temperature. However, with the increasing of temperature, the relative humidity plays a more significant role in the cell performance.
     4) The water droplets accumulation in the cathode was visualized with a digital camera during the constant current discharge test. It is observed that water droplets always emerge at some preferential locations and the amount of water still increases in the air-breathing holes fully covered by liquid droplets. The discharging time at a low current density is dominated by the water droplets accumulation at the cathode, while the consumption of methanol is the dominator for that at a high current density. The longer discharging time can be obtained by improving methanol concentration properly, reducing the discharging current density and the relative humidity.
     5) The experiments on the operating temperature characteristics during the whole test process were conducted. It is found that after injecting fuel into the cell, the temperature difference between the cell and ambient increases rapidly in a few minutes, but after a mild increase it tends to be a constant value. During the constant current discharge, the temperature difference rises at first and then goes down continuously, and it increases with the increasing of discharging current density. However, at a high discharging current density, the temperature difference goes up at all times due to short discharging time. Once the constant current discharge terminated, the temperature difference drops significantly. In addition, a higher methanol concentration leads to a higher the temperature difference due to a larger methanol crossover rate.
     6) Comparative studies on cell performance and operation duration of air-breathing DMFCs with different anode GDLs were performed experimentally. The results demonstrate that when the performance evaluation was conducted in the fast scan mode (a holding time of 45 s at each current density), the DMFC with a hydrophilic MPL (DMFC-L) in the anode shows superior performance to that with a hydrophobic MPL (DMFC-B). While the DMFC-B shows better performance at medium and high current densities in the slow scan mode (a holding time of 150 s), which results principally from blockage of the oxygen supply due to the water droplets accumulated during the cell performance evaluation. Although the DMFC-L can yield a better performance at the beginning of constant current discharge, the DMFC-B exhibits a higher performance and longer operation duration in the following discharge process due to a lower rate of water accumulation with the hydrophobic MPL in the anode.
     7) A two-dimensional two-phase mass transport model was developed to predict methanol and water crossover in an air-breathing DMFC with active fuel supply. The modeling results agree well with the experimental data of a home-assembled cell. The numerical results indicate that for a given current density, the methanol crossover flux increases with increasing methanol concentration; for a given methanol concentration, it increases with increasing current density for the methanol concentrations of 2 M and 4 M, while it increases slightly at low current densities and decreases at high current densities for 1 M. Diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. Water transport through the membrane depends on electro-osmosis and hydraulic pressure difference across the membrane at low current densities; however, electro-osmosis plays a critical role in the water crossover at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.
引文
[1]王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社, 2003.
    [2]衣宝廉.燃料电池——原理·技术·应用[M].北京:化学工业出版社, 2003.
    [3]黄镇江.燃料电池及其应用[M].北京:电子工业出版社, 2005.
    [4]李瑛,王林山.燃料电池[M].北京:冶金工业出版社, 2000.
    [5]熊一权.燃料电池的开发及展望[J].节能与环保, 2003, 3: 37-38.
    [6] A.S. Aricò, S. Srinivasan, V. Antonucci. DMFCs: from fundamental aspects to technology development [J]. Fuel cells, 2001, 1(2): 133-161.
    [7] R. Borup, J. Meyers, B. Pivovar, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation [J]. Chemical Reviews, 2007, 107(10): 3904-3951.
    [8]方波.专题:微型燃料电池便携设备的持续动力源[EB/01]. http://info.ec.hc360.com/html/001/001/001/001/18866.htm . 2003-10-22.
    [9]杨兴,周兆英,叶雄英,王晓浩. MEMS微型燃料电池及其基于压电风扇的换气方法[J].微纳电子技术, 2003, 7/8: 379.
    [10]于景荣,衣宝廉,张华民,侯明.微型燃料电池的研究与发展[J].电源技术, 2004, 28(8): 515-518.
    [11] H.L. Maynard, J.P. Meyers. Design considerations for miniaturized PEM fuel cells [J]. Journal of Power Sources, 2002, 109: 76-88.
    [12] R.G. Hockaday. Fuel cell [P]. USP: 4673634, 1987-06-16.
    [13] R.G. Hockaday. Micro mirror photovoltaic cell [P]. USP: 5482568, 1996-01-09.
    [14] R.G. Hockaday. Surface replica fuel cell [P]. USP: 5631099, 1997-05-20.
    [15] R.G. Hockaday. Surface replica fuel cell for micro fuel cellelectrical power pack [P]. USP: 5759712, 1998-06-02.
    [16] R.G. Hockaday. Non-bipolar fuel cell stack configuration [P]. USP: 6194095, 2001-02-27.
    [17] R.G. Hockaday. Micro-fuel cell power devices [P]. USP: 6326097, 2001-12-04.
    [18]刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题[J].电源技术, 2001, 25(10): 364-365.
    [19]刘建国,孙公权.燃料电池概述[J].物理, 2004, 33(2): 79-83.
    [20]葛华才.燃料电池-手机和新型移动电器的新能源[EB/02]. http://www.huacai.net/science/cell.htm. 2003-11-29.
    [21] W.Y. Sim, G.Y. Kim, S.S. Yang. Fabrication of micro power source (MPS) using a micro directmethanol fuel cell (DMFC) for the medical application. IEEE International Conference on Micro Electro Mechanical Systems (MEMS) [C]. Interlaken, Switzerland, 2001: 341-344.
    [22] G.Q. Lu, C.Y. Wang, T.J. Yen, X. Zhang. Development and characterization of a silicon-based micro direct methanol fuel cell [J]. Electrochimica Acta, 2004, 49: 821-828.
    [23] G.Q. Lu, C.Y. Wang. Development of micro direct methanol fuel cells for high power applications [J]. Journal of Power Sources, 2005, 144: 141-145.
    [24] J.S.Wainright, R.F.Savinell, C.C.Liu, M.Litt. Microfabricated fuel cells [J]. Electrochimica Acta, 2003, 48: 2869-2877.
    [25] S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, T. Osaka. MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (μ-DMFC) [J]. Electrochemistry Communications, 2004, 6: 562-565.
    [26] J.R. Yu, P. Cheng, Z.Q. Ma, B.L. Yi. Fabrication of a miniature twin-fuel-cell on silicon wafer [J]. Electrochimica Acta, 2003, 48: 1537-1541.
    [27] J.R. Yu, P. Cheng, Z.Q. Ma, B.L. Yi. Fabrication of miniature silicon wafer fuel cells with improved performance [J]. Journal of Power Sources, 2003, 124: 40-46.
    [28]谢克文,王晓红,姜英琪,刘理天.基于MEMS技术的微型燃料电池的制作[J].微细加工技术, 2004, 9(3): 55-58.
    [29] M.M. Mench, Z.H. Wang, K. Bhatia, C.Y. Wang. Design of a micro direct methanol fuel cell (μDMFC) [C]. International Mechanical Engineering Congress and Exposition (IMECE).New York, USA. 2001,11.
    [30] S.J. Lee, A. Chang-Chien, S.W. Cha, R. O’Hayre, Y.I. Park, Y. Saito, F.B. Prinz. Design and fabrication of a micro fuel cell array with“flip-flop”interconnection [J]. Journal of Power Sources, 2002, 112: 410-418.
    [31] K. Shah, W.C. Shin, R.S. Besser. Novel microfabrication approaches for directly patterning PEM fuel cell membranes [J]. Journal of Power Sources, 2003, 123(2): 172-181.
    [32] K. Shah, W.C. Shin, R.S. Besser. A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques [J]. Sensors and Actuators B: Chemical, 2004, 97(2-3): 157-167.
    [33] S.W. Lim, S.W. Kim, H.J. Kim, J.E. Ahn, H.S. Han, Y.G. Shul. Effect of operation parameters on the performance of micro direct methanol fuel cell fabricated on printed circuit board [J]. Journal of Power Sources, 2006, 161: 27-33.
    [34] T. Shimizu, T. Momma, M. Mohamedi, T. Osaka, S. Sarangapani. Design and fabrication of pumpless small direct methanol fuel cells for portable applications [J]. Journal of Power Sources, 2004, 137: 277-283.
    [35]于如军,曹广益,刘秀清,李中芳.管状空气自呼吸直接甲醇燃料电池的研制[J].电源技术, 2005, 29(10): 694-697.
    [36] Q. Ye, T.S. Zhao. A natural-circulation fuel delivery system for direct methanol fuel cells [J]. Journal of Power Sources, 2005, 147: 196-202.
    [37] Z. Guo, Y, Cao. A passive fuel delivery system for portable direct methanol fuel cells [J]. Journal of Power Sources, 2003, 132: 86-91.
    [38] Y. Yang, Y.C. Liang. A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension [J]. Journal of Power Sources, 2007, 165: 185-195.
    [39] Y.H. Chan, T.S. Zhao, R. Chen, C. Xu. A self-regulated passive fuel-feed system for passive direct methanol fuel cells [J]. Journal of Power Sources, 2008, 176: 183-190.
    [40] M.A. Abdelkareem, N. Nakagawa. DMFC employing a porous plate for an efficient operation at high methanol concentrations [J]. Journal of Power Sources, 2006, 162: 114-123.
    [41] M.A. Abdelkareem, N. Nakagawa. Effect of oxygen and methanol supply modes on the performance of a DMFC employing a porous plate [J]. Journal of Power Sources, 2007, 165: 685-691.
    [42] M.A. Abdelkareem, N. Morohashi, N. Nakagawa. Factors affecting methanol transport in a passive DMFC employing a porous carbon plate [J]. Journal of Power Sources, 2007, 172: 659-665.
    [43] H.K. Kim. Passive direct methanol fuel cells fed with methanol vapor [J]. Journal of Power Sources, 2006, 162: 1232-1235.
    [44] Z. Guo, A. Faghri. Vapor feed direct methanol fuel cells with passive thermal-fluids management system [J]. Journal of Power Sources, 2007, 167: 378-390.
    [45] S. Eccarius, F. Krause, K. Beaard, C. Agert. Passively operated vapor-fed direct methanol fuel cells for portable applications [J]. Journal of Power Sources, 2008, 182: 565-579.
    [46] Z. Guo, A. Faghri. Development of planar air breathing direct methanol fuel cell stacks [J]. Journal of Power Sources, 2006, 160: 1183-1194.
    [47] S.K. Kamarudin, W.R.W. Daud, S.L. Ho, U. A. Hasran. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC) [J]. Journal of Power Sources, 2007, 163: 743-754.
    [48] H. Chang, J.R. Kim, J.H. Cho, H.K. Kim, K.H. Choi. Materials and processes for small fuel cells [J]. Solid State Ionics, 2002, 148: 601-606.
    [49] J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong. Effect of methanol concentration on passive DMFC performance [J]. Feature article in Fuel Cell Bulletin, ISSN 1464-2859, 2005, February: 12-17.
    [50] J.G. Liu, T.S. Zhao, R. Chen, C.W. Wong. The effect of methanol concentration on theperformance of a passive DMFC [J]. Electrochemistry Communications, 2005, 7: 288-294.
    [51] D. Kim, E.A. Cho, S.A. Hong, I.H. Oh, H.Y. Ha. Recent progress in passive direct methanol fuel cells at KIST [J]. Journal of Power Sources, 2004, 130: 172-177.
    [52] B. Bae, B. K. Kho, T. H. Lim, I. H. Oh, S. A. Hong, H. Y. Ha. Performance evaluation of passive DMFC single cells [J]. Journal of Power Sources, 2006, 158: 1256-1261.
    [53]曾毓群,陈杰,许瑞,赵丰刚,邱祎翎,杜鸿达,李宝华,康飞宇,陈立泉.甲醇浓度对被动式直接甲醇燃料电池性能的影响[J].中国有色金属学报, 2005, 15(9): 1441-1445.
    [54] C.W. Wong, T.S. Zhao, Q. Ye, J.G. Liu. Experimental investigations of the anode flow field of a micro direct menthanol fuel cell [J]. Journal of Power Sources, 2006, 155: 291-296.
    [55] W.M. Yang, S.K. Chou, C. Shu. Effect of current-collector structure on performance of passive micro direct methanol fuel cell [J]. Journal of Power Sources, 2007, 164: 549-554.
    [56] R. Chen, T.S. Zhao. Porous current collectors for passive direct methanol fuel cells [J]. Electrochimica Acta, 2007, 52: 4317–4324.
    [57] R. Chen, T.S. Zhao, J.G. Liu. Effect of cell orientation on the performance of passive DMFCs [J]. Journal of Power Sources, 2006, 157: 351-357.
    [58] J.G. Liu, T.S. Zhao, Z.X. Liang, R. Chen. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells [J]. Journal of Power Sources, 2006, 153: 61–67.
    [59] Y.H. Pan. Advanced air-breathing direct methanol fuel cells for portable applications [J]. Journal of Power Sources, 2006, 161(1): 282-289.
    [60] K.Y. Song, H.K. Lee, H.T. Kim. MEA design for low water crossover in air-breathing DMFC [J]. Electrochimica Acta, 2007, 53: 637-643.
    [61] R. Chen, T.S. Zhao. A novel electrode architecture for passive direct methanol fuel cells [J]. Electrochemistry Communications, 2007, 9: 718-724.
    [62] J. Liu, G. Sun, F. Zhao, et al. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC [J]. Journal of Power Sources, 2004, 133: 175–180.
    [63] P. Argyropoulos, K. Scott, W.M. Taama. Gas evolution and power performance in direct methanol fuel cells [J]. Journal of Applied Electrochemistry, 1999, 29: 661-669.
    [64] G.Q. Lu, C.Y. Wang. Electrochemical and flow characterization of a direct methanol fuel cell [J]. Journal of Power Sources, 2004, 134: 33-40.
    [65] H. Yang, T. S. Zhao, Q. Ye. In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields [J]. Journal of Power Sources, 2005, 139: 79-90.
    [66] J. Nordlund, C. Picard, E. Birgersson, et al. The design and usage of a visual direct methanol fuel cell [J]. Journal of Applied Electrochemistry, 2004, 34(8): 763–770.
    [67] Q. Liao, X. Zhu, X. Zheng, Y. Ding. Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC [J]. Journal of Power Sources, 2007, 171: 644-651.
    [68] T. Bewer, T. Beckmann, H. Dohle, J. Mergel, D. Stolten. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution [J]. Journal of Power Sources, 2004, 152: 1-9.
    [69] K. Tüber, David Pócza, Christopher Hebling. Visualization of water buildup in the cathode of a transparent PEM fuel cell [J]. Journal of Power Sources, 2003, 124(2): 403–414.
    [70] X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang. Visualization of liquid water transport in a PEFC [J]. Electrochemical and Solid–State Letters, 2004, 7(11): A408–A411.
    [71] F.Y. Zhang, X.G. Yang, C.Y. Wang. Liquid water removal from a polymer electrolyte fuel cell [J]. Journal of The Electrochemical Society, 2006, 153(2): A225-A232.
    [72] X. Liu, H. Guo, C.F. Ma. Water flooding and two–phase flow in cathode channels of proton exchange membrane fuel cells [J]. Journal of Power Sources, 2005, 156(2): 267–280.
    [73] D. Spernjak, A.K. Prasad, S.G. Advani. Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell [J]. Journal of Power Sources, 2007, 170: 334–344.
    [74] C.Y. Chen, P. Yang. Performance of an air-breathing direct methanol fuel cell [J]. Journal of Power Sources, 2003, 123: 37-42.
    [75] A. Blum, T. Duvdevani, M. Philosoph, N. Rudoy, E. Peled. Water-neutral micro direct-methanol fuel cell (DMFC) for portable application [J]. Journal of Power Sources, 2003, 117: 22-25.
    [76] G. Jewett, Z. Guo, A. Faghri. Water and air management systems for a passive direct methanol fuel cell [J]. Journal of Power Sources, 2007, 168: 434-446.
    [77] Q. Lai, G. Yin, J. Zhang, et al. Influence of cathode oxygen transport on the discharging time of passive DMFC [J]. Journal of Power Sources, 2008, 175: 458-463.
    [78] M. Chisaka, T. Okada, T. Yachi. Study on highly efficient direct methanol fuel cells for portable applications[C]. IEEE INTELEC’03.2003, 10: 19-23.
    [79] R. Chen, T. S. Zhao. Performance characterization of passive direct methanol fuel cells [J]. Journal of Power Sources, 2007, 167(2): 455-460.
    [80] B.K. Kho, B. Bae, M.A. Scibioh, J. Lee, H.Y. Ha. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells [J]. Journal of Power Sources, 2005, 142: 50-55.
    [81] S.F. Baxter, V.S. Battaglia, R.E. White. Methanol fuel cell model: Anode [J]. Journal of TheElectrochemical Society, 1999, 146(2): 437-447.
    [82] K. Scott, P. Argyropoulos, K. Sundmacher. A model for the liquid feed direct methanol fuel cell [J]. Journal of Electroanalytical Chemistry. 1999, 477: 97-110.
    [83] K.T. Jeng, C.W. Chen. Modeling and simulation of a direct methanol fuel cell anode [J]. Journal of Power Sources, 2002, 112: 367-375.
    [84] J. Nordlund, G. Lindbergh. A model for the porous direct methanol fuel cells anode [J]. Journal of The Electrochemical Society, 2002, 149: A1107-A1113.
    [85] E. Birgersson, J. Nordlund, H. Ekstrom, et al. Reduced two-dimensional one-phase model for analysis of the anode of a DMFC [J]. Journal of The Electrochemical Society, 2003, 150: A1368-A1376.
    [86] K. Scott, W. Taama, J. Cruickshank. Performance and modelling of a direct methanol solid polymer electrolyte fuel cell [J]. Journal of Power Sources. 1997, 65: 159-171.
    [87] K. Scott, W. Taama, J. Cruickshank. Performance of a direct methanol fuel cell [J]. Journal of Applied Electrochemistry, 1998, 28: 289-297.
    [88] A.A. Kulikovsky, J. Divisek, A.A. Kornyshev. Two-dimensional simulation of direct methanol fuel cell: a new (embedded) type of current collector [J]. Journal of The Electrochemical Society, 2000, 147(3): 953-959.
    [89] A.A. Kulikovsky.Two-dimensional numerical modelling of a direct methanol fuel cell [J]. Journal of Applied Electrochemistry. 2000, 30: 1005-1015.
    [90] A.A. Kulikovsky. 1D + 1D model of a DMFC: localized solutions and mixedpotential [J]. Electrochemistry Communications, 2004, 6(12): 1259-1265.
    [91] H. Dohle, J. Divisk, R. Jung. Process engineering of the direct methanol fuel cell [J]. Journal of Power Sources. 2000, 86: 469-477.
    [92] B.L. García, V.A. Sethuraman, J.W. Weidner, R.E. White. Mathematical model of a direct methanol fuel cell [J]. Journal of Fuel Cell Science and Technology. 2004, 1: 43-48.
    [93] J.P. Meyers, J. Newman. Simulation of the direct methanol fuel cell:Ⅰ.thermodynamic framework for a multicomponent membrane [J]. Journal of The Electrochemical Society, 2002, 149: A710-A717.
    [94] J.P. Meyers, J. Newman. Simulation of the direct methanol fuel cell:Ⅱ.Modeling and data analysis of transport and kinetic phenomena [J]. Journal of The Electrochemical Society, 2002, 149: A718-A728.
    [95] J.P. Meyers, J. Newman. Simulation of the direct methanol fuel cell:Ⅲ.Design and optimization [J]. Journal of The Electrochemical Society, 2002, 149: A729-A735.
    [96] H. Guo, C.F. Ma. 2D analytical model of a direct methanol fuel cell [J]. ElectrochemistryCommunications. 2004, 6: 306-312.
    [97] J.B. Ge, H.T. Liu. A three-dimensional mathematical model for liquid-fed direct methanol fuel cells [J]. Journal of Power Sources, 2006, 160: 413-421.
    [98] C.H. Chen, T.K. Yeh. A mathematical model for simulating methanol permeation and the mixed potential effect in a direct methanol fuel cell [J]. Journal of Power Sources, 2006, 160: 1131-1141.
    [99] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, E.D. Gilles. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis [J]. Chemical Engineering Science, 2001, 56(2): 333–341.
    [100] S. Zhou, T. Schultz, M. Peglow, K. Sundmacher. Analysis of the nonlinear dynamics of a direct methanol fuel cell [J]. Physical Chemistry Chemical Physics, 2001, 3: 347-355.
    [101] T. Schultz, K. Sundmacher. Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation [J]. Journal of Power Sources, 2005, 145: 435-462.
    [102] A. Simoglou, P. Argyropoulos, E.B. Martin, K. Scott, A.J. Morris, W. M. Taama. Dynamic modeling of the voltage response of direct methanol fuel cells and stacks PartⅠ: Model development and validation [J]. Chemical Engineering Science, 2001, 56(23): 6761–6772.
    [103] R. Chen, T.S. Zhao. Mathematical modeling of a passive-feed DMFC with heat transfer effect [J]. Journal of Power Sources, 2005, 152: 122-130.
    [104] J.J. Hwang, S.D. Wu, L.K. Lai, C.K. Chen, D.Y. Lai. Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC [J]. Journal of Power Sources, 2006, 161: 240-249.
    [105] V. Saarinen, O. Himanen, T. Kallio, G. Sundholm, K. Kontturi. A 3D model for the free-breathing direct methanol fuel cell: methanol crossover aspects and validations with current distribution mesurements [J]. Journal of Power Sources, 2007, 172: 805-815.
    [106] T. Mennola, M. Noponen, M. Aronniemi, et al. Mass transport in the cathode of a free-breathing polymer electrolyte membrane fuel cell [J]. Journal of Applied Electrochemistry, 2003, 33: 979-987.
    [107] T.K. Yeh, C.H. Chen. Modeling and optimizing the performance of a passive direct methanol fuel cell [J]. Journal of Power Sources, 2008, 175: 353-362.
    [108] Z.H. Wang, C.Y. Wang. Mathematical model of liquid-feed direct methanol fuel cells [J]. Journal of The Electrochemical Society, 2003, 150(4): A508-A519.
    [109] E. Birgersson, J. Nordlund, M. Vynnycky, C. Picard, G. Lindbergh. Reduced two-phase model for analysis of the anode of a DMFC [J]. Journal of The Electrochemical Society, 2004,151(12): A2157-A2172.
    [110] C.Y. Wang, P. Cheng. A multiphase mixture model for multiphase, multicomponet transport in capillary porous media-Ⅰ. Model development [J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3607-3618.
    [111] J. Divisek, J. Fuhrmann, K. G?rtner, R. Jung. Performance modeling of a direct methanol fuel cell [J]. Journal of The Electrochemical Society, 2003, 150(6): A811-A825.
    [112] G. Murgia, L. Pisani, A. K. Shukla, K. Scott. A numerical model of a liquid-feed solid polymer electrolyte DMFC and its experimental validation [J]. Journal of The Electrochemical Society, 2003, 150(9): A1231-A1245.
    [113] A.A. Kulikovsky .Model of the flow with bubbles in the anode channel and performance of a direct methanol fuel cell [J]. Electrochemistry Communications. 2005, 7: 237-243.
    [114] W.W. Yang, T.S. Zhao. A two-dimensional, two-phase mass transport model for liquid-feed DMFCs [J]. Electrochimica Acta, 2007, 52: 6125-6140.
    [115] W.W. Yang, T.S. Zhao. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation [J]. Journal of Power Sources, 2007, 174: 136-147.
    [116] W.W. Yang, T.S. Zhao, C. Xu. Three-dimensional two-phase mass transport model for direct methanol fuel cells [J]. Electrochimica Acta, 2007, 53: 853-862.
    [117] W.W. Yang, T.S. Zhao. A transient two-phase mass transport model for liquid feed direct methanol fuel cells [J]. Journal of Power Sources, 2008, 185: 1131-1140.
    [118] R. Chen, T.S. Zhao, W.W. Yang, C. Xu. Two-dimensional and two-phase thermal model for passive direct methanol fuel cells [J]. Journal of Power Sources, 2008, 175: 276-287.
    [119] J. Rice, A. Faghri. A transient, multi-phase and multi-component model of a new passive DMFC [J]. International Journal of Heat and Mass Transfer, 2006, 49: 4804-4820.
    [120] J. Rice, A. Faghri. Thermal and start-up characteristics of a miniature passive liquid feed DMFC system, including continuous/discontinuous phase limitations [J]. ASME Journal of Heat Transfer, 2008, 130: 062001.1-062001.11.
    [121] B. Xiao, A. Faghri. Transient modeling and analysis of a passive liquid-feed DMFC [J]. International Journal of Heat and Mass Transfer, 2008, 51: 3127-3413.
    [122] C. Hebling, A. Heinzel. Portable fuel cell systems [J]. Fuel Cells Bulletin, 2002, July: 8-12.
    [123]史萌,邱新平,朱文涛. Nafion膜在直接甲醇燃料电池中的应用及改进[J].化学通报, 2001,8: 488-490.
    [124]彭程,程璇,张颖,陈羚,范钦柏.直接甲醇燃料电池中的甲醇渗透研究进展[J].稀有金属材料与工程, 2004, 33(6): 571-575.
    [125] J.T. Wang, J.S. Wainright, R.F. Savinell, M. Litt. A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte [J]. Journal of Applied Electrochemistry, 1996, 26(7): 751-756
    [126] P .L. Antonucci, A. S. Arico, P. Creti, et al. Investigation of a direct methanol fuel cell based on a composite Nafion (R)-silica electrolyte for high temperature operation [J]. Solid State Ionics, 1999, 125(1-4): 431-437.
    [127] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim. Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell [J]. Journal of Power Sources, 2002, 106(1-2): 173-177.
    [128] L. J?rissen, V. Gogel, J. Kerres, J. Garche. New membranes for direct methanol fuel cells [J]. Journal of Power Sources, 2002, 105(2): 267-273.
    [129] Y. Woo, S.Y. Oh, Y.S. Kang, B. Jung. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell [J]. Journal of Membrane Science, 2003, 220(1-2): 31-45.
    [130] M. Helen, B. Viswanathan, S.S. Murthy. Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol [J]. Journal of Power Sources, 2006, 163: 433-439.
    [131] W. Lee, H. Kim, T.K. Kim, H. Chang. Nafion based organic/inorganic composite membrane for air-breathing direct methanol fuel cells [J]. Journal of Membrane Science, 2007, 292: 29-34.
    [132] X. Ren, T.E. Springer, S. Gottesfeld. Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance [J]. Journal of The Electrochemical Society, 2000, 147(1): 92-98.
    [133]符显珠,李俊,卢成慧,廖代伟.直接甲醇燃料电池质子膜研究进展[J].化学进展, 2004, 16(1): 77-82.
    [134]刘建国,衣宝廉,王素力,魏昭彬,辛勤,陈利康. Nafion膜厚度对直接甲醇燃料电池性能的影响[J].电源技术, 2002, 26(2): 17-19.
    [135]叶飞,陈胜洲,董新法,林维明.直接甲醇燃料电池膜电极制备技术进展[J].现代化工, 2005, 25(9): 30-33.
    [136] M.S. Wilson, S. Gottesfeld. High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells [J]. Journal of The Electrochemical Society, 1992, 139(2): L28-L30.
    [137] M.S. Wilson, S. Gottesfeld. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry, 1992, 22(1): 1-7.
    [138] Z.B. Wei, S.L. Wang, B.L. Yi, et al. Influence of electrode structure on the performance of a direct methanol fuel cell [J]. Journal of Power Sources, 2006, 106(1-2): 364-369.
    [139] E.J. Taylor, E.B. Anderson, N.R.K. Vilambi. Preparation of high-Platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells [J]. Journal of The Electrochemical Society, 1992, 139(5): L45-L46.
    [140] C. K. Witham, W. Chun, R. Ruiz, et al. Thin film catalyst layers for direct methanol fuel cells [J]. Electrochemical and Solid-State Letters, 2000, 3: 497-500.
    [141] J. Yu, Y. Yoshikawa, T. Matsuura, M. N. Islam, M. Hori. Preparing gas-diffusion layers of PEMFCs with a dry deposition technique [J]. Electrochemical and Solid-State Letters, 2005, 8(3): A152-A155.
    [142] H. Tang, S. Wang, M. Pan, R. Yuan. Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells [J]. Journal of Power Sources, 2007, 166: 41-46.
    [143] X. Wang, H. Zhang, J. Zhang, H. Xu, X. Zhu, J. Chen, B. Yi. A bi-functional micro-porous layer with composite carbon black for PEM fuel cells [J]. Journal of Power Sources, 2006, 162: 474-479.
    [144] S. Park, J. W. Lee, B. N. Popov. Effect of PTFE content in microporous layer on water management in PEM fuel cells [J]. Journal of Power Sources, 2008, 177: 457-463.
    [145] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth. Diffusion layer parameters influencing optimal fuel cell performance [J]. Journal of Power Sources, 2000, 86: 250-254.
    [146] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth. Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure [J]. Journal of Applied Electrochemistry, 2000, 30: 641-646.
    [147] E. Passalacqua, G. Squadrito, F. Lufrano, A. Patti, L. Giorgi. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes [J]. Journal of Applied Electrochemistry, 2001, 31: 449-454.
    [148] S. Park, J. W. Lee, B. N. Popov. Effect of carbon loading in microporous layer on PEM fuel cell performance [J]. Journal of Power Sources, 2006, 163(1): 357-363.
    [149]赵培,木士春,潘牧,袁润章. PEMFC组件CCM制备方法的评述[J].电池, 2005, 35(6): 480-482.
    [150]李树棠.金属X射线衍射与电子显微分析技术(上、下篇)[M].北京:冶金工业出版社, 1980年.
    [151] G.Q. Lu, F.Q. Liu, C.Y.Wang. Water transport through Nafion 112 membrane in DMFCs [J]. Electrochemical and Solid-State Letters, 2005, 8 (1): A1-A4.
    [152] F.Q. Liu, G.Q. Lu, C.Y. Wang. Low crossover of methanol and water through thin membranes in direct methanol fuel cells [J]. Journal of The Electrochemical Society, 2006, 153 (3): A543-A553.
    [153]马小杰,方卫民.质子交换膜燃料电池双极板研究进展[J].材料导报, 2006, 20(1): 26-30.
    [154] K. Scott, W.M. Taama, P. Argyropoulos. Material aspects of the liquid feed direct methanol fuel cell [J]. Journal of Applied Electrochemistry, 1998, 28: 1389-1397.
    [155] K. Scott, W.M. Taama, P. Argyropoulos, K. Sundmacher. The impact of mass transport and methanol crossover on the direct methanol fuel cell [J]. Journal of Power Sources, 1999, 83: 204-216.
    [156] Z. Qi,A. Kaufman. Enhancement of PEM fuel cell performance by steaming or boiling the electrode [J]. Journal of Power Sources, 2002, 109: 227-229.
    [157] S. Ha, C. A. Rice, R.I. Masel, A. Wieckowski. Methanol conditioning for improved performance of formic acid fuel cells [J]. Journal of Power Sources, 2002, 112: 655-659.
    [158] B.K. Kho, I.H. Oh, S.A. Hong, H.Y. Ha. Effect of pretreatment methods on performance of passive DMFCs [J]. Fuel cell bulletin, 2004, September, 11-14.
    [159] B.K. Kho, I.H. Oh, S.A. Hong, H.Y. Ha. The effect of pretreatment methods on the performance of passive DMFCs [J]. Electrochimica Acta, 2004, 50: 781-785.
    [160] C.Y. Chen, P. Yang, Y.S. Lee, K.F. Lin. Fabrication of electrocatalyst layers for direct methanol fuel cells [J]. Journal of Power Sources, 2005, 141: 24-29.
    [161] L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu, E. S. Smotkin. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells [J]. Electrochimica Acta, 1998, 43(24): 3657-3663.
    [162] T.R. Ralph, G.A. Hards, J.E. Keating. Low cost electrodes for proton exchange membrane fuel cells [J]. Journal of The Electrochemistry Society, 1997, 144(11): 3845-3857.
    [163] T. Fabian, J.D. Posner, R. O’Hayre, S.W. Cha, J.K. Eaton, F.B. Prinz, J.G. Santiago. The role of ambient conditions on the performance of a planar, air-breathing hydrogen PEM fuel cell [J]. Journal of Power Sources, 2006, 161 (1): 168–182.
    [164] J.H. Nam, M. Kaviany. Effective diffusivity and water–saturation distribution in single- and two-layer PEMFC diffusion medium [J]. International Journal of Heat and Mass Transfer, 2003, 46(24): 4595–4611.
    [165] U. Pasaogullari, C.Y. Wang. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells [J]. Journal of The Electrochemical Society, 2004, 151(3): A399–A406.
    [166] C. Xu, T.S. Zhao, Y.L. He. Effect of cathode gas diffusion layer on water transport and the cell performance in direct methanol fuel cells [J]. Journal of Power Sources, 2007, 171: 268-274.
    [167] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth. Diffusion layer parameters influencing optimal fuel cell performance [J]. Journal of Power Sources, 2000, 86: 250-254.
    [168] X.L. Wang, H.M. Zhang, J.L. Zhang, et al. Micro-porous layer with composite carbon black for PEM fuel cells [J]. Electrochimica Acta, 2006, 51: 4909-4915.
    [169] E. Passalacqua, G. Squadrito, F. Lufrano, et al. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes [J]. Journal of Applied Electrochemistry, 2001, 31: 449-454.
    [170] E. Antolini, R.R. Passos, E.A. Ticianelli. Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells [J]. Journal of Power Sources, 2002, 109: 477-482.
    [171] A. Oedegaard, C. Hebling, A. Schmitz, et al. Influence of diffusion layer properties on low temperature DMFC [J]. Journal of Power Sources, 2004, 127: 187-196.
    [172] J. Zhang, G.P. Yin, Q.Z. Lai, et al. The influence of anode gas diffusion layer on the performance of low-temperature DMFC [J]. Journal of Power Sources, 2007, 168: 453-458.
    [173] F. Liu, C. Y. Wang. Water and methanol crossover in direct methanol fuel cells– effect of anode diffusion media [J]. Electrochimica Acta, 2008, 53: 5517-5522.
    [174] C. Xu, T. S. Zhao, W.W. Yang. Modeling of water transport through the membrane electrode assembly for direct methanol fuel cells [J]. Journal of Power Sources, 2008, 178: 291-308.
    [175] U. Pasaogullari, C.Y. Wang. Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells [J]. Electrochimica Acta, 2004, 49: 4359-4369.
    [176] G. W?lk, M. Dreyer, H.J. Rath. Flow patterns in small diameter vertical non-circular channels [J]. International Journal of Multiphase Flow, 2000, 26: 1037-1061.
    [177] M. Kaviany. Principles of Heat Transfer in Porous Media [M]. New York: Springer-Vezlag, 1995.
    [178]陶文铨.数值传热学(第二版) [M].西安:西安交通大学出版社, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700