用户名: 密码: 验证码:
考虑流固耦合效应的整体压裂数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂技术作为油气水井增产增注的进攻性措施已广泛应用于低渗透油气田的开发。90年代已明确提出必须将水力压裂与油藏工程有机结合起来才能最有效地满足低渗透油气藏开发要求。
     油田测试和实验研究表明,很多储层—尤其是低渗透或超低渗储层,其渗透率对压力变化是敏感的,地下流体渗流问题实际上是一个油气水渗流与储集层岩石多孔介质弹塑性变形的动态耦合作用极强的过程。但长期以来,无论是单井水力压裂还是整体压裂,都是将岩石和流体作为两个独立系统进行研究,并没有考虑流固耦合作用。本文率先将流固耦合理论引入压裂技术领域,研究流固耦合渗流下的整体压裂生产动态模拟,为整体压裂设计提供依据。主要工作是
     1 在三轴实验仪上测试了沙三段储层的岩石力学性质,获得了弹性模量与泊松比,为流固耦合的整体压裂奠定了基础;
     2 从孔隙度和渗透率的定义出发,考虑岩石骨架变形对孔隙度和渗透率的影响,建立了应变孔隙度和应变渗透率模型,用以模拟储层应力和流体压力对孔隙度和渗透率的影响。
     3 根据物质平衡原理和达西定律,考虑基质和人工裂缝作用下三维三相渗流模型,并考虑了重力作用影响,结合应变孔隙度模型、应变渗透率模型,建立了流固耦合整体压裂数学模型。
     4 根据有限元基本思想,研究了流固耦合整体压裂的统一有限元求解方法,并编制了相应的数值模拟器。改进了以前用有限差分方法求解油藏渗流、用有限元方法求解岩石变形的计算模式
     5 通过示例计算,证明了本文理论方法和程序的正确性和有效性,表明了流固耦合效应对压裂开采有较大影响,尤其对于应力敏感性油藏。
     6 该模拟器为预测油藏整体压裂开发动态提供了一套可行的方法。既可用于预测均质、非均质油藏的单井压裂动态两相和三相流动下的整体压裂的油水井动态,还可以模拟不同裂缝长和导流能力下井组或区块开发效果,为编制整体压裂方案提供了工具。
Hydraulic fracturing as a positive stimulation treatment in reservoirs has been widely used in low permeability reservoirs. In 1990's, it has been put forward that hydraulic fracturing must be combined with reservoir engineering to meet the development requirement of low permeability reservoirs.The reservoir survey and experimental study show that many reservoirs, especially low permeability reservoirs or ultra low permeability reservoirs are sensitive to the variation of formation pressure. As a matter of fact, the fluid flowing though porous medium is intensively influenced by the coupling of formation fluid and rock elastic-plastic deformation. However, rock and fluid are considered as two independent systems, and the coupling effect has not considered in individual well's fracturing or integral fracturing. In this thesis, coupling theory was introduced into the hydraulic fracturing field, and numerical simulation of integral fracturing with coupling was researched.(1) The characters of rock mechanics in SHA-3 payzone have been tested by tri-axial instrument; the elastic modulus and Poisson's ratio were obtained. This work laid a foundation for the integral fracturing with coupling.(2) According to definition of porosity and permeability, effect of rock deformation on porosity and permeability were considered. And the model of strain porosity and strain permeability were established, the effect of formation pressure on porosity and permeability could be simulated.(3) Based on Darcy's law and material balance principle, mathematical model of three-dimensional three-phase was derived in porous medium with artificial fractures, and the gravity was considered in the model. Then, model of the strain porosity and strain permeability was combined, and the mathematical model of integral fracturing with coupling was established.(4) According to the finite element theory, numerical formula of finite element analysis of the integral fracturing model with coupling was given, and a simulator was developed. This work improved the previous calculation, which used finite difference in fluid flow and finite element in rock deformation.(5) The case studying the thesis proven the correction and validation of the theoretical modeling and simulator. The coupling between rock and fluid on production are strong, especially in the stress sensitive reservoirs.(6) The simulator can be used to predict the productivity performance in homogeneous and non-homogeneous reservoir, single fracturing and/or integral fracturing, two-phase or three-phase flow. Moreover, it can simulate the production performance in well group and block with different fracture lengths and different fracture conductivities. The simulator is an effective tool for integral fracturing project.
引文
[1] Micguire W J, Sikora V J. The effect of vertical fracture on well productivity. Trans. AIME, 1960, v219:401-403
    [2] Tannich J D and Nierode D E. The effect of vertical fractures on gas well productivity. SPE 15902
    [3] Prats M. Effect of vertical fractures on reservoir behavior-incompressible fluid case. SPEJ, June 1961: 105-108
    [4] Remond L R & Binder G G. Productivity of wells in vertically fractured damaged formations. JPT, Jan. 1967
    [5] J Van Dum. Planning of optimum production for a Matural Gas Reservoir. J. of the Institute of Petroleum 54, March, 1968:531:55-67
    [6] Hoditch S A et al. The optimization of well spacing and fracturing length in low-permeability gas reservoirs. SPE 7496
    [7] P F Lemen and H J Patel. Effects of fracture and reservoir parameters on recovery from low-permeability gas reservoir. SPE 5111
    [8] J K Tison et al. A method for selecting potential infill location in the East Texas Cotton Valley gas play. SPE 11022
    [9] D N Meehan & B F Pennijgton. Numerical simulation results in the Carthage Cotton Valley Field. JPT, 34 9838, Jan.1982
    [10] Soliman M Y. modification to production increase calculation for a hydraulic fractured well. OGJ, Oct. 1986
    [11] Tinsley J M et al. Vertical fracture height—Its effect on steady-state production increase. JPT, May 1969:633-6381
    [12] Soliman M Y. Numerical model estimates fracture production increase. OGJ, Feb, 1986
    [13] 何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态.石油大学学报,1990,Vol 14,No4
    [14] Agarwal R G et al. Evaluation and performance prediction of low-permeability gas well stimulated by massive hydraulic fracturing. JPT, March 1979: 262-372
    [15] 张士诚.水力压裂参数对采收率影响的研究.低渗透油藏开发技术,1994年
    [16] 杨兆中.西南石油学院博士论文,1996
    
    [17]Geertsma J. The effect of fluid pressures decline on volumetric changes of porous rocks. Pet.Trans. AIME, 1957, 210: 331-340
    [18]Duncan JM, Chang CY. Non-linear analysis of stress and strain in solids, Journal of the soil mechanics and foundation division. ASCE, 1970, 96, SMS: 1629-1651
    [19]Van W, Knaap D. Nonlinear behavior Of elastic porous media. Petroleum Transcatios, AIME, 1959, 216: 179-187
    [20]Vermeer PA. A five-constant model unifying well established concepts: results of the international workshop on constitutive relations for soil. Netherlands, Grenoble Balkema, 1984
    [21]Wan RG, Chan DH, Kosar KM. A constitutive model for the effective stress-strain behavior of oil sand, the Journal of Canadian Petroleum Technology, 1991, 30(4): 89-98
    [22]Fung LSK, Buchanan L, Wan RH. Coupled geomechanical-thermal simulation for deformation heavy-oil reservoirs. Journal of Canadian Petroleum Technology, 1994, 33(4): 22-28
    [23]Vaziri HH. Coupled fluid flow and stress analysis of oil sands subject to heating. Journal of Canadian Petroleum Technology, 1988, 27(5): 84-91
    [24]Chalaturnyk RJ, Scott JD. Evaluation of reservoir properties from geomechanical test. Journal of Canadian Petroleum Technology, 1992, 31(5): 31-40
    [25]Morita N, Qray KE, Srouji FAA. Rock-property changes during reservoir compaction. SPE Formation evaluation, 1992, Sept.: 197-205.
    [26]Lorenz JC. Stress-sensitive reservoirs. JPT, Jan.1999: 61-63
    [27]Fung LSK. A coupled geomechanic-multiphase flow model for analysis of in situ recovery in cohesionless oil sands. Journal of Canadian Petroleum Technology, 1992, 31(6): 56-67
    [28]Samieh AM, Wong RCK. Deformation of Athabasca oil sand at low effective stresses under varying boundary conditions. Can. Geotech.J., 1997, 34: 985-990
    [29]Wong RCK. Swelling and softening behaviour of La Biche shale. Can.Geotech.J., 1998, 35: 206-221
    [30]Wong RCK, Barr WE, Kay PR. Stress-strain response of Cold Lake oil sands. Can.Geotech.J., 1993, 30: 220-234
    [36]Holt RM. Permeability reduction induced by a nonhydrostatic stress field. SPE 19595
    [3
    
    [37] Rhett SW, Teufel LW. Effect of reservoir stress path on compressibility and permeability of sandstones. SPE 24756
    [38] Warpinski JR, Teufel LW. Effect of stress and pressure on gas flow through naturally fractures. SPE 22666
    [39] Geertsma J. The effect of fluid pressure decline on volumetric change of porous rocks. TRANS AIME vol210, 1957:381-340
    [40] Fatt J.Compressibility of sandstone at low to moderate pressure. Bulletin of American Association of Petroleum Geologists. Vo142, No8, August, 1958
    [41] Hall H N. Compressibility of reservoir rocks. JPT, Vol5, No5, 1953
    [42] Fatt J & Davis D H. Reduction in permeability with overburden pressure. JPT, Dec. 1952
    [43] M Latchie A S et al. The effective compressibility of reservoir rocks its effect on permeability. JPT, vol10, No6, June 1958
    [44] Thomas R D & Ward D C. Effect over-burden pressure and water saturation on gas permeability of tight sandstone cores. FPT, Vol23, No 120, 1972
    [45] Ostensen R W. Micro-crack permeability in tight gas sandstone. SPE 10924
    [46] 单珏铭译.根据地质力学实验评价储层性质.天然气勘探与开发,1994,No3
    [47] 重庆建筑学院等编.岩石力学进展.重庆:重庆大学出版社,1990年10月
    [48] 李通林等编.矿山岩石力学.重庆:重庆大学出版社,1991
    [49] 华东水利学院.岩石力学.北京:水利电力出版社,1984
    [50] 赵阳生著.矿山岩石流体力学.北京:煤炭工业出版社,1994
    [51] 雷红光等.上覆岩层应力下储层物性参数的整理方法.新疆石油地质,Vol6,No2,1995
    [52] Hojka K & Dusseault M B. Analytical solution foe transient thermo-elastic field around a borehole during fluid injection into permeability media. JCPT, 1993(4): 49-57
    [53] 张树宝译.异常油田开发.北京:石油工业出版社,1987
    [54] 李世平等.岩石全应力.应变过程的渗透率-应变方程.岩石工程学报,1995(2)
    
    [55] 徐永福等.常温下砂岩的变形特征及其影响因素.岩土力学,1995(1)
    [56] 王明祥,钱七虎.颗粒介质的弹塑性动态本构关系研究.固体力学学报,1995(2)
    [57] 陈善雄,陈守义.非饱和土热湿耦合传输问题的数值解.岩土力学,1992,3(1)
    [58] 吴林高、姚迎.粘弹性越流含水层组三维渗流模型的数值解.同济大学学报,1995(3)
    [59] 葛家理主编.油气渗流力学.北京:石油工业出版社,1982
    [60] Biot MA. General theory of three-dimensional consolidation. J.Appl.Phys., 1941, 12: 155-164
    [61] Filho AP, Costa AMD, Ebecken NF. An analysis of hydraulic fracturing by the finite element method, in Awoboda. Numerical methods in Geomechanics, 1988, Innsbruck, Rotterdam
    [62] Vandamme LM, Roegiers JC. Poroelastieity in hydraulic fracturing simulations. JPT, 1990: 1199-1203
    [63] Ertekin T, Farouq SM. Numerical simulation of the compaction subsidence phenomina in a reservoir for two phase non-isothermal flow conditions. Proceedings of 3 rd Int. Conf. On Numerical Methods in Geomech. Aachen, 2 April 1979
    [64] Morgan K, Lewis RW, White IR. The mechanisms of ground surface subsidence above compacting reservoirs ans their analysis by finite element method. Appl.Math.Modeling, 1980, 4: 217-224
    [65] Segal P. Stress and subsidence resulting from subsurface fluid withdrawal in the Epicentral region of the 1983 coalinga earthquake. Journal of Geophysical research, 1985, 90(BS)BS: 6801-6816
    [66] Abdulraheem A, Zaman M, Roegiers JC. A finite element model for Ekofisk field subsidence. Journal of Petroleum Science and Engineering, 1994, 10: 299-310
    [67] Lewi RW, Schrefler BA. A finite element simulation of the subsidence of a gas reservoir undergoing a water drive. Finite elements Fluid, 1982, 4:179-199
    [68] Lewis RW, Roberts P J, Schrefler BA. Finite element modeling of two phase heat and fluid flow I deforming porous media. Transport porous media, 1989, 4: 319-334
    [69] Li XK. Finite element analysis for immiscible two-phase fluid flow in deforming porous media and an unconditionally stable staggered solution. Communications in Applied Numerical Methods, 1990, 6: 125-135
    [7
    
    [70] Li XK, Zienkiewicz OC, Xie YM. A numerical model for immiscible two phase fluid flow in aporous medium and its time domain solution. International Journal for Numerical Methods in Engineering, 1990, 30:1195-1212
    [71] Lewis RW, Schrefler BA. The finite element method in the deformation and consolidation of porous media. Chichester: Wiley,1987
    [72] Lewis RW, Sukirman Y. Finite element modeling of three phase flow in deforming saturated oil reservoirs. International Journal for Numerical and Analytical methods in Geomechanics, 1993, 17(5): 577-598
    [73] Sukirman YB, Lweis RW. Three dimensional fully coupled flow: consolidation modeling using finite element method. SPE 28755
    [74] Osorio JG, Chen HY. Numerical simulation of the impact of flow induced geomechanical response on the productivity of stress sensitive reservoirs. SPE 51929
    [75] Osorio JG, Teufel LW. A two domain, 3D,Fully coupled fluid-flow/Geomechanical Simulation model for reservoirs with stress sensitive mechanical and fluid flow properties. SPE/ISRM 47397
    [76] Gaudehus G. Finite elements in geomechanics. New York: John Wiley & Sons Itd, 1977
    [77] 孙钧,汪炳鉴.地下结构有限元解析.上海:同济大学出版社,1988
    [78] 竺润祥等.解非线性有限元问题的组合弧长法.西北工业大学学报,1984,2(9):291-300
    [79] Crisfield MA, Wills J. Solution strategies and softening materials. Comput. meths. Appl. Mech. Engrg., 1988, 66:267-289
    [80] 李元齐,沈祖炎.弧长控制类方法使用中若干问题的探讨与改进·计算力学学报,1998,15(4):414-421
    [81] Firoozabadi A, Hauge J. Capillary pressure in fractures porous media. JPT, 1990, June: 48-52
    [82] Tay F, Li B, Erahaghi I. Imbibition assisted two-phase flow in naturally fractured. SPE 24044
    [83] Conway PI, Damm M, Andersen PM. Full field dual porosity modeling of a complex fractured chalk oil reservoir subject to both gas and water injection. SPE 36931
    
    [84] Gilman JR, Kazemi H. Improve calculation for viscous and gravity displacement maxtrix blocks in dual porosity simulators. SPE 16010
    [85] Choi ES, Cheema T, Islam MR. A new dual porosity/dual permeability model with non-Darcian flow through fractures. Journal of Petroleum Science and Engineering, 1997, 7:331-344
    [86] Bai M, Roegiers JC. On the correlation of non-linear flow and linear transport with application to dual porosity modeling. Journal of Petroleum Science and Engineering, 1994, 11:63-72
    [87] Bai M, Ma QQ, Roegiers JC. A nonlinear dual-porosity model.Appl.Math.Modelling, 1994, 18, Nov.: 602-610
    [88] Bhatia KS, Advani SH, Lee JK. Finite element representation of two-phase fluid flow through a naturally fractured reservoir. SPE 19069, presented at the SPE Gas Technology Symposium held in Dallas, TX. June 7-9,1989
    [89] Louis C. Rock hydraulics. New York. Springer-Verlag, 1974
    [90] Gale JE.The effects of fracture type (induced versus natural) on the stress-fracture closure-fracture permeability relationships. Proceedings of 23rd Symposium on Rock Mechanics, Berkeley, California, 1982
    [91] 周维垣.高等岩石力学.北京:水利电力出版社,1990
    [92] 耿克勤.复杂岩基的渗流力学及其耦合分析研究以及工程应用.博士学位论文.北京:清华大学,1994
    [93] 张金才,刘天泉,张玉卓.裂隙岩体渗透特征研究.煤炭学报,1997,22(5):481-484
    [94] 速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究.岩土工程学报,1997,19(4):73-77
    [95] 陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报,1994,13(4):299-308
    [96] 李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程.岩土工程学报,1995,17(3):13-18
    [97] Minkoff SE, Stone CM, et al. Staggered in time coupling of reservoir flow simulation and geomechanieal deformation step 1-one wat coupling. SPE 51920
    [98] Koutsabeloulis NC, Hope SA. Coupled stress/fluid/thermal multiphase reservoir simulation studies incorporating rock mechanics. SPE/ISRM 47393
    [99] 冉启全.西南石油学院博士论文,1996年
    [100] 冉启全等.流固耦合多相多组分渗流数学模型的建立.中国海上油 气(地质),1996(3)
    [1
    
    [101] 冉启全等.流固耦合油藏数值模拟理论与方法研究.全国第五届渗流流体力学会议论文集,1996年9月
    [102] 冉启全等.用综合数值模拟方法预测油藏开采过程的应力分布.钻采工艺,1995(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700