用户名: 密码: 验证码:
油气储层多孔介质的变形理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以油气储层岩石这种特殊的多孔介质作为研究对象,利用实验研究和理论研究相结合,岩石力学、流体力学、渗流力学和油气田开发理论等多学科相结合,理论研究与实际应用相结合等方法,建立了一套完整的油气储层多孔介质的变形理论。
     在油气田开发过程中,储层多孔介质的变形为弹塑性变形,其变形又可包括本体变形和结构变形。影响储层多孔介质变形的主要因素有压力(包括侧限压力、上覆岩层压力、孔隙压力、井筒液柱压力等)、温度、流体的类型及特征等外部因素,还要受储层岩石的物质组成、单元体类型、颗粒的接触关系和排列方式以及胶结方式等内部因素的影响。在Terzaghi有效应力原理和其它修正的有效应力的基础上,提出了用有效应力来研究多孔介质的骨架应力,并结合储层多孔介质的变形机理,分析了多孔介质的本体有效应力和结构有效应力,以及多重孔隙介质的有效应力定律。
     利用先进的实验手段和方法,研究多孔介质变形对储层岩石孔隙特性、渗透特性以及流体饱和特性等的影响。研究表明,油气储层多孔介质的孔隙度、渗透率等物性参数是随着岩石受到的有效应力的增加而呈降低的趋势,并用数学方法描述了孔、渗、饱等特征与有效应力之间的拟合关系,其中还提出了考虑油气储层在实际地层条件时所受到的初始有效应力的影响。针对裂缝性储层所特有的变形特征,对裂缝性储层的应力敏感性及裂缝的闭合机理和规律进行了详细的研究。
     根据储层岩石渗透率与有效压力之间的变化关系,提出了用常用的指数关系来描述渗透率与生产压差之间的变化关系,以及描述多孔介质变形对储层岩石渗透率影响的渗透率变形系数;在此基础上研究储层多孔介质变形对油气渗流的影响,建立变形介质油气藏的渗流数学模型,研究了变形介质油气藏的试井分析方法。重点研究了低渗透变形介质油田考虑启动压力梯度的产能分析方法,并分析低渗透储层岩石的变形因生产压差的增加而增大对生产所造成的影响,得到了低渗透变形介质油藏的合理生产压差。
In this thesis, as a special porous medium, oil and gas reservoir's rock is a study object. By integrate experiment study with theory study; integrate rock mechanics, fluid mechanics, flow mechanics with exploitation theory of oil and gas field; and integrate theory with practice, a full deformation theory of oil and gas reservoir porous medium has been founded.In the exploitation of oil and gas field, the reservoir porous medium's deformation is elastic-plastic deformation; the Primary Deformation and the Structural Deformation are included. Pressure (Such as confining pressure, incumbency rock pressure, porosity pressure, well bore fluid column pressure, and so on), temperature and fluid's types are the mostly external factors for deformation of reservoir porous medium, and mass constitutes, unit's types, contact and arrangement relation of granula, cement mode are the interior factors for the deformation. Based on the Terzaghi effective stress theory and other modified effective stress, skeleton stress of porous medium has been studied by effective stress, and integrate reservoir porous medium's deformed mechanism, primary effective stress and structural effective pressure have been studied, and effective stress of multi-porous media also has been studied.Advanced experimental devices and methods, the reservoir rocks' porous characteristic have studied permeability and saturation characteristic of fluids about porous medium's deformation. The studies indicated that the porosity and permeability of oil and gas reservoir porous medium are decrease with increase of effective stress (or effective pressure), the relation between effective stress and porosity, permeability, saturation can been fitted by mathematical method, and primary effective stress about oil and gas reservoirs in the actual subterranean formation was been considered. Contrapose the fracture reservoirs' peculiar deformation characteristics, fracture's stress sensitivity, closure mechanism and closure law have been detail studied.Based on the relation between permeability of reservoir and effective stress, relation between permeability and drawdown pressure also could been fitted by index relation, and permeability deformed coefficient about porous medium's deformation was defined. Then
    
    the affect about oil and gas flow by deformation of reservoirs porous medium has been studied, flow mathematical models of deformed medium have been founded, and well test methods about deformed medium have been studied. For the peculiar characteristics of low-permeability deformed medium reservoirs, such as starting pressure gradient, productivity analysis method has been studied, and the affects about produce by reservoir deformed for increase of drawdown pressure have been analyzed, the reasonable drawdown pressure of the low-permeability deformed medium oil reservoir has been founded.
引文
[1] 陈顒.地壳岩石的力学性能,北京:地震出版社,1988;
    [2] 孙广忠.岩石结构力学,北京:科学出版社,1994;
    [3] 戈尔布洛夫AT.异常油田开发,北京:石油工业出版社,1987;
    [4] 何更生编,油层物理,北京:石油工业出版社,1994;
    [5] 罗蜇潭、王允诚编著,油气储集层孔隙结构,北京:科学出版社,1986;
    [6] 沈平平,油层物理实验技术,北京:石油工业出版社,1996;
    [7] 王允诚等编著,致密性油气储集层,地质出版社,1992;
    [8] 白矛、刘天泉编著,孔隙裂隙弹性理论及应用导论,北京:石油工业出版社,1999;
    [9] A.班恩、B.A.马克西莫夫等,岩石性质对地下液体渗流的影响,北京:石油工业出版社,1981;
    [10] 张绍槐,罗平亚等编著,保护储集层技术,北京:石油工业出版社,1993;
    [11] 葛家理主编,油气层渗流力学,石油工业出版社,1982;
    [12] 孔祥言编著,高等渗流力学,中国科学技术大学出版社,1999;
    [13] 葛家理、宁正福、刘月田、姚约东编著,现代渗流力学原理,北京:石油工业出版社,2001;
    [14] 重庆建筑工程学院建筑工程系编,岩石力学的进展,重庆大学出版社,1990;
    [15] 李通林等编,矿山岩石力学,重庆大学出版社,1991;
    [16] 华东水利学院等编,岩石力学,水利电力出版社,1984;
    [17] 赵阳升著,矿山岩石流体力学,煤炭工业出版社,1994;
    [18] 李先炜编著,岩体力学性质,煤炭工业出版社,1990;
    [19] 张维主编,世界著名科学家传记——力学家,北京:科学出版社,1995;
    [20] M. Latchie A. S., Hemstick R. A., Joung L. W., The effective compressibility of reservoir rock its effects on permeability. JPT, June, 1958 Vol. 10, No.6:49~51;
    [21] Dobrynin V. M. Effect of overburden pressure on some properties of sandstones, SPEJ, 1962(Dec.): 360~366;
    [22] R.D. Thomas and D. C. Ward, Effect of overburden Pressure and water saturation on gas permeability of night sandstone cores, J. Pet. Tech., 23, 120, Feb, 1972;
    [23] Jennings, J.B., Carroll, H.B., and Raible, C.J. The Relationship of Permeability to Confining Pressure in Low Permeability Rock, paper SPE/DOE 9870, presented at the 1981 SPE/DOE Symposium held in Denver, Colorado, May 27-29;
    
    [24] N.R. Warpinski and L.W., Determination of the effective-stress law for permeability and deformation in low-permeability rocks. SPE20572. 1990, 11-22;
    [25] Kikani J and Pedrosa O A JR. Perturbation analysis of stress-sensitive reservoirs. SPEFE, 1991, (Sept): 379-386;
    [26] Farpuhar R A, Smar B G D t. Stress sensitivity of low permeability sandstones from the rotliegendes sandstone, SPE26501, 1993(Oct.): 851-859;
    [27] Palmer, Ian & Mansoori, John, How Permeability Depends on Stress and Pore Pressure in Coalbeds: a New Model, SPE36737, presented at the 1996 SPE Annual Technical Conference and Exhibition, Denver, Colorado, U.S.A., Oct. 6-9;
    [28] Ruistuen, H., Teufel, L.W. and Rhett, D.W. Influence of Reservoir Stress Path on Deformation and Permeability of Weakly Cemented Sandstone Reservoir, SPE 36535, presented at the 1996 SPE Annual Technical Conference and Exhibition, Denver, Colorado, U.S.A., Oct. 6-9;
    [29] Lorenz, J.C., Stress-sensitive Reservoir, JPT (Jan. 1999) 61-63;
    [30] Hojka K., Dusseault M. B., Analytical solution for Transient Thermoelastic fields around a borehole during injection into permeable media. JCPT, 1993(4):49~57;
    [31] Vaziri H. H., Coupled fluid flow and stress analysis of oil sand subject to heating. JCPT, 1988(5):84~91;
    [32] Vairogs J., Hearn C. N., Dareing D. W., and Thoades V. W., Effect of rock stress on gas production from low-permeability reservoirs. JPT, 1971 (Sept): 1161-1167.
    [33] Vairogs J and Rhoades V W. Pressure transient tests in formation having stress-sensitive permeability. JPT, 1973, (Aug): 965-970;
    [34] Samaniego V and Cinco L H. Production rate decline in pressure-sensitive reservoirs. J. Can. Pet. Tech., 1980(July-Sept), 19, 75;
    [35] Ostensen, R.W. The Effect of Stress-dependent Permeability on Gas Production and Well Testing, SPEFE (June 1986)227-235;
    [36] Pedrosa OA JR. Pressure transient response in stress-sensitive formations, SPE15115, California Regional Meeting, Oakland: 2-1 April 1986. 203-215;
    [37] Richard G W., A constitutive model for the effective stress-strain behavior of oil sands, JCPT, 1991(1): 87-96;
    
    [38] Zhang M Y and Ambastha A K. New insights in pressure-transient analysis for stress-sensitive reservoirs. SPE28420, SPE 69th Annual Technical Conference and Exhibition. New Orleans, LA,U. S. A. : 25-28 September 1994, 617-627;
    [39] M. Kelly, B. Mohamed, and R. L. Lee, Net-stress/permeability effect on gas non-darcy flow. SPE38038, 1997(April): 191-202;
    [40] Osorio J. G, Chen H. Y. and Teufel L. W., Numerical simulation of the impact of floe-induced geomechanical response on the productivity of stress-sensitive reservoirs. SPE51929, 1999(Feb.): 14-17
    [41] Claudia L. Pinzon, Her-Yuan Chen, and Lawrence W., Numerical well test analysis of stress-sensitive reservoirs. SPE71034, 2001, (may): 1-10;
    [42] L. Y. Chin, Rajagopal Raghavan and L. K. Thomas, Fuly coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. SPE Journal 5(1) March 2000: 32-45;
    [43] L. Y. Chin, R. Raghavan and L. K. Thomas, Fully coupled analysis of well responses in stress-sensitive reservoirs. SPE Reservoir Eval. & Eng. 3(5), October 2000: 435-443;
    [44] Settari A., and Mourits F. M., A coupled reservoir and geomechanical simulation system. SPEJ, 1998(Sept.): 219-226;
    [45] Fung L. S. A coupled geomechanical multiphase flow model for analysis of in-situ recovery in cohesionless oil sands. JCPT, 1992, 31(6):56~66;
    [46] Gatmiri B., Delage P., Anew formulation of fully coupled thermalhydro-mechanical behavior of saturated porous media-numerical approach. Int. J. Numer. Anal. Methods Geomech., 1997,21(3): 199-225;
    [47] C. D. Ward, K. Coghill, M. D. Broussard. Pore- and fracture-pressure determinations: effectives-stress approach. J. Pet. Tech., 1995, 10(3):134~143;
    [48] Yunting Duan, Yingfeng Meng, Pingya Luo and Wangyong Su, Stress Sensitivity of naturally fractured-porous reservoir with Dual-porosity. SPE50909. 1998, (Nov.): 295-302;
    [49] M. Jin, SPE, J. Somerville, SPE, and B.G.D. Sm-art. Coupled Reservoir Simulation Applied to the Management of Production Induced Stress-Sensitivity. SPE 64790, presented at the 2000 SPE International Oil and Gas Conference and Exhibition, China. 7-10 November;
    
    [50] Bandis S. C., A. C. Lumsdem and N. R. Barton, Fundamentals of rock joint deformation, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 1983, Vol. 20(6):249~268;
    [51] Gale J. E., The effects of fracture type (induced versus natural) on the stress-frcture closure-fracture permeability relationships, Issues in rock mechanics 23~(rd) symposium on rock mechanics, 1982, 290~298
    [52] Raven K. G. and J. E. Gale, Water flow in a natural fracture, Int. J. Rock Mech. Min. Sci. and Geomech. Abtr., 1985, Vol. 22(4): 251~261;
    [53] Yamada K., N. Takeda, J. Kagami and T. Naoi, Surface density of asperities and real distribution of asperity heights on rubbed surfaces, Wear, 1978, Vol. 47: 5~20;
    [54] Yamada K., N. Takeda, J. Kagami and T. Naoi, Mechanisms of elastic contact and friction between rough surface, Wear, 1978, Vol. 48: 15~34;
    [55] Walsh J. B. and M. A. Grosenbaugh, A new model for analyzing the effect of fractures on compressibility, J. Geophy. Res., 1979, Vol. 84, B7: 3532~3536;
    [56] Swan G., Determination of stiffness and other joint properties from roughness messurements, Rock Mech. Rock Engng., 1983, Vol. 10:19~38;
    [57] Browns S. R. and C. H. Scholz, Closure of random elastic surface in contact, J. Geophy. Res., 1985, vol. 90, B: 4939~4948;
    [58] Dlsson W. A. and S. R. Brown, Hydromechanical response of a fracture undergoing compression and shear, Int. J. Rock Mech. Min. Sci. and Geomech. Abtr., 1993, Vol. 30(7): 845~851;
    [59] Yoshioka N. and C. H. Scholz, Elastic properties of contacting surfaces under normal and shear loads, 1. theory, J. Geophy. Res., 1989, Vol. 94, B12: 17681~17690;
    [60] Yoshioka N. and C. H. Scholz, Elastic properties of contacting surfaces under normal and shear loads, 2. comparison of theory with experiment, J. Geophy. Res., 1989, Vol. 94, B12: 17691~17700;
    [61] Yoshioka N., Elastic behavior of contacting surfaces under normal loads: A computer simulation using three-dimensional surface topographies, J. Geophy. Res., 1994, Vol. 99, B8: 15549~15560;
    [62] 张琰、崔迎春,低渗气藏应力敏感性及评价方法的研究,现代地质,2001年12月,第15卷第4期,453~457;
    [63] 阮敏、王连刚,低渗透油田开发与压敏效应,石油学报,2002年5月第23卷第3期,73~76;
    
    [64] 阮敏、何秋轩,岩石渗透率的压力敏感性,低渗透油气田,1999年4月第4卷第2期,10~13;
    [65] 刘建军、刘先贵,有效压力对低渗透多孔介质孔隙度、渗透率的影响,地质力学学报,2001年3月第7卷第1期,41~44;
    [66] 张新红,秦积舜,低渗岩心物性参数与应力关系的实验研究,石油大学学报(自然科学版)2001年第25卷第4期,56~58;
    [67] 迟善武、任荣亭,岩石孔隙体积压缩系数测量仪的设计,石油仪器,1997年4月,第11卷第2期,23~25;
    [68] 吴凡、孙黎娟、何江,孔隙度、渗透率与净覆压的规律研究和应用,西南石油学院学报,1999年11月,第21卷第4期,23~25;
    [69] 周远田,岩石渗透率与其应力的关系及应用,矿物岩石,1999年3月,第19卷第1期,33~38;
    [70] 周远田,岩石应力与渗透率的关系,岩石力学与工程学报,1998年8月,第17卷第4期,393~399;
    [71] 陈祖安、伍向阳、孙德明、杨伟,砂岩渗透率随净压力变化的关系研究,岩石力学与工程学报,1995年6月,155~159;
    [72] 王桂花、朱彩虹等,含水饱和度对岩石力学参数影响的实验研究,石油钻探技术,2001年8月,第29卷第4期,59~61;
    [73] 路保平、张传进、鲍洪志,油气开发过程中岩石力学性质变化规律实验研究,岩石力学与工程学报,2000年6月,第19卷增刊,878~881;
    [74] 杨英华主编,土力学,北京:地质出版社,1987.5;
    [75] 徐献之、李培超、李传亮,多孔介质有效应力原理研究,力学与实践,2001年第23卷第4期,42~45;
    [76] 李传亮,孔祥言等,多孔介质的双重有效应力,自然杂志,1999,21(5);
    [77] 陈勉、陈至达,多重孔隙介质的有效应力定律,应用数学和力学,1999年11月,第20卷第11期;
    [78] 李传亮,多孔介质应力关系方程,应用基础与工程科学学报,1998年6月,第6卷第2期,145~147
    [79] 严恕荪、张淑琴,三轴压力下气体在岩石中渗透率的测定,天然气工业,2000年7月,第20卷第4期,100~101;
    [80] 贾军、唐培琴,三轴应力对煤层渗透性的影响,探矿工程,1994年第1期,43~47;
    
    [81] 路保平、张传进,岩石力学在油气开发中的应用前景分析,石油钻探技术,2000年2月第28卷第1期,7~9;
    [82] 彭苏萍、屈洪亮、罗立平等,沉积岩石全应力应变过程的渗透性试验研究,煤炭学报,2000年4月,第25卷第2期,113~116;
    [83] 路保平、张传进等,岩石力学三轴应力测试系统及其应用,石油钻探技术,1995年12月,第23卷第1期,42~46;(19与20之间)
    [84] 沈洪俊、高海鹰、夏颂佑,应力作用下裂隙岩体渗流特性的试验研究,长江科学院院报,1998年6月,第15卷第3期,35~39;
    [85] 张金才、张玉卓,应力对裂隙岩体渗流影响的研究,岩土工程学报,1998年3月,第20卷第2期,19~22;
    [86] 苏玉亮、栾志安、张永高,变形介质油藏开发特征,石油学报,2000年3月,第21卷第2期,51~55;
    [87] 宋付权、刘慈群,变形介质油藏试井分析方法,油气井测试,1998年6月,第7卷第2期,1~5;
    [88] 尹洪军、何应付,变形介质油藏渗流规律和压力特征分析,水动力学研究与进展,2002年10月,第17卷第5期,538~546。
    [89] 宋付权、刘慈群,变形介质油藏压力产量分析方法,石油勘探与开发,2000年2月,第27卷第1期,57~59;
    [90] 宋付权,变形介质低渗透油藏的产能分析,特种油气藏,2002年8月,第9卷第4期,33~35;
    [91] 姚约东、葛家理、魏俊之,低渗透油层渗流规律的研究,石油勘探与开发,2001年8月,第28卷第4期,73~75;
    [92] 范学平,李秀升,张士诚,低渗透变形介质油气藏渗流流固耦合研究,新疆石油地质,2001年2月,第22卷第1期,75~78;
    [93] 薛强、梁冰,李宏艳,可压缩流体渗流的流固耦合问题数值模拟研究,地下空间,2001年12月,第21卷第5期,386~391;
    [94] 刘建军、刘先贵,煤储层流固耦合渗流的数学模型,焦作工学院学报,1999年11月,第18卷第6期,397~401;
    [95] 熊伟、田根林等,变形介质多相流动流固耦合数学模型,水动力学研究与进展,2002年12月,A辑第17卷第6期;
    
    [96] 周志军、刘永建等,低渗透储层流固耦合渗流理论模型,大庆石油学院学报,2002年9月,第26卷第3期;
    [97] 刘建军、张盛宗等,裂缝性低渗透油藏流—固耦合理论与数值模拟,力学学报,2002年9月,第34卷第5期;
    [98] 刘建军、刘先贵等,低渗透储层流-固耦合渗流规律的研究,岩石力学与工程学报,2002年1月,第21卷第1期,88~92;
    [99] 王自明、杜志敏,弹性油藏中多相渗流的流—固—热耦合数学模型,大庆石油地质与开发,2003年2月,第22卷第1期;
    [100] 李治平,变形介质储层井眼周围应力与渗流耦合理论及应用研究,西南石油学院博士学位论文,1998年6月;
    [101] 张仕强,裂缝形态描述及力学、流动特性分析,西南石油学院硕士学位论文,1997年6月;
    [102] 李传亮,多孔介质的有效应力原理及应用研究,中国科技大学博士学位论文,1999年6月;
    [103] 杨满平、李治平、李允、王正茂,油气储层多孔介质的变形理论及实验研究,天然气工业,2003年第6期;
    [104] 杨满平、王正茂、李治平,变形介质气藏气井稳定产能方程及无阻流量,试采技术,2003年第3期;
    [105] 杨满平、李治平、王正茂、彭彩珍,变形介质气藏渗流理论研究的发展及研究意义,西南石油学院学报,2003年第6期;
    [106] 杨满平、王正茂、李治平,影响变形介质气藏储层渗透率变化的主要因素,天然气地球科学,2003年第5期;
    [107] 杨满平、李治平、王正茂,油气层渗透率变化影响因素研究,特种油气藏,2003年第6期。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700