用户名: 密码: 验证码:
广西大厂锡多金属矿田分散元素矿床地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广西大厂锡多金属矿田是我国著名的锡多金属生产基地之一,其伴生分散元素种类之多,储量之大更为世界罕见。论文以大厂锡多金属矿田中富含分散元素的若干矿床为研究对象,在系统野外地质工作的基础上,运用化学分析、等离子质谱分析、电子探针等手段对矿石、容矿围岩和单矿物等开展了元素地球化学、稳定同位素地球化学以及分散元素分布特征和赋存状态等方面的综合研究,对区内分散元素铟、镉、镓、锗的赋存状态和富集规律及锡多金属矿的成矿条件进行了较为系统的总结。
     采用ICP-MS对闪锌矿和矿石中分散元素及微量元素的含量进行测定,查明了大厂锡多金属矿田分散元素In、Cd、Ga、Ge主要以类质同象的形式赋存于闪锌矿中,Ga可能还存在显微吸附的形式。
     发现大厂锡多金属矿田闪锌矿中Fe的含量只是影响其颜色的重要元素。通过采用ICP-MS精确测定不同颜色闪锌矿中微量元素的含量,确定Fe含量并非闪锌矿颜色的唯一决定元素,镉在深色闪锌矿中也可以得到超常富集。
     通过研究铟、镉、镓的地球化学行为,在大厂锡多金属矿田不同矿体、不同矿石中分布特征,初步总结了铟、镉、镓在大厂锡多金属矿田的富集规律,并指出了分散元素富集的有利部位。
     提出了大厂锡多金属矿田各个矿床是同一岩浆-热构造事件不同阶段的产物。在考察龙箱盖黑云母花岗岩体与大厂锡多金属矿田在空间上紧密接触关系的基础上,根据矿田的成岩成矿时代,龙箱盖花岗岩体、大厂锡多金属矿田各矿床矿石的微量元素和稀土元素的组成特征,结合岩石及各种矿化类型矿石硫化物S、Pb同位素测试结果,表明大厂锡多金属矿田不同类型矿体硫的主要来源是相同的,铅的来源也是基本一致的,同位素值的变化与成矿过程密切相关,呈现出与成矿流体自下而上、自中心向两侧迁移中相同的演化过程。
     运用多因复成理论,通过对区域地质背景、矿田地质特征、矿床地球化学等方面的研究,探讨地质构造与容矿围岩对成矿的制约,认为大厂锡多金属矿田在成因上为岩浆叠加改造混合热液多因复成型。
The well-known Dachang tin-polymetallic ore field in Guangxi province is particularly rare in the world due to abundant dispersed elements and huge reserve. In this paper, based on the field study, a comprehensive investigation was carried out on the element geochemistry, stable isotopes, and distribution and occurrence state of dispersed elements in ores, ore-bearing wall rocks and mineral separates in this area, using chemical analysis, inductively coupled plasma-mass spectrometry (ICP-MS) and electron microprobe. In addition, a systematic summarization was made on the occurrence state and enrichment regulation of dispersed elements (e.g. In, Cd, Ga and Ge), and the genesis of Tin-polymetallic deposits.
     The analysis on concentrations of dispersed elements and trace elements in sphalerite and ores was also conducted by using ICP-MS, revealing that the dispersed elements (i.e. In, Cd, Ga and Ge) in the Dachang tin-polymetallic ore field mainly exist in sphalerite as isomorphism, and Ga possibly enters the crystal lattice by micro-absorption.
     The amount of Fe in sphalerite simply takes an important effect on the color of the deposits. However, by the accurate ICP-MS testing on the amount of trace elements in sphalerite with different colors, we ensure that the amount of Fe is not the only determinative factor for the color of sphalerite and Ge can be extraordinarily enriched in dark sphalerite.
     A preliminary summary on the enrichment regulation for In, Ge and Ga in the Dachang tin-polymetallic ore field is given and potentially favorable locations for the enrichment of dispersed elements are pointed out as well, on the basis of the study of geochemical behaviour of In, Ge and Ga and the distribution features of such elements in different ores and ore bodies.
     The mineral deposits in the Dachang tin-polymetallic ore field are considered to represent products of the same tectonic-magmatic thermal event but at different stages. In combination with the close spatial association of the Longxianggai biotite granite and Dachang tin-polymetallic ore field, the formation ages of rocks and mineral deposits, and the characteristics of trace and rare-earth elements in the Longxianggai granite and ores from the mineral deposits, the sulfur and lead isotopic analyses on sulfides in the rocks and ores of different mineralization types reveal that sulfur in those ore bodies of different types comes from the same source as well as lead, and that the isotopic variation trend of those mineral deposits is intimately related to the ore-forming process, similar to that of the ore-forming fluid migrating from the bottom to the top and from the center to the sides.
     Based on the polygenetic compound theory, in combination with the study of regional geology, the geological characteristics of the ore field and mineral deposit geochemistry, this study discusses the constraint from geological structures and ore-bearing wall rocks on the mineralization and presents that the Dachang tin-polymetallic ore field genetically belongs to polygenetic compound type relevant to magmatic-hydrothermal superimposition and modification.
引文
[1]涂光炽,高振敏,胡瑞忠,等.分散元素地球化学及成矿机制[M].北京:地质出版社,2004:1-407
    [2]Percival T J,Radtke A S.Thallium in disseminated replacement gold deposits of the Carlin-type A preliminary report[J].Neues Jb Miner,1993,166(1):67-75
    [3]Jankovic S,Jelenkovic R.Thallium mineralization in the Allchar Sb-As-Tl-Au deposit[J].Neues Jb Miner,1994,167(2):283-297
    [4]Wilson J R,Sengupta P K,Robinson P D,et al.Fangite T13AsS4 A New thallium arsenic sulfosalt from the Mercur Au deposit Utah and revised optical-data for Gillulyte[J].Am Mineral,1993,78(9-10):1096-1103
    [5]Sheppard S,Walshe J L,Pooley G D.Noncarbonate skarn like Au-Bi-Te mineralization Lucky Draw New South Wales Australia[J].Economy Geology Bullten Society,1995,90(6):1553-1569
    [6]Poutiainen M,Gronholm P.Hydrothermal fluid evolution of the Paleoproterozoic Kutemajarvi gold telluride deposit southwest Finland[J].Economy Geology Bullten Society,1996,91(8):1335-1353
    [7]钱汉东,陈武,谢家东.碲矿物综述[J].高校地质学报,2000,6(2):179-187
    [8]Bebie J,Seward T M,Hovey J K,Spectrophotometric determination of the stability of thallium chloride complexes in aqueous solution up to 200 degrees[J].Geochim Cosmochim Acta,1998,62(90):1643-1651
    [9]Simon G,Kesler S E,Essene E J.Phase relations among selenides sulfides tellurides and oxides2 Applications to selenide-bearing ord deposits[J].Economy Geology Bullten Society,1997,92(4):468-484
    [10]Mcphail D C,Thermodynamic properties of aqueous tellurium species between 25-degree-C and 350-degree-C[J].Geochim Cosmochim Acta,1995,59(5):851-866
    [11]Zhang X M,Spry P G.Calculated stability of aqueous tellurium species,calaverite and hessite at elevated-temperatures[J].Economy Geology Bullten Society,1994,89(5):1153-1166
    [12]Large R R,McGoldrick P J.Lithogeochemical halos and geochemical vectors to stratiform sediment hosted Zn-Pb-Ag deposits Lady Loretta Deposit Queensland[J].Geochem Explor,1998,63(1):37-56
    [13]陈毓川,毛景文等.四川大水沟碲(金)矿床地质和地球化学[M].北京:原子能出版社,1996:121-131
    [14]曹志敏,温春齐,李保华,等.首例独立碲矿床成因探讨[J].中国科学(B 辑),1995,25(6):647-654
    [15]骆耀南,曹志敏,温春齐,等.大水沟独立碲矿床[M].成都:西南交通大学出版社,1996:1-160
    [16]宋成祖.鄂西南渔塘坝沉积型硒矿化区概况[J].矿床地质,1989,8(3):85-91
    [17]王鸿发,李均权.湖北恩施双河硒矿矿床地质特征[J].湖北地矿,1996,10(2):10-21
    [18]陈代演.红铊矿在我国的发现和研究[J].矿物学报,1989,9(2):47-53
    [19]叶绪孙,潘其云.广西南丹大厂锡多金属矿田发现史[J].广西地质,1994,7(1):85-94
    [20]李锡林,章振根.大厂锡多金属矿田分散元素的分布特征及地球化学[J].地质与勘探,1981,(7):21-27
    [21]周卫宁,傅金宝,李达明.广西大厂铜坑-长坡矿区闪锌矿的标型特征研究[J].矿产与地质,1987,1(4):40-47
    [22]卜国基.浅谈铟、镉在大厂锡多金属矿田的分布及综合回收前景[J].广西地质,2000,13(1):37-40
    [23]陈毓川,黄民智,徐钰,等.大厂锡矿地质[M].北京:地质出版社,1993:26-47
    [24]陈毓川,王登红.广西大厂层状花岗质岩石地质、地球化学特征及成因初探[J].地质论评,1996,(3):228-240.
    [25]涂光炽.锡和铅锌成矿作用的若干问题[J].地质与勘探,1984,(3):3-10.
    [26]高计元.大厂锡石多金属硫化物矿床铅同位素演化及其矿床成因的意义[J].地质地球化学,1999,27(2):38-43.
    [27]张哲儒,白振华,章振根,严云秀.大厂锡多金属矿田成矿条件及硫同位素体系的热力学分析[J].地球化学,1989,(3):79-88.
    [28]黄有德,蔡宏渊,卢建春.中国南部大陆锡矿成矿特征[J].矿产与地质,1988,2(1):32-39
    [29]韩发,R W哈钦森.大厂锡矿床-一个喷气-沉积型锡矿床[J].地学前缘,1994,1(3-4):233-235
    [30]韩发,R W.哈钦森.大厂锡矿床成因综合分析及成矿模式[J].中国地质科学院院报,1991,(1):61-80
    [31]雷良奇.大厂长坡锡多金属矿床成因刍议[J].矿床地质,1986,5(3):87-96
    [32]雷良奇.广西大厂锡多金属矿田长坡—铜坑超大型锡—多金属矿床矿石组构与矿床成因[J].广西地质,1991,(2):19-28
    [33]雷良奇,曾允孚.热水沉积和岩浆气液叠加与大厂超大型锡-多金属矿床[J].地球化学,1993,(03):252-260
    [34]陈毓川,黄民智,徐珏,等.大厂锡石硫化物多金属矿带地质特征及成矿系列[J].地质学报,1985,59(3):228-240.
    [35]陈毓川,黄民智,徐珏,等.大厂锡矿地质.北京:地质出版社,1993:112-138
    [36]章振根,李锡林,陈国玺.广西某矿田磁黄铁矿的研究及其区别特征[J].地球化学,1976,(1):54-63
    [37]张平.长坡锡矿床成矿规律与隐伏矿体的找矿勘探[J].地质与勘探,1983,(3):30-34.
    [38]叶绪孙.大厂锡多金属矿田成矿规律与成矿预测[J].地质与勘探,1985,(5):1-7.
    [39]梁珍庭,苏登岸.广西大厂锡矿田成矿模式[J].广西地质,1985,2(1):1-11
    [40]Fu M,Changkakoti A,Krouse H R,Gray J,Kwak T.An oxygen,hydrogen,sulfur,and carbon isotope study of carbonate—replacement(skarn)tin deposits of the Dachang tin field,China[J].Economic Geology,1991,86(6):1683-1703.
    [41]蔡宏渊,张国林.试论广西大厂锡多金属矿床海底火山热泉(喷气)成矿作用[J].矿产地质研究院学报,1983,1(4):13-21
    [42]韩发,赵汝松,沈建忠,Hutchinson,RW.大厂锡多金属矿床地质及成因[M].北京:地质出版社,1997:65-157
    [43]陈骏.论华南层控锡矿的地质特征与形成机制[J].地质论评,1988,34(6):524-531.
    [44]Lattanzi P,Corazza M,Corsini F,Tanelli G.Sulfide mineralogy in the polymetallic cassiterite deposits ofDachang,P.R.China[J].Mineralium deposita,1989,24(8):141-147.
    [45]陈洪德,曾允浮,李孝全.丹池晚古生代盆地的沉积和构造演化[J].沉积学报,1989,7(4):85-96.
    [46]曾允浮,刘文均.华南右江盆地沉积构造演化[J].地质学报,1995,69(2):113-124
    [47]徐钰.广西丹池地区矿田构造[M].北京:地质出版社,1988:85-96
    [48]孙德梅,刘心铸,彭聪,等.应用重磁资料研究广西芒场-大厂成矿带的地质构造及隐伏岩体预测[J].中国地质科学院矿床地质研究所所刊,1994,1(1):120-138
    [49]蔡明海,何龙清,刘国庆,等.广西大厂锡矿田侵入岩SHRIMP U-Pb年龄及其意义[J].地质论评,2006,52(3):309-413.
    [50]曾允孚,刘文均,陈洪德,等.华南右江复合盆地的沉积构造演化[J].地质学报,1995,69(2):113-124
    [51]蔡明海,梁婷,吴德成,等.广西丹池成矿带构造特征及其控矿作用[J].地质与勘探,2004,40(6):5-10
    [52]广西壮族自治区区域地质志[M].北京:地质出版社,1985:57-181
    [53]曾允孚,刘文均,陈洪德,等.右江复合盆地的沉积特征及其构造演化[J].广西地质,992,(4):1-14
    [54]燕守勋,蔺启忠,黄晓霞,等.谈调整构造[J].地质科学,1997,32(2):146-155
    [55]郭福祥.华南“印支运动”的性质[J].云南地质,1992,11(2):169-180
    [56]郭福祥.关于华南东部的印支运动[J].桂林工学院学报,1998,(4):10-19
    [57]万天丰.中国中、新生代板内变形与构造应力场[J].地质力学学报,1996,(3):19-20
    [58]Carter A,Roques D,Bristow C,et al.Understanding Mesozoic accretion in south-east Asia:significance of Triassic thermotectonism(Indosinian orogeny)in vietnam[J].Geology,2001,29(9):211-214
    [59]彭少梅,伍广宇.吴川—四会断裂带的构造演化与金矿化的关系[J].黄金学报,1994,(2):109-115
    [60]邓希光,陈志刚,李献华,等.桂东南地区大容山—十万大山花岗岩带SHRIMP 锆石U-Pb定年[J].地质论评,2004,50(4):426-432
    [61]郜兆典.大厂锡多金属矿床成矿模式及找矿远景[J].广西地质,2002,15(3):25-32
    [62]徐钰,王龙生.大厂锡多金属矿床的同生沉积构造分析与成矿[J].矿床地质,1994,13(Z1):103-105
    [63]蔡宏渊,张国林.广西大厂隐伏花岗岩体发育特征及其含矿性评价[J].广西地质,1986,(4):1-11
    [64]李孝全,刘文均,郑荣才.钦防褶皱带的形成及其地质影响[J].广西地质,1994,(1):15-25
    [65]王思源.芒场矿田锡多金属成矿构造解析[J].中国地质大学学报,1990,(4):421-430
    [66]裴荣富,吴良士,熊群尧,等.中国特大型矿床形成的地质背景和预测研究[M].北京:地质出版社,1996:235-287
    [67]耿明山,刘自力.广西芒场锡多金属矿隐伏岩体特征及含矿性[J].矿产与地质,1998,12(6):51-58
    [68]蔡明海,梁婷,吴德成,等.广西大厂锡多金属矿田花岗岩地球化学特征及其构造环境[J].地质科技情报,2004,23(2):57-62
    [69]Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation ofgraniticrocks[J].Petrol,1984,25(4):956-983.
    [70]Harris N B W,Pearce J A,Tindle A G.Geochemical characteristics of collision-zone magmatism[J].Collision Tectonics Geol Soc Lond Spec Publ.,1986,19(5):67-81.
    [71]Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geol.Soc.Am.Bull,1989,101(3):635-643.
    [72]吴泰然.花岗岩及其形成的大地构造环境[J].北京大学学报,1995,41(3):358-365
    [73]李昌年.构造岩浆判别的地球化学方法及其讨论[J].地质科技情报,1992,13(3):73-78
    [74]Wood D A,Joron J L,Treuil M.A re-appraisal of the use of trace elements to classify and discriminate between magmaseries erupted in different tectonic settings [J].Earth Planet Science Lett,1979,45(45):326-336
    [75]Wedepohl K H.Chemical composition and fractionation of thecontinental crust[J].Geologische Rundschau,1991,80(8):207-223.
    [76]黎彤.化学元素的地球丰度[J].地球化学,1976,(03):167-174
    [77]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984:1-517
    [78]李锡林,赵汝松.大厂锡多金属矿田矿物学[M].北京:科学出版社,1994:21-57
    [79]王濮.系统矿物学[M].北京:地质出版社,1989:89-112
    [80]Szymanski J T.The Crystal structure of cernyite,Cu2CdSnS4,A cadmium analogue of stannite[J].Canadian Mineralogist,1978,116(9):147-151
    [81]Pattrick Richard A D.Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum,Pethshire,Scotland[J].Minralogical magazine,1978,42(2):286-288
    [82]Vlasov K A.Geochemistry and mineralogy of rare elements and genetic types of their deposits[J]Jeruysalem,Israel Program for Scientific Translations,1966,1(3):688
    [83]叶霖,潘自平,李朝阳,等.镉的地球化学研究现状及展望[J].岩石矿物学杂志,2005,24(4):339-348
    [84]Schwartz M.O.Cadmium in zinc deposits:Economic geology of appolluting element[J].International Geology Review,2000,42(9):445-469
    [85]Kamana A.F,Levequw J,Friedrich G.and Haack U.Lead isotopes of the carbonate-hosted Kabwe,Tsumeb,and Kipushi Pb-Zn-Cu Sulphide deposits in relation to Pan Afican orogensis in the Damaran-Lu? Lian Fold Belt of Central Africal[J].Mineralium Deposita,1999,34(10):273-283
    [86]Chetty D.,Ffimmel H E.The role of evaporties in the genesis of base metal sulphide materialization in the Northern Platform of the Pan-Africa Damara Balt,Namibia:Geochemical and fluid inclusion evidence from carbonate wall rock alteration[J].Mineralium Deposota,2000,35(6):364-376
    [87]Cameron A G W.Abundance of the elements in solar system[J].Space Science Review,1973,15(2):121-146
    [88]龙永珍.桂西铝多金属矿矿床地质地球化学特征及综合利用研究[D].长沙:中南大学博士论文,2003:1-145
    [89]Conzemius,F J.Elementary partitioning in fie ash depositories and materiall balances for a coal burring facility by spark source mass spectrometry[J].Environment Science Technology,1984,18(4):12-18
    [90]Zheng Fang,Gesser H D.,recovery of gallium from coal fly ash[J].Hydrometallurgy,1996,41(8):187-200.
    [91]刘中凡,杜雅君.我国铝土矿资源综合分析[J].轻金属,2000,(12):8-12
    [92]刘平.五论贵州之铝土矿-黔中-川南成矿带铝土矿成矿岩系[J].贵州地质,1995,12(3):185-203
    [93]陈永享,王道德.陨石中Ge的宇宙地球化学[J].地质地球化学,1993,19(3):57-61
    [94]胡瑞忠,苏文超,戚华文,等.锗的地球化学、赋存状态和成矿作用[J].矿物岩石 地球化学通报,2000,19(4):215-217
    [95]庄汉平,卢家烂,傅家谟,等.临沧超大型锗矿床锗赋存状态研究[J].中国科学(D 辑),1998,28(s1):37-42
    [96]戚华文,胡瑞忠,苏文超,等.陆相热水沉积成因硅质岩与超大型锗矿床的成因-以临沧锗矿床为例[J].中国科学(D辑),2003,33(3):236-246
    [97]卜国基.大厂锡多金属矿田西矿带赋矿地层的地球化学特征与成矿关系[J].采矿技术,2001,1(3):1-4
    [98]刘宝珺,沉积岩岩石学[M].北京:地质出版社,1980:1-284
    [99]戴塔根,龚铃兰,张起钻.应用地球化学[M].长沙:中南大学出版社,2005:1-197
    [100]牟保磊.元素地球化学[M].北京:北京大学出版社,1999:1-387
    [101]叶绪孙,严云秀,何海洲.广西大厂超大型锡矿床成矿条件[M].北京:冶金工业出版社,1996:97-125
    [102]张乾,朱笑青,高振敏,等.中国分散元素富集与成矿研究新进展[J].矿物岩石地球化学通报,2005,24(4):342-349
    [103]陈丰.矿物颜色的本质[J].地质地球化学,1979,5(4):10.
    [104]刘铁庚.闪锌矿的颜色、成分和硫同位素之间的密切关系[J].矿物学报,1994,14(2):199-205
    [105]李迪恩,彭明生.闪锌矿的吸收光谱和颜色的本质[J].矿物学报,1990,10(1):29-34.
    [106]Schwartz M O.Cadmium in zinc deposits:Economic geology of apolluting element.International Geology Review,2000,42(7):445-469
    [107]张声炎,吴健民.湘南粤北铅锌矿床某些矿物微量元素特征[J].矿产与地质,1985,(4):70-80
    [108]曾永超,黄书俊,贾国相,等.岩浆热液型和层控型铅锌矿床中某些金属矿物的特征元素及其地质意义[J].地质与勘探,1985,21(8):28-33
    [109]Michard A,Albarede F,Michard G,et al.Rare earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field[J].Nature,1983,30(3):795-797
    [110]Mills R,Elderfield H.Rare earth element geochemistry of hydrothermal deposits from the TAG Mount 26° N mid-Atlantic Ridge[J].Geochim Cosmochim Acta, 1995,59(17):3511-3524
    [111]Klinhammer G P,Elderfield H,Mitra A.Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-oceanridges[J].Geochim Cosmochim Acta,1994,58(23):5105-5113
    [112]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997:1-238
    [113]王中刚.稀土元素地球化学[M].北京:科学出版社,1989:1-535
    [114]Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Econ Geol,1972,67(3):551-579
    [115]Ohmoto H,Kaiser C J,Geer K A.Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits In H K Herbert and S E Ho Stable isotopes and Fluid Processes in Mineralisation[J].Geology Department University Extens,University of Western Australia,1990,23(2):70-120
    [116]徐文炘.我国锡矿床的同位素地球化学研究[J].矿产与地质,1995,45(1):1-11
    [117]冼柏琪.试论广西锡矿的成矿条件与分布规律[J].地质学报,1984,58(1):50-61
    [118]张哲儒,白振华,章振根,等.大厂锡多金属矿田成矿条件及硫同位素体系的热力学分析[J].地球化学,1989,18(3):79-88.
    [119]高计元.大厂锡石多金属硫化物矿床铅同位素演化及其矿床成因的意义[J].地质地球化学,1999,27(2):38-43.
    [120]Ohmoto H.Geochemistry of Hydrothmal Ore deposits(2nd edition)[M].New York:H 1 Barnes eds fohe wiley,1979:212-273
    [121]Ohmoto H.Stable geochemistry of ore deposits[J].Mineral,1986,21(4):491-559
    [122]Rye R O,Ohmoto H.Sulpher and carbon istopes and ore genisis[J].Economy Geology,1974,69(6):824-826
    [123]Chaussidon M,Lorand J P.Sulphur isolope composition of orogenic spinel iherzolile massifs from arige N E Pyrenees France An ion microproble stady[J].Geochim Cosmoehim Acta,1990,54(10):2835-2846.
    [124]齐文,候满堂.镇旬矿田泥盆系和志留系铅锌矿的成矿地质条件分析[J].中国地质,2005,32(3):452-462
    [125]Rye,R.O.,P.M.Bethke,M.D.Wasserman.The stable isotope geochemistry of acid sulfate alteration[J].Economic Geology,1992,87(2):225-262
    [126]丁悌平,彭子成,黎红.南岭地区几个典型矿床的稳定同位素研究[M].北京:科 学技术出版社,1988:1-71
    [127]丁悌平.中国某些特大型矿床的同位素地球化学研究[J].地球学报-中国地质科学院院报,1997,18(4):373-381.
    [128]秦德先,洪托,田毓龙,陈健文.广西大厂锡矿92号矿体矿床地质与技术经济[M].北京:地质出版社,2002:1-203
    [129]何海洲,叶绪孙.广西大厂锡多金属矿田矿质来源研究[J].广西地质,1996,9(4):33-41
    [130]Doe B R,Zartman R E.Plumbotectonics 1 the Phanerozoic In Barnes H Led Geochemistry of Hydrothermal Ore Deposits(2nd Ed)[M].New York:Holt Rinehart and Winston,1979:22-70
    [131]Zartman R E,Doe B R.Plumbotectonics the model[J].Tectonophysic,1981,75(2):135-162
    [132]Burnard P G,Hu R Z,Turner G.Mantle 、 crustal and atmospheric noble gases in Ailaoshan Gold deposit s,Yunnan Province,China[J].Geochim Cosmochim Acta,1999,63(12):1595-1604.
    [133]Rye,R.O.,P.M.Bethke,M.D.Wasserman.The stable isotope geochemistry of acid sulfate alteration[J].Economic Geology,1992,87(3):225-262
    [134]Fu.M.et al,An oxygen,hydrogen,sulfur and carbon isotope study of Dachang Tin-field,China[J].Econ Geol,1991,86(11):1151-1172
    [135]齐文,候满堂.镇旬矿田泥盆系和志留系铅锌矿的成矿地质条件分析.中国地质,2005,32(3):452-462
    [136]刘建明,储雪蕾,刘伟,等.地壳中的成矿地质流体体系[J].地球物理学进展,1997,12(1):31-40
    [137]Fu.M.,Kwak T A P and Mernagh T P.Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field,People' s Republic of China[J].Econ.Geol.,1993,88(5):283-300.
    [138]李荫清,马秀娟,魏家秀.流体包裹体在矿床学和岩石学的应用[M].北京:北京科学技术出版社,1988:1-338
    [139]Pasava J,Kr(?)bek B,Dobes,et al.Tin-polymetallic sulfide deposits in the eastern part of the Dachang tin field(South China)and the role of black shales in their origin[J].Mineralium Deposita,2003,38(1):39-66.
    [140]赵葵东,蒋少涌,肖红权,等.大厂锡-多金属成矿流体来源的He同位素证据[J].科学通报,2002,47(8):632-635.
    [141]卢焕章,李秉伦.包裹体地球化学[M].北京:地质出版社,1990:1-242
    [142]芮宗瑶,李荫清,王龙生.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,21(1):13-23
    [143]Fu M,Kwak T A P,Mernagh T P.Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field,People Republic of China[J].Economic Geology,1993,88(5):283-300
    [144]张起钻.广西大厂锡多金属矿田100号矿体地质特征及成矿机理探讨[J].矿产与地质,1999,(13)6:324-329
    [145]李蘅,徐文炘,邓金灿等.大厂100锡多金属矿床成矿物理化学环境的研究-成矿温度及成矿压力[J].矿产与地质,2001,15(2):83-88
    [146]李荫清,陈伟十.大厂锡矿的成矿流体[J].岩石学报,1989,(3):12-24.
    [147]徐文炘,伍勤生.大厂锡多金属矿田同位素地球化学初步研究[J].矿产地质研究院学报,1986,(2):31-41
    [148]刘文均,郑容才.花垣铅锌矿床成矿流体特征及动态[J].矿床地质,2000,19(2):173-181
    [149]李荫清,陈伟十.大厂锡矿的成矿流体[J].岩石学报,1989,(3):12-24.
    [150]李璞,戴谟,邱纯一,等.内蒙和南岭地区伟晶岩和花岗岩的钾-氩法绝对年龄测定[J].地质科学,1963,(1):1-9
    [151]蔡宏渊,张国林.试论广西大厂锡多金属矿床海底火山热泉(喷气)成矿作用[J].矿产地质研究院学报,1983,1(4):13-21.
    [152]高永文.广西大厂隐伏花岗岩体的岩石类型及演化[J].桂林冶金地质学院学报,1986,8(2):151-157.
    [153]陈毓川,王登红.广西大厂层状花岗质岩石地质、地球化学特征及成因初探[J].地质论评,1996,42(6):523-530.
    [154]Wang D H,Chen Y C,Chen W,et al.Dationg the Dachang superlarge o tin-polymetallic deposit in Guangxi and its implication for the genesis of the No 100orebody[J].Acta Geological Sinica,2004,78(2):452-458[155]蔡明海,梁婷,韦可利等.大厂锡多金属矿田铜坑-长坡92号矿体Rb-Sr测年及其地质意义[J].华南地质与矿产,2006,(2):31-36
    [156]李华芹,王登红,梅玉萍,等.广西大厂拉么锌铜多金属矿床成岩成矿作用年代学研究[J].地质学报,2008,82(7):912-919
    [157]张乾,刘志浩,战新志,等.分散元素铟富集的矿床类型和矿物专属性[J].矿床地质,2003,22(3):309-316
    [158]Murao S,Furuno M,Uchida A C.Geology of indium deposits:A review[J].Mining Geol,1991,41(1):1-13
    [159]Seward T M,Henderson C M B,Charnock J M.Indium(Ⅲ)chloride complexing and salvation and salvation in hydrothermal solution to 350℃:An EXAFS study[J].Chen Geol,2000,167(1/2):117-127
    [160]Ivanov V V,Poplavko E M and Gorokhova V N.The Geochemistry of Rhenium.Intemat[J].Geology Review,1972,14(2):1-15
    [161]陈洪德,曾允浮,李孝全.丹池晚古生代盆地的沉积和构造演化[J].沉积学报,1989,7(4):85-96.
    [162]张文淮,陈紫英.流体包裹体地质学[M].湖北:中国地质大学出版社,1993:41-75
    [163]叶绪孙,严云秀.试论大厂锡石-硫化物矿田围岩介质的成矿地球化学作用[J].地球化学,1987,(2):123-131
    [164]刘朝荣,俞碧清.广西丹池盆地地球化学场演化与成矿[J].桂林工学院学报,1992,12(1):70-80
    [165]张乾,刘玉平,叶霖,等.分散元素成矿专属性探讨[J].矿物岩石地球化学通报,2008,27(3):247-253
    [166]卢家烂,庄汉平,傅家谟,等.临沧超大型锗矿床的沉积环境、成岩过程和热液作用与锗的富集[J].地球化学,2000,29(1):36-42
    [167]陈国达.关于多因复成矿床的一些问题[J].大地构造与成矿学,2000,24(3):199-201
    [168]蔡明海,毛景文,梁婷,等.大厂锡多金属矿田铜坑-长坡矿床流体包裹体研究[J].矿床地质,2005,24(3):228-241
    [169]Sanderson D J,Roberts,Gumiel P.A fractal relationship between vein thickness and gold grade in drill core from La Codosera,Spain.Economic Geology and the Bulletin of the Society of Economic Geologists,1994,89(1):168-173
    [170]Thomas M,Bruce G,Jochen M.Fractal distributions of veins in drill core from the Hellyer VHMS deposit,Australia:Constraints on the origin and evolution of the mineralization system[J].Mineral Deposit,2001,36(9):406-415
    [171]Zartman R E,Doe B R.Plumbotectonics—the model[J].Tectono-physics,1981,75(7):135-162
    [172]Sangester D F.密西西比河谷型与沉积喷气型矿床的对比(张秋明译)[J].国外地质科技,1991,15(8):5-20
    [173]Monecke T,Kempe U,Monecke J,et al.Tetrad effect in rare earth element distribution pattems:a method of quantification with application to rock and mineral samples from gramite-realted rare metal depostos[J].Geochimicaet Cosmocjomoca Acta,2002,66(7):1185-1196
    [174]翟裕生.走向2l世纪的矿床学[J].矿床地质,2001,20(1):10-14
    [175]Cox D P and Singer D A,et al.Mineral deposit models[M].New York:United States Geological Survey Reston VA United States,1986:1-379
    [176]陈国达,杨心宜.活化构造成矿学[M].长沙:湖南教育出版社,2003:1-706
    [177]戴塔根,陈国达.锡矿山锑矿控矿构造—“三层楼”模式及意义[J].中南工业大学学报,1998,30(4):1-5
    [178]Falconer K J.Fractal Geometry Mathematical Foundation and Application[M].New York and London:Plenum Press,1988:138-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700