用户名: 密码: 验证码:
掺杂TiO_2光催化剂的制备、表征及降解含聚污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究TiO_2光催化降解聚丙烯酰胺(HPAM)的可行性,采用溶胶-凝胶法制备了锐钛矿型纳米TiO_2,研究了合成催化剂反应条件对光催化降解含油废水中HPAM的影响。结果表明,最佳反应条件分别为:煅烧温度在500℃时,光催化活性达到最高;最佳老化时间为1天左右;当钛酸丁酯与醇的比例为1:8时,钛酸丁酯与水的比例为10:4,制备出的TiO_2催化活性最大。
     掺杂有利于TiO_2光催化活性的提高。首先,以P123为模板剂,采用溶胶-凝胶的溶剂热合成方法制备了H_3PW_(12)O_(40)掺杂的介孔结构TiO_2。利用紫外漫反射光谱、红外光谱、X射线粉末衍射、拉曼光谱和电感耦合等离子原子发射光谱等手段对上述新材料进行结构表征。结果表明,被制备的复合物具有锐钛矿与板钛矿复合的晶型结构、大的BET比表面积和统一孔尺寸分布的介孔结构。H_3PW_(12)O_(40)以完整的Keggin结构固定在TiO_2的晶格间隙,并且和TiO_2表面发生化学的相互作用。复合物对降解MO,RB,MB和CV显示出较高的紫外光催化活性,对CV显示出可见光催化活性。通过ES-MS检测CV降解的中间产物及最终产物,从而推出CV紫外光催化降解的机理。然后,利用一步溶胶-凝胶的溶剂热合成方法制备稀土掺杂的TiO_2纳米粒子(RE~(3+)/TiO_2,RE~(3+) = Eu~(3+),Pr~(3+),Nd~(3+),Gd~(3+)和Y~(3+))。结果表明,所制备的样品均为锐钛矿型纳米晶,粒子尺寸在9 nm左右,稀土以氧化物的形式存在于TiO_2的晶格间隙。在紫外光条件下降解HPAM,比较不同稀土掺杂对催化活性的影响,Eu~(3+) (Gd~(3+),Pr~(3+))/TiO_2展示了良好的催化活性,最佳掺杂量为2.4%(w),矿化率最大可达67%。通过液质联机测定HAPM降解的中间产物,推断出HAPM的紫外光催化降解机理。
     研究了在紫外光作用下催化条件对光催化降解HPAM的影响,如:光催化时间、催化剂的浓度、HAPM的初始浓度、反应的pH值及Na_2CO_3,NaHCO_3和NaCl浓度对催化的影响。实验结果表明,除NaCl的存在对催化活性影响较小外,其它条件对HPAM的催化降解均有显著的影响。增加催化时间、最佳的催化剂浓度、pH≈6和较低的初始浓度有利于催化反应的进行。
In order to research feasibility of TiO_2 photocatalytic degradation partially hydrolysis polyacrylamide (HPAM), anatase nanocrystallin TiO_2 was prepared by sol-gel method. The conditions of synthesis catalyst were studied according to effect of photocatalytic degradation HPAM solution of containing oil waste. The results show that the best reaction conditions were gained: when calcination temperature is 500℃, catalytic activity achieved high; The optimal aging time is about 1 day; When ratio of Ti(OBu)4 and alcohol is 1:8, ratio of Ti(OBu)4 and water is 10:4 photocatalytic activity of as prepared TiO_2 is highest.
     Doping is in favor of enhancing photocatalytic activity of TiO_2. Firstly, the mesoporous TiO_2 was prepared from a poly(ethylene glycol)-poly(propylene glycol)-based triblock copolymer (P123), titanium isopropoxide and H_3PW_(12)O_(40) by using sol–gel and solvothermal method. The structure of as-synthesized composites were Characterizaed by UV/DRS, FT-IR,XRD, solid Raman and ICP-AES. The results show the as-prepared compositions exhibited anatase and brookite phase structure, larger BET areas, and mesoporosity with uniform pore size distribution. It also indicated that the primary Keggin structure remained intact after immobilization of the unit into TiO_2 network, and chemical interactions between the unit and the TiO_2 network existed in the composites. The composites exhibited UV-light photocatalytic activity to degradation of MO, RB, MB and CV and visible-light activity to degradation CV. The intermediates and the final products of CV degradation were detected by ES-MS. According to the experimental results, we proposed a possible mechanism of the photodegradation of CV under UV-light irradiation in the aqueous system. Afterwards, rare-earth oxide doped titania nanocomposites (RE~(3+)/TiO_2, where RE~(3+) = Eu~(3+), Pr~(3+), Nd~(3+), Gd~(3+), and Y~(3+)) were prepared by a single step sol-gel-solvothermal method. The products exhibited anatase phase structure, nanosized with average size of 9 nm, and rare erath entered into the crystal cell of TiO_2 (interstitial mode) in the form of oxide. Furthermore, the photocatalytic activity of prepared RE~(3+) doped TiO_2 was studied by degrading HPAM under UV light irradiation. The results showed that the enhanced photocatalytic activity was obtained on Eu~(3+) (Gd~(3+), Pr~(3+))/TiO_2. HPAM was completely degraded and maximal mineralization ratio reached 67% when Eu~(3+), Gd~(3+) and Pr~(3+) loading were 2.4% (w). In addition, intermediate products were detected via liquid chromatography/mass spectrometry/ mass spectrometry, and degradation mechanism was analyzed.
     The photocatalytic degradation of HPAM has been studied in the presence of UV light under different conditions such as pH, catalyst concentration, substrate concentration, Na_2CO_3, NaHCO_3 and NaCl concentration. The degradation of HPAM was found to be strongly influenced by all the above parameters except for NaCl concentration. Increasing reaction time, optimal concentration of catalyst, pH≈6 and lower substrate concentration are in favor of photocatalytic reaction.
引文
[1]王宝辉,孔凡贵,张铁楷,等.高铁酸钾氧化去除油田污水中的聚丙烯酰胺的研究[J].工业水处理, 2004, 24(1): 21-23.
    [2]任广萌,孙德智,李成刚,等.聚合物驱采油废水深度处理工艺[J].化工环保, 2004, 24(增刊): 202-205.
    [3] A. Fujishima, K. Honda. Electronchemical Photolysis of water at a Semiconductor electrode [J]. Nature, 1972, 238(358): 37-38.
    [4] G. Colón, M.C. Hidalgo, J.A. Navío. A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive [J]. Catal. Today, 2002, 76(2-4): 91-101.
    [5] Roger I. Bickley, Teresita Gonzalez-Carreno, John S. Lees, et al. A structural investigation of titanium dioxide photocatalysts [J]. J. Solid state Chem.,1991, 92(1): 178-190
    [6]高伟,吴凤清,罗臻,等. TiO2晶型与光催化活性关系的研究[J].高等学校化学学报, 2001, 22(4): 660-662.
    [7] M.E. Manríquez, T. López, R. Gómez, et al. Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties [J]. J. Mol. Catal. A: Chem., 2004, 220: 229-237.
    [8] Cristiane B. Rodella, Valmor R. Mastelaro. Structural characterization of the V2O5/TiO2 system obtained by the sol-gel method [J]. J. Phy. Chem. Solids, 2003, 64(5): 833-839.
    [9]蔡铁军,吕晓萌,邓谦.复合催化剂PWn/TiO2光催化降解甲醛反应的研究[J].环境科学学报, 2005, 25(5): 618-622.
    [10] D Y. Goswami. A review of engineering developments of aqueous phase solar photocataltic detoxification and disinfection processes [J]. J. Solar Energy Engine., 1997, 119(3): 101-107.
    [11]颜秀茹,李晓红,宋宽秀,等. TiO2/SiO2的制备及其对DDVP光催化性能的研究[J].水处理技术, 2000, 26(1): 42-46.
    [12] M R Hoffman, S T Martin, W Choi, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Review, 1995, 95(1): 69-76.
    [13]王怡中,符雁,扬曦.附着态半导体光催化剂降解可溶性染料的研究[J].环境科学学报, 1996, 16(4): 406-411.
    [14]李东升,吕功煊,李树本.有机、无机纳米复合光电材料研究进展[J].感光科学与光化学, 1999, 17(4): 364-375.
    [15] G A Epling, C. Lin. Photoassisted bleaching of dyes utilizing TiO2 and visible light [J]. Chemosphere, 2002, 46(4): 561-570.
    [16] M Y Cheng, J C Yu, P K Wong. Degrdation of azo dye Procion Red MX-5B byphotocatalytic oxidation [J]. Chemophere, 2002, 46(6): 905-912.
    [17] M Stylide, D I Kondarides, X E Verykios. Pathways of solar light-induced Photocatalytic degradation of azodye in aqueous TiO2 suspensions [J]. Appl. Catal. B: Environ., 2003, 40(4): 271-286.
    [18] K Tanaka, K Padermpole, T Hisanaga. Photocatalytic degradation of commercial azo dyes [J]. Water Res., 2000, 34(1): 327-333.
    [19] E Moctezuma, E Leyva, E Monreal, et al. Photocatalytic degradation of the herbicide“paraquat”[J]. Chemosphere, 1999, 39(3): 511-517.
    [20] N N Rao, S Dube. Photocatalytic degradeation of mixed surfacetants and some commercial soap/detergent products using suspended TiO2 catalysts [J]. J. Mol. Catal. A: Chem., 1996, 104(3): 1197-1199.
    [21]王成国,邓兵.纳米TiO2光催化氧化处理直接耐晒翠蓝染料溶液[J].染整技术, 2005, 27(4): 1-4.
    [22]赵宝顺,肖新颜,张会平.纳米二氧化钛光催化降解苯酚水溶液[J].精细化工, 2005, 22(5): 339-341.
    [23] C Dossi, J Schaefer, W M H Sachtler. Mechanism of particle formation in decomposing Re[2](CO)[10] on NaY and NaHY zeolites: effect of prereduced Pt clusters in the supercages [J]. J. Mol. Catal., 1989, 52: 193-209.
    [24] Marcia M Kondo, Wilso F Jardim. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst [J]. Wat. Res. 1991, 25(7): 823-827.
    [25]陈士夫,梁新,陶跃武.光催化降解磷酸酯类农药的研究[J].感光科学与化学, 2000, 18(1): 7-11.
    [26]原宇航,戚敏杰,周兴贵,等.丙烯直接环氧化Au/TiO2催化剂助剂对催化性能的影响[J].华东理工大学学报(自然科学版), 2005, 31(2): 133-136.
    [27]章福祥,张秀,陈继新,等. Ag/TiO2复合纳米催化剂的制备和表征及其光催化活性[J].催化学报, 2003, (24)11: 877-880.
    [28]何进,陈星弼,杨传仁,等. TiO2(Ag)纳米半导体薄膜的制备及其光催化性能[J].电子元件与材料, 1999, 17 (2): 13-14.
    [29]李越湘,吕功煊,李树本,等.污染物甲醛为电子给体Pt/TiO2光催化制氢[J].分子催化, 2002, 16(4): 22-26.
    [30] T Kasuga, M Hiramatsu, M Hiranom, et al. Preparationof TiO2-bsaeed powders with high photocatalytic activities [J]. J. Mater. Res., 1997, 12(3): 607-609.
    [31] W Choi, A Termin, M R Hoffmann. The Role of Metal Ion Depants in Quantum-sized TiO2; Correlation between Chotoreactimity and Charge; Carried Recombination Dynamics [J]. J. Phys. chem., 1994, 98: 13669-13679.
    [32]杨莉,姚秉华,吴少林.金属离子掺杂与贵金属沉积对TiO2光催化性能的影响[J].南昌航空工业学院学报(自然科学版), 2004, 18(1): 74-78.
    [33]李世彤,周国伟,邵志勇.纳米TiO2掺杂过渡金属在造纸废水处理中的应用[J].上海造纸, 2005, 36(2): 51-54.
    [34]王九思,宋光顺,马艳飞.掺金属离子纳米TiO2光催化降解有机污染物[J].兰州交通大学学报(自然科学版), 2004, 23(4): 34-36.
    [35]徐纯芳,黄妙良,程应汉.金属离子掺杂对TiO2/沸石光催化性能的影响[J].化工环保, 2004, 24(增刊): 23-26.
    [36]赵德明,汪大,史惠祥,等.掺杂过渡金属离子的纳米二氧化钛光催化氧化对氯苯酚的研究[J].化工环保, 2003, 23(2): 75-79.
    [37] Liqiang Jing, Xiaojun Sun, Baifu Xin, et al. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity [J]. J. Solid State Chem., 2004, 177(10): 3375-3382.
    [38]席北斗,刘纯新,孔欣,等.负载型催化剂光催化氧化五氯苯酚钠的效果[J].环境科学, 2001, 22(1): 41-44.
    [39]孔令仁,陈曦,杨曦.附着态半导体光催化剂光解可溶性染料的研究[J].环境科学学报, 1996, 16 (4): 406-411.
    [40] John C. Crittenden, Yin Zhang, David W. Hand, et al. Solar Detoxification of Fuel-Contaminated Groundwater Using Fixed-Bed Photocatalysts [J]. Wat. Environ. Res., 1996, 68(3): 270-278.
    [41] Y. Zhang, J.C. Crittenden, D.W. Hand, et al. Fixed-Bed Photocatalysts for Solar Decontamination of Water [J]. Environ. Sci. Technol., 1994, 28(3): 435-442.
    [42] H. Peter, M. No, C. Indoor, et al. Review of Currentand Future Topics in the Field of ISB Study Group 10 [J]. Int. J. Biometeorol., 1998, 42: 1-7.
    [43]任学昌,史载锋,孔令仁,等.纳米TiO2薄膜在不同陶瓷表面的负载及其光催化性能研究[J].环境污染治理技术与设备, 2006, 7(2): 25-29.
    [44] Ganesh Balasubramanian, Dionysios D. Dionysiou, Makram T. Suidan, et al. Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water [J]. Appl. Catal. B: Environ., 2004, 47(2): 73-84.
    [45] Chul Han Kwon, Je Hun Kima, In Sun Jung, et al. Preparation and characterization of TiO2-SiO2 nano-compositethin films [J]. Ceram. Int., 2003, 29(8): 851-856.
    [46] R. S. Sonawane, B. B. Kale, M. K. Dongare. Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating [J]. Mater. Chem. Phys., 2004, 85(1): 52-57.
    [47] Jing Liqiang, Sun Xiaojun, Cai Weimina, et al. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity [J]. J. Phys. Chem. Solids, 2003, 64(4): 615-623.
    [48] Hongyuan Wang, Junfeng Niu, Xingxing Long, et al. Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions [J]. Ultrasonics Sonochem., 2008, 15(4): 386-392.
    [49] C. Milone, M.C. Trapani, S. Galvagno. Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts [J]. Appl. Catal. A: Gen., 2008, 337(2): 163-167.
    [50] Ying Shih Ma, Cheng Nan Chang, Yen Pei Chiang, et al. Photocatalytic degradation of lignin using Pt/TiO2 as the catalyst [J]. Chemosphere, 2008, 71 (5): 998-1004.
    [51] Yuhong Zhang, Hailiang Xu, Yongxi Xu, et al. The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution [J]. J. Photochem. Photobiol. A: Chem., 2005, 170(3): 279-285.
    [52] Xingwang Zhang, Lecheng Lei. One step preparation of visible-light responsive Fe-TiO2 coating photocatalysts by MOCVD [J]. Mater. Letters, 2008, 62(6-7): 895-897.
    [53] V. Rodríguez-González, A. Moreno-Rodríguez, M. May, et al. Slurry photodegradation of 2,4-dichlorophenoxyacetic acid: A comparative study of impregnated and sol-gel In2O3-TiO2 mixed oxide catalysts [J]. J. Photochem. Photobiol. A: Chem., 2008, 193(2-3): 266-270.
    [54] Shuji Matsuo, Nahomi Sakaguchi, Keiji Yamada, et al. Role in photocatalysis and coordination structure of metal ions adsorbed on titanium dioxide particles: a comparison between lanthanide and iron ions [J]. Appl. Surface Sci., 2004, 228(1-4): 233-244.
    [55] Yuning Huo, Jian Zhu, Jingxia Li, et al. An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol-gel method followed by treatment under supercritical conditions [J]. J. Mol. Catal. A: Chem., 2007, 278(1-2): 237-243.
    [56] Hong Rok Kim, Tai Gyu Lee, Yong-Gun Shul. Photoluminescence of La/Ti mixed oxides prepared using sol-gel process and their pCBA photodecomposition [J]. J. Photochem. Photobiol. A: Chem., 2007, 185(2-3): 156-160.
    [57]丁震,陈晓东,陈连生,等.波加热制备泡沫镍负载La掺杂纳米TiO2及其光催化降解甲醛的性能[J].催化学报, 2006, 27(5): 449-453.
    [58]井立强,李晓倩,李姝丹,等.纳米Au/TiO2光催化剂的XPS和SPS研究[J].催化学报, 2005, 26(3): 189-193.
    [59]杨冬梅,贺攀科,董芳,等.室温水汽对Au/TiO2上光催化分解臭氧的影响[J].催化学报, 2006, 27(12): 1122-1126.
    [60]刘守新,陈孝云,陈曦.酸催化水解法制备可见光响应N掺杂纳米TiO2催化剂[J].催化学报, 2006, 27(8): 697-702.
    [61]史月萍,杨祝红,冯新,等.掺铂二氧化钛纤维光催化降解氯仿的研究[J].催化学报, 2003, 24(9): 663-668.
    [62]刘守新,曲振平,韩秀文,等. Ag担载对TiO2光催化活性的影响[J].催化学报, 2004, 25(2): 133-137.
    [63] Jimmy C. Yu, Xinchen Wang, Ling Wu, et al. Sono- and photoochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania films [J]. Adu. Funct. Mater., 2004, 14(12): 1178-1183.
    [64] Xinchen Wang, Jimmy C. Yu, Ho Yin Yip, et al. A Mesoporous Pt/TiO2 Nanoarchitecture with Catalytic and Photocatalytic Functions [J]. Chem. Eur. J., 2005, 11(10): 2997- 3004.
    [65]王侃,陈英旭,叶芬霞. SiO2负载的TiO2光催化剂可见光催化降解染料污染物[J].催化学报, 2005, 25(12): 931~936.
    [66] T. Yamase, N. Takabayashi, M. Kaji. Solution Photochemistry of Tetrakis (tetrabutylammonium) decatungstate (VI) and catalytic hydrogen evolution from alcohols [M]. J. Chem. Soc. Dalton. Trans., 1984, 793-799.
    [67] C L Hill, D A Bouchard.Catalytic photochemical dehydrogenation of organic substrates by polyoxometalates [J]. J. Am. Chem. Soc., 1985, 107(18): 5148-5157.
    [68] E Papaconstantinou. Photochemistry of polyoxometalates of molybdenum and tungsten and/or vanadium [J]. Chem. Soc. Rev., 1989, 18(1): 1-31.
    [69] T Okuhara, T Nishimura, M Misono. Novel microporous solid“superacids”CsxH3-xPW12O40 (2≤x≤3), 11th International Congress on Catalysis-40th Anniversary [J]. Studies in Surface Catal., 1996, 101: 581-588.
    [70] J M Maestre, X Lopez, C Bo, et al. Electronic and Magnetic Properties of R-Keggin Anions: A DFT Study of [XM12O40]n-, (M = W, Mo; X = AlIII, SiIV, PV, FeIII, CoII, CoIII ) and [SiM11VO40]m-(M = Mo and W) [J]. J. Am. Chem. Soc., 2001, 123(16): 3749-3758.
    [71] N Mizuno, M Misono. Heterogeneous catalysis [J]. Chem. Rev., 1998, 98(1): 199-217.
    [72] I V Kozhevnikov. Catalysis by heteropoly acids and multicomponent polyoxometalates inliquid-phase reaction [J]. Chem. Rev., 1998, 98(1): 171-198.
    [73] P. Kormali, A. Troupis, T. Triantis, et al. Photocatalysis by polyoxometallates and TiO2: A comparative study [J]. Catal. Today, 2007, 124(3-4): 149-155.
    [74] A. Troupis, E. Gkika, T. Triantis, et al. Photocatalytic reductive destruction of azo dyes by polyoxometallates: Naphthol blue black [J]. J. Photochem. Photobiol. A: Chem., 2007, 188(2-3): 272-278.
    [75] Shujuan Jiang, Yihang Guo, Changhua Wang, et al. One-step sol-gel preparation and enhanced photocatalytic activity of porous polyoxometalate-tantalum pentoxide nanocomposites [J]. J. Colloid. Interface Sci., 2007, 308(1): 208-215.
    [761] Chaokang Gu, Curtis Shannon. Investigation of the photocatalytic activity ofTiO2-polyoxometalate systems for the oxidation of methanol [J]. J. Mol. Catal. A: Chem., 2007, 262(1-2): 185-189.
    [77] Wei Qiu, Ying Zheng, Katy A. Haralampides. Study on a novel POM-based magnetic photocatalyst: Photocatalytic degradation and magnetic separation [J]. Chem. Engin. J., 2007, 125(3): 165-176.
    [78] Yan Li Shi, Wei Qiu, Ying Zheng. Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst [J]. J. Phys. Chem. Solids, 2006, 67(11): 2409-2418.
    [79] Aristidis Troupis, Eleni Gkika, Anastasia Hiskia, et al. Photocatalytic reduction of metals using polyoxometallates: recovery of metals or synthesis of metal nanoparticles [J]. Comptes Rendus Chimie, 2006, 9(5-6): 851-857.
    [80] Hyunwoong Park, Jaesang Lee, Wonyong Choi. Study of special cases where the enhanced photocatalytic activities of Pt/TiO2 vanish under low light intensity [J]. Catal. Today, 2006, 111(3-4): 259-265.
    [81] K.B. Dhanalakshmi, S. Anandan, J. Madhavan, et al. Photocatalytic degradation of phenol over TiO2 powder: The influence of peroxomonosulphate and peroxodisulphate on the reaction rate [J]. Solar Energy Mater. Solar Cells, 2008, 92(4): 457-463.
    [82] Valtair M. Cristante, Alexandre G.S. Prado, S?nia M.A. Jorge, et al. Synthesis and characterization of TiO2 chemically modified by Pd(II) 2-aminothiazole complex for the photocatalytic degradation of phenol [J]. J. Photochem. Photobiol. A: Chem., 2008, 195(1): 23-29.
    [83] D. Gumy, S.A. Giraldo, J. Rengifo, et al. Effect of suspended TiO2 physicochemical characteristics on benzene derivatives photocatalytic degradation [J]. Appl. Catal. B: Environ., 2008, 78(1-2): 19-29.
    [84] Lianfeng Zhang, William A. Anderson, Steven Sawell, et al. Mechanistic analysis on the influence of humidity on photocatalytic decomposition of gas-phase chlorobenzene [J]. Chemosphere, 2007, 68(3): 546-553.
    [85] Yu-Hsiang Hsien, Chi-Fu Chang, Yu-Huang Chen, et al. Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves [J]. Appl. Catal. B: Environ., 2001, 31,(4): 241-249.
    [86] Hsin-Hung Ou, Shang-Lien Lo. Photocatalysis of gaseous trichloroethylene (TCE) over TiO2: The effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene [J]. J. Hazardous Mater., 2007, 146(1-2): 302-308.
    [87] Soon-Kil Joung, Takashi Amemiya, Masayuki Murabayashi, et al. Adsorbed species on TiO2 associated with the photocatalytic oxidation of trichloroethylene under UV [J]. J. Photochem. Photobiol. A: Chem., 2006, 184(3): 273-281.
    [88] Bao-rang Li, Xiao-hui Wang, Min-yu Yan, et al. Preparation and characterization of nano-TiO2 powder [J]. Mater. Chem. Phys., 2002, 78(3): 184-188.
    [89] B Ohtani, K Iwai, S Nishimoto, et al. Role of platinum deposits on titanium oxide particles: Structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions [J]. J. Phys. Chem. B, 1997, 101(17): 3349-3359.
    [90] Hsing-I, Hsiang, Shin-Chung Lin. Effects of aging on the phase transformation and sintering properties of TiO2 gels [J]. Mater. Science Engin. A., 2004, 380(1-2): 67-72.
    [91]程小苏,曾令可,黄浪欢,等. TiO2光催化剂的制备过程与配方优化[J].华南理工大学学报(自然科学版), 2003, 31(2): 14-18.
    [92] M. Janus, A.W. Morawski. New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition [J]. Appl. Catal. B: Environ., 2007, 75(1-2): 118-123.
    [93] I.J. Ochuma, R.P. Fishwick, J. Wood, et al. Optimisation of degradation conditions of 1,8-diazabicyclo[5.4.0]undec-7-ene in water and reaction kinetics analysis using a cocurrent downflow contactor photocatalytic reactor [J]. Appl. Catal. B: Environ., 2007, 73 (3-4): 259-268.
    [94] D.S. Kim, S.Y. Kwak. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity [J]. Appl. Catal. A: Gen., 2007, 323:110-118.
    [95] D.A. Friesen, L. Morello, J.V. Headley, et al. Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO2 colloidal photocatalysts [J]. J. Photochem. Photobiol. A: Chem., 2000, 133 (3): 213-220.
    [96] S. Antonaraki, E. Androulaki, D. Dimotikali, et al. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2 [J]. J. Photochem. Photobiol. A: Chem., 2002, 148 (1-3): 191-197.
    [97] Meiqin Hu, Yiming Xu. Photocatalytic degradation of textile dye X3B by heteropolyoxometalate acids [J]. Chemosphere, 2004, 54(3): 431-434.
    [98] Y. Yang, Y. Guo, C. Hu, et al. Synergistic effect of Keggin-type [Xn+W11O39](12–n)– and TiO2 in macroporous hybrid materials [Xn+W11O39](12–n)–-TiO2 for the photocatalytic degradation of textile dyes [J]. J. Mater. Chem., 2003, 13 (7): 1686-1694.
    [99] D. Li, Y. Guo, C. Hua, et al. Preparation, characterization and photocatalytic property of the PW11O397?/TiO2 composite film towards azo-dye degradation [J]. J. Mol. Catal. A: Chem., 2004, 207 (2): 183-193.
    [100] Y. Guo, C. Hu, S. Jiang, et al. Heterogeneous photodegradation of aqueous hydroxyl butanedioic acid by microporous polyoxometalates [J]. Appl. Catal. B, 2002, 36 (2): 9-17.
    [101] Y. Guo, C. Hu, X. Wang, et al. Microporous Decatungstates: Synthesis andPhotochemical Behavior [J]. Chem. Mater., 2001, 13 (11): 4058-4064.
    [102] Y. Guo, C. Hu, C. Jiang, et al. Preparation and heterogeneous photocatalytic behaviors of the surface-modified porous silica materials impregnated with monosubstituted keggin units [J]. J. Catal., 2003, 217 (1): 141-151.
    [103] Y. Guo, Y. Yang, C. Hu, et al. Preparation, characterization and photochemical properties of ordered macroporous hybrid silica materials based on monovacant Keggin-type polyoxometalates [J]. J. Mater. Chem.2002, 12 (10): 3046-3052.
    [104] P. Kormali, D. Dimoticali, D. Tsipi, et al. Photolytic and photocatalytic decomposition of fenitrothion by PW12O403? and TiO2: a comparative study [J]. Appl. Catal. B: Environ., 2004, 48(3): 175-183.
    [105] L. Zhang, Y. Zhu, Y. He, et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel [J]. Appl. Catal. B: Environ., 2003, 40 (4): 287-292.
    [106] Danfeng Li, Changzhi Gu, Caixin Guo, et al. The effects of ambient gases on the surface resistance of polyoxometalate/TiO2 film [J]. Chem. Phys. Letters, 2004, 385(1-2): 55-59.
    [107] X. Wang, J.C. Yu, H.Y. Yip, et al. A Mesoporous Pt/TiO2 Nanoarchitecture with Catalytic and Photocatalytic Functions [J]. Chem. Eur. J., 2005, 11 (10): 2997-3004.
    [108] H. Li, Z. Bian, J. Zhu, et al. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc., 2007, 129 (15): 4538-4539.
    [109] J.C. Parker, R.W. Siegel. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 [J]. Appl. Phys. Lett., 1990, 57(9): 943-945.
    [110] G.A. Tompsett, G.A. Bowmake, R.P. Cooney, et al. The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc., 1995, 26 (1): 57-62.
    [111] Jiaguo Yu, Yaorong Su, Bei Cheng, et al. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method [J]. J. Mol. Catal. A: Chem., 2006, 258 (1-2): 104-112.
    [112] W.X. Zhang, C.B. Wang, H.L. Lien. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles [J]. Catal. Today, 1998, 40 (4): 387-395.
    [113] Y. Lei, L.D. Zhang, J.C. Fan. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 [J]. Chem. Phys. Lett., 2001, 338 (4-6): 231-236.
    [114] D. Huang, Y.J. Wang, L.M. Yang, et al. Direct synthesis of mesoporous TiO2 modified with phosphotungstic acid under template-free condition [J]. Micropor. Mesopor. Mater., 2006, 96 (1-3): 301-306.
    [115] Song-Zhe Chen, Peng-Yi Zhang, Wan-Peng Zhu, et al. Deactivation of TiO2photocatalytic films loaded on aluminium: XPS and AFM analyses [J]. Appl. Surf. Sci., 2006, 252(20): 7532-7538.
    [116] H.W. Chen, Y. Ku, Y.L. Kuo. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis [J]. Water Res., 2007, 41 (10): 2069-2078.
    [117] V.R. Mastelaro, P.N. Lisboa-Filho, P.P. Neves, et al. X-ray photoelectron spectroscopy study on sintered Pb1?xLaxTiO3 ferroelectric ceramics [J]. J. Electron Spectrosc. Relat. Phenom., 2007, 156-158 (3): 476-481.
    [118] P.A. Jalil, M. Faiz, N. Tabet, et al. A study of the stability of tungstophosphoric acid, H3PW12O40, using synchrotron XPS, XANES, hexane cracking, XRD, and IR spectroscopy [J]. J. Catal., 2003, 217 (2): 292-297.
    [119] L.Q. Jing, Z.L. Xu, X.J. Sun, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles [J]. Appl. Surf. Sci., 2001,180 (3-4): 308-314.
    [120] M. Kruk, M. Jaroniec, C.H. Ko, et al. Characterization of the Porous Structure of SBA-15 [J]. Chem. Mater., 12000, 2(7): 1961-1968.
    [121] H. Choi, A.C. Sofranko, D.D. Dionysiou. Nanocrystalline TiO2 Photocatalytic Membranes with a Hierarchical Mesoporous Multilayer Structure: Synthesis, Characterization, and Multifunction [J]. Adv. Funct. Mater., 2006, 16(8): 1067-1074.
    [122] J. Zhao, H. Hidaka, A. Takamura, et al. Photodegradation of surfactants. 11 zeta-Potential measurements in the photocatalytic oxidation of surfactants in aqueous titania dispersions [J]. Langmuir, 1993, 9 (7): 1646-1650.
    [123] T. Imae, K. Muto, S. Ikeda. The pH dependence of dispersion of TiO2 particles in aqueous surfactant solutions [J]. Colloid Polym. Sci., 1991, 269(1): 43-48.
    [124] Guangming Liu, Xiangzhong Li, Jincai Zhao, et al. Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination [J]. J. Mol. Catal., 2000, 153(1-2): 221-229.
    [125]孙振范,李玉光. TiO2纳米膜上吸附态甲基橙的光催化降解反应活性研究[J].化学学报, 2002, 60(11): 1965-1972.
    [126] Y. Guo, J. Zhao, H. Zhang, et al. Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions [J]. Dyes and Pigments 2005, 66 (2): 123-128.
    [127] J.G. Yu, J.F. Xiong, B. Cheng, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Appl. Catal. B, 2005, 60 (3-4): 211-221.
    [128] R.R. Ozer, J.L. Ferry. Investigation of the Photocatalytic Activity of TiO2- Polyoxometalate Systems[J]. Environ. Sci. Technol., 2001, 35 (15): 3242- 3246.
    [129] M. Yoon, J. A. Chang, Y. Kim, et al. Heteropoly acid-incorporated TiO2 colloids asnovel photocatalytic systems resembling the photosynthetic reaction center [J]. J. Phys. Chem. B, 2001, 105(13): 2539-2545.
    [130] Chuncheng Chen, Pengxiang Lei, Hongwei Ji, et al. Photocatalysis by Titanium Dioxide and Polyoxometalate/TiO2 Cocatalysts Intermediates and Mechanistic Study [J]. Environ. Sci. Technol., 2004, 38(1):29-337.
    [131] J. Liqiang, X. Zili, X. Sun, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles [J]. Appl. Surf. Sci., 2001, 180 (3-4): 308-314.
    [132] Jing Liqiang, Zheng Yingguang, Xu Zili. Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticlesChem [J]. J. Chin. Univ., 2001, 22 (11): 1885-1888.
    [133] V.Vamatheva, R. Amal, D. Beydoun, et al. Silver metalisation of titania particles: effects on photoactivity for the oxidation of organics [J]. Chem.l Engin. J., 2004, 98: 127-139.
    [134] N. Sobana, M. Muruganadham, M. Swaminathan. Nano-Ag particles TiO2 for efficient photodegradation of Direct azo dyes [J]. J. Mol. Catal. A: Chem., 2006, 258 (1-2): 124-132.
    [135] Michael K. Seery, Reenamole George, Patrick Floris, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis [J]. J. Photochem. Photobiol. A: Chem., 2007, 189 (2-3): 258-263.
    [136] I. M. Arabatzis, T.Stergiopoulos, M. C. Bernard, et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange [J]. Appl. Catal. B: Environ., 2003, 42(2): 187-201.
    [137] Jiefang Zhu, Wei Zheng, Bin He, et al. Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water [J]. J. Mol. Catal. A: Chem., 2004, 216(1): 35-43.
    [138] Eva Piera, M. Isabel Tejedor-Tejedor, Michael E. Zorn, et al. Relationship concerning the nature and concentration of Fe(Ⅲ) species on the surface of TiO2 particles and photocatalytic activity of the catalyst [J]. Appl. Catal. B: Environ., 2003, 46 (4): 671-685.
    [139] Bonamali Pal, Maheshwar Sharon, Gyoichi Nogami. Preparation and characterization of TiO2/Fe2O3 binary mexed oxides and its photocatalytic properties [J]. Mater. Chem. Phys., 1999, 59(3): 254-261.
    [140] Bonamali Pal, Maheshwar Sharon. Preparation of iron oxide thin film by metal organic deposition from Fe(Ⅲ)-acetylacetonate: a study of photacatalytic properties [J]. Thin Solid Films, 2000, 379(1-2): 83-88.
    [141] Jiaguo Yu, Huogen Yu, C. H. Ao, et al. Preparation, characterization and photocatalyticactivity of in situ Fe-doped TiO2 thin films [J]. Thin Solid Films, 2006, 496(2): 273-280.
    [142] Ying Yang, Xinjun Li, Juntao Chen, et al. Effect of doping mode on the photocatalytic activities of Mo/TiO2 [J]. J. Photochem. Photobiol. A: Chem., 2004, 163(3): 517-522.
    [143] Jianlin Li, Li Liu, Ying Yu, et al. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method [J]. Electrochem. Commun., 2004, 6(9): 940-943.
    [144]张霞,赵岩,张彩碚,等.低温水热合成异形TiO2纳米晶及其表征[J].物理化学学报, 2007, 23(6): 856-860.
    [145]田宝柱,童天中,陈峰,等.水洗处理对Au/TiO2催化剂光催化活性的影响[J].物理化学学报, 2007, 23(7): 978-982.
    [146] Wenyue Su, Jianxiong Chen, Ling Wu, et al. Visible light photocatalysis on praseodymium(III)-nitrate-modified TiO2 prepared by an ultrasound method [J]. Appl. Catal. B: Environ., 2008, 77(3-4): 264-271.
    [147] Xisoli Yan, Jing He, David G. Evans, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors [J]. Appl. Catal. B: Environ., 2005, 55(4): 243-252.
    [148] F. B. Li, X. Z. Li, M. F. Hou. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control [J]. Appl. Catal. B: Environ., 2004, 48: 185-194.
    [149] Wen Chen, Deng Hua, Tian Junying, et al. Photocatalytic activity enhancing for TiO2 photocatalyst by doping with La [J]. Trans. Nonferrous Met. Soc. China, 2006, 16(z1): 728-731.
    [150] Shuai Yuan, Qiaorong Sheng, Jinlong Zhang, et al. Synthesis of La3+ doped mesoporous titania with highly crystallized walls [J]. Micropor. Mesopor. Mater., 2005, 79(1-3): 93-99.
    [151] Tianyou Peng, De Zhao, Haibo Song, et al. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity [J]. J. Mol. Catal. A: Chem., 2005, 238(1-2): 119-126.
    [152] Anwu Xu, Yuan Gao, Hanqin Liu. The preparation, characterization, and their photocatalytic activities of rare earth-doped TiO2 nanaparticles [J]. J. Catal., 2002, 207(2): 151-157.
    [153] Mona Saif, M. S. A. Abdel-Mottaleb. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu, and Sm: Preparation, characterization and potential applications [J]. Inorg. Chim. Acta, 2007, 360(9,10): 2863-2874.
    [154]李越湘,王添辉,彭绍琴,等. Eu3+、Si4+共掺杂TiO2光催化剂的协同效应[J].物理化学学报, 2004, 20(12): 1434-1439.
    [155]韩昌福,李大平,王晓梅.聚丙烯酰胺生物降解研究进展[J].应用与环境生物学报, 2005, 11 (5): 648-650.
    [156] S. Rengaraj, X.Z. Li, Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension [J]. J. Mol. Catal. A: Chem., 2006, 243 (1,2): 60-67.
    [157] Gang Liu, JoséA. Rodriguez, Jan Hrbek, et al. Interaction of thiophene with stoichiometric and reduced rutile TiO2(110) surfaces: role of Ti3+ sites in desulfurization activity [J]. J. Mol. Catal. A: Chem., 2003, 202(1-2): 215-227.
    [158] S.I. Shah, W. Li, C.P. Huang, et al. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles [J]. Proceed. National Acad. Sci. U.S.A., 2002, 99: 6482-6486.
    [159] Mi-Seo Park, Misook Kang The preparation of the anatase and rutile forms of Ag-TiO2 and hydrogen production from methanol/water decomposition [J]. Mater. Lett., 2008, 62(2): 183-187.
    [160] B. Xin, L. Jin, Z. Ren, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2 [J]. J. Phys. Chem. B, 2005, 109(7): 2805-2809.
    [161] Y. Uwamino, T. Ishizuka. X-ray photoelectron spectroscopy of rare-earth compounds [J]. J. Electron Spectroscopy Related Phenom., 1984, 34(1): 67-78.
    [162] F. S?derlind, H. Pedersen, R.M. Petoral Jr., et al. Synthesis and characterisation of Gd2O3 nanocrystals functionalized by organic acids [J]. J. Colloid Interface Sci., 2005, 288(1): 140-148.
    [163] J. Yu, H. Yu, B. Cheng, et al. Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment [J]. J. Mol. Catal. A: Chem., 2006, 253(1-2): 112-118.
    [164] L. Wu, J.C. Yu, X. Wang, et al. Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature [J]. J. Solid State Chem., 2005, 178 (1): 321-328.
    [165] C. Karunakaran, R. Dhanalakshmi. Photocatalytic performance of particulate semiconductors under natural sunshine-Oxidation of carboxylic acids [J]. Solar Energy Mater. Solar Cells, 2008, 92(5): 588-593.
    [166] Sumaeth Chavadej, Pattamawadee Phuaphromyod, Erdogan Gulari, et al. Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique [J]. Chem. Engin. J., 2008, 137(3): 489-495.
    [167] Z. Liu, X. Zhang, S. Nishimoto, et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol [J]. J. Phys. Chem. C., 2008, 112(1): 253-259.
    [168] M. Tian, G. Wu, B. Adams, J. Wen, et al. Kinetics of Photoelectrocatalytic Degradationof Nitrophenols on Nanostructured TiO2 Electrodes [J]. J. Phys. Chem. C., 2008, 112(3): 825-831.
    [169] W. Balcerski, S. Y. Ryu, M. R.Hoffmann. Visible-Light Photoactivity of Nitrogen- Doped TiO2: Photo-oxidation of HCO2H to CO2 and H2O [J]. J. Phys. Chem. C., 2007, 111(42): 15357-15362.
    [170] F. B. Li, X. Z. Li, K. H. Ng. Photocatalytic Degradation of an Odorous Pollutant: 2-Mercaptobenzothiazole in Aqueous Suspension Using Nd3+-TiO2 Catalysts [J]. Ind. Eng. Chem. Res., 2006, 45(1): 1-7.
    [171] E. Setiawati, K. Kawano. Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2 [J]. Journal of Alloys and Compounds, 2008, 451(1-2): 293-296.
    [172] Min-Han Kim, Jong-Bong Lim, Sahn Nahm, et al. Low temperature sintering of BaCu(B2O5)-added BaO-Re2O3-TiO2 (Re = Sm, Nd) ceramics [J]. J. Eur. Ceramic Soc., 2007, 27(8-9): 3033-3037.
    [173] Wei Zhou, Yu-hui Zheng, Guang-hui Wu. Novel luminescent RE/TiO2 (RE = Eu, Gd) catalysts prepared by in-situation sol-gel approach construction of multi-functional precursors and their photo or photocatalytic oxidation properties [J]. Appl. Surf. Sci., 2006, 253(3): 1387-1392.
    [174] Wu Xiaohong, Qin Wei, Ding Xianbo, et al. Photocatalytic activity of Eu-doped TiO2 ceramic films prepared by microplasma oxidation method [J]. J. Phys. Chem. Solids, 2007, 68(12): 2387-2393.
    [175] Yue-hua Xu, Zhuo-xian Zeng. The preparation, characterization, and photocatalytic activities of Ce-TiO2/SiO2 [J]. J. Mol. Catal. A: Chem., 2008, 279(1, 2): 77-81.
    [176] B. M. Reddy, I. Ganesh, E. P. Reddy, et al. Surface Characterization of Ga2O3-TiO2 and V2O5/Ga2O3-TiO2 Catalysts [J]. J. Phys. Chem. B, 2001, 105(26): 6227-6235.
    [177] S. Rengaraj, S. Venkataraj, Jei-Won Yeon, et al. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination [J]. Appl. Catal. B: Environ., 2007, 77(1-2): 157-165.
    [178] Shuai Yuan, Qiaorong Sheng, Jinlong Zhang, et al. Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity [J]. Micropor. Mesopor. Mater., 2008, 110(2-3): 501-507.
    [179] Chun-Hua Liang, Fang-Bai Li, Cheng-Shuai Liu, et al. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I [J]. Dyes Pigments, 2008, 76(2): 477-484.
    [180]李慧泉,李越湘,周新木,等. Sm2O3掺杂TiO2光催化剂的制备和性能[J].分子催化, 2004, 18(4): 304-309.
    [181] Ana Sanjuán, Guillermo Aguirre, Mercedes Alvaro, et al. 2, 4, 6-Triphenylpyrylium ionencapsulated in Y zeolite as photocatalyst. A co-operative contribution of the zeolite host to the photodegradation of 4-chlorophenoxyacetic acid using solar light [J]. Appl. Catal. B: Environ., 1998, 15(3-4): 247-257.
    [182]武正簧.二氧化钛薄膜光催化降解甲基橙[J].过程工程学报, 2002, 2(2): 183-185.
    [183] M. Abu Tariq, M. Faisal, M.Saquib, et al. Heterogeneous photocatalytic degradation of an anthraquinone and a triphenylmethane dye derivative in aqueous suspensions of semiconductor [J]. Dyes Pigments, 2008, 76(2): 358-365.
    [184] J.Augustynski. Structure and bonding [M]. Berlin, New York: Springer, 1988, 69.
    [185]王能亮,解立平.光催化氧化法降解有机污染物影响因素及其效率提高途径[J].应用化工, 2007, 36(2): 183-190.
    [186]朱麟勇,常志英,李明宇,等.部分水解聚丙烯酰胺在水溶液中的氧化降解II有机杂质的影响[J].高分子材料科学与工程, 2000, 16(2): 112-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700