用户名: 密码: 验证码:
功能性胆甾化合物的设计合成、分子组装及对环境的响应能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大自然通过创造精美的复杂分子自组装形成超分子结构来维持生命的进行。因此,开发环境响应的超分子功能材料将显得特别重要。虽然有机小分子凝胶通过平衡分子间氢键作用、π-π相互作用、范德华力等可以形成有序的三维网络结构,从而使合适的有机溶剂凝胶化,但是设计刺激诱导的有机小分子凝胶作为一类新型的自组装材料仍然充满挑战。本论文设计合成了四类基于胆甾基团的有机小分子凝胶因子,在此基础上详细研究了外部刺激对凝胶的形貌结构、成胶机理、分子堆积结构的影响,全文包括以下四个部分:
     1.超声波诱导、热力学修复的可逆有机凝胶体系
     1)合成了一系列含胆甾和萘酰胺的凝胶因子、通过控制可形成氢键的个数及强弱来调控其成凝胶行为,发现含有两个氢键位点的凝胶可由超声波控制形成二维的表面结构;
     2)该凝胶可通过溶胶.凝胶的热力学过程转换变成三维空心球结构,这两种结构可多次可逆转换,且其表面疏水性也发生相应的变化;
     3)首次在凝胶体系中实现由超声波诱导、热力学修复的表面结构和疏水性变化,对声音对软材料及生物组织的影响提出了有价值的分子模型。
     2.超声波调控的不同空间尺度自组装凝胶体系
     1)设计合成了一类含有不同长度碳链胆甾和萘酰胺的凝胶因子;通过控制可形成氢键的空间环境和分子的溶解性来调控其成凝胶行为;
     2)随着碳链的增加,凝胶结构由三维空心球过渡到乳凸状纤维结构,凝胶机械强度开始下降,超声波的辐射对凝胶结构的影响开始减小。
     3)通过溶胶.凝胶的转变过程发现:在超声辐射和热力学修复状态下的凝胶,表面疏水性能发生相应的变化;同时,超声波在纳秒范围内产生热压,选择性地调节了分子间和分子内聚集的非共价键之间的相互作用。
     3.自发驱动的凝胶体系的研究
     1)设计合成了一种含有多个氢键的胆甾、方酸以及萘酰胺的C2对称的凝胶化合物。该化合物的方酸核能够与脂肪多胺作用形成凝胶,同时凝胶以动力学的方式自发地收缩并释放溶剂;
     2)通过溶胶.凝胶的转变过程发现:在热力学的条件下,这种收缩的凝胶能够恢复到最初状态并吸入所有溶剂。因此,这种凝胶可以充当溶剂泵把凝胶内的物质通过动力学作用运送到凝胶之外;
     3)通过时间依赖的XRD和CLSM的测试,我们发现凝胶从层状的囊泡逐渐转变成紧密堆集的六方结构。这种自发释放现象清楚地显示该凝胶体系对外界刺激有较好响应,因此在生物应用、药物缓释等方面都存在着广泛的应用前景。
     4.超声波触发上转换纳米晶(UCNPs)的自组装凝胶体系
     1)设计合成了一类含有不同肽链长度的胆甾酸和萘酰胺的凝胶化合物,在上转换纳米晶(UCNPs)存在下,通过分子间强的氢键相互作用及范德华力在超声波的触发下形成有机凝胶:
     2)上转换纳米晶(UCNPs)的加入增强了凝胶的机械强度,同时在980nm激光的激发下发出不同颜色的光,形成多彩色的荧光有机凝胶,由于分子间的相互作用而使这个两组分体系更加稳定;
     3)超声控制了含有油酸的上转换纳米晶(UCNPs)与凝胶化合物分子间的相互作用而形成的特殊行为的具有粘弹性的一类新型的功能化软材料,本研究为更好的理解这类软材料的自组装过程提供了实验依据。
Nature does wonders by crafting complex molecular and supramolecular architectures, which are vital for sustaining life. It is increasingly important for the development of stimuli-responsive supramolecular functional materials by the means of self-assembling. Therefore, creating a stimulus-induced organogel is even more challenging because of the especial need to design a smart molecular that can be changed by external stimulus. Supramolecular organogel can organize into regular nano-architectures through specific non-covalent interactions including hydrogen bonds, hydrophobic interactions,π-πinteractions and Van der Waals forces. In this thesis, four series of naphthalic unit contained cholestoral gelators were designed and synthesized. The external stimulus (ultrasonic irradiation) morphology, mechanism of the gel formation and the packing fashion in the gel state were studied in details. The whole paper contains four parts as following:
     1. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system.
     1) Designed and synthesized a novel family of asymmetric cholesterol-based fluorescent compounds 1a-1c with ALS (aromatic group A, linker L, steroidal group S); 1c has the ability for gelating a wide variety of organic solvents, such as 1-butanol, Acetone, p-xylene.
     2) Both the self-assembly and surface wettability of the compound 1c with two H-bond sites can be controlled by ultrasound stimuli and restored by a thermal process.
     3) The ultrasound irradiation provides heat and pressure, and thus results in the spontaneous formation of the intermolecular H bonds and aggregation-induced helical motif.
     2. Tunable structural gel formation by both sonication and thermal processing in a cholesterol-based self-assembly system.
     1) Three asymmetric cholesterol-based fluorescent organogelators 2a, 2b and 2c with ALS (aromatic group A- linker L- steroidal group S) structural character were prepared, which have similar structure but different alkyl chain spacers between the naphthalimide and amide.
     2) The locations of hydrogen bonds (by different alkyl chain lengths) show a strong effect on the solubility and gelling properties of these compounds.
     3) Both the self-assembly and surface wettability of those compounds can be controlled by ultrasound stimuli and renovated by a thermodynamic process. These results provide a deeper understanding of the intermediate transition states in the gel under ultrasound irradiation.
     3. Gelation induced reversible syneresis via structural evolution.
     1) We reported here a tremendous volume changes in a cholesterol based low weight molecular gel system in the presence of multiamine. Meanwhile, the gelling solvents dissociated from the gel in a dynamic manner.
     2) This capability can be restored and recycled by gel-sol transformation. Thus, the gel may serve as a dynamic solvent pump that can be controlled by subtle changes in parameters, solvent composition or gel composition.
     3) A structural evolution from lamellar vesicles to a more compact hexagonal structure was observed accompanied by the solvent release. This report clearly shows how a practical actuator gel can react to external effects, and thus provides a strategy for the development of spontaneous-release soft materials and raises the possibility of stimulus-responsive organogels as new gel-based systems for applications such as drug delivery and other active ingredients.
     4. Self-assembly of peptide-based multi-color gel triggered by up-converting rare earth nano-particles.
     1) The self-assembly of dipeptide 1a and tripeptide 1b molecules are accelerated through physical interaction with UCNPs (NaYF_4) in polar solvent, which facilitates the self-assembly processes and leads to the formation of hydrid multi-color organogels.
     2) The dipeptide 1a and tripeptide 1b are locked by hydrogen bond and van der Waals forces to realize disperse of UCNPs in gel networks. The individually dispersed UCNPs are significantly aligned within the peptide gel, thereby reinforcing the peptide supramolecular tapes.
     3) UCNPs may also act as physical crosslinks between the tapes, thus enhancing gel stability. This new strategy to make UCNPs-peptide hybrid multi-color gels allows the UCNPs to retain their nanophosphor properties in the gel state.
引文
[1] Lehn, J. M. [J]. Pure Appl. Chem., 1978, 50(9-10):871-892.
    [2] Lehn, J. M. Supramolecular Chemistry-Concenpt and Perspectives, 1995,Germany: VCH.
    [3] Service, R. F. How far can we push chemical self-assembly [J]. Science, 2005,309(1-4):95-104.
    [4] Kiyonaka, S.; Sada, K.; Yoshimura, I.; Shinkai, S.; Kato, N.; Hamachi, I.Semi-wet peptide/protein array using supramolecular hydrogel [J]. Nature Materials, 2004, 3(1):58-64.
    [5] Guenent, J. M. Thermoreversible gelation of polymer and biopolymers. 1992,Academic Press, London.
    [6] Schome, A.; Debnath, S.; Das, P. K. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B_(12) [J]. Langmuir, 2008,24(8):4280-4288.
    [7] Ladet, S.; David, L.; Domard, A. Multi-membrane hydrogels [J]. Nature, 2008,76-80.
    [8] Salick, D. A.; Kretsinger, J. K.; Pochan, D. J.; Schneider, J. P. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel [J]. J. Am. Chem. Soc.,2007,129(47): 14793-14799.
    [9] Jhaveri, S. J.; Hynd, M. R.; Mesfin, N. D.; Turner, J. N.; Shain, W.; Ober, C. K. Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells [J]. Biomacromolecules, 2009,10(1):174-183.
    [10]Zhao, Y.; Yokoi, H.; Tanaka, M.; Kinoshita, T.; Tan, T. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide [J].Biomacromolecules, 2008, 9(6): 1511-1518.
    [11] El-ghayoury, A.; Peeters, E.; Schenning, A. P. H. J.; Meijer, E. W. Quadruple hydrogen bonded oligo(p-phenylene vinylene) dimmers [J]. Chem. Commun.,2000, 1969-1970.
    [12]El-ghayoury, A.; Schenning, A. P. H. J.; van Hal, P. A.; van Duren, J. K. J.; Janssen, R. A. J.; Meijer, E. W. Supramolecular hydrogen-bonded oligo(p-phenylenevinylene) polymers [J]. Angew. Chem., Int. Ed, 2001,40(19):3660-3663.
    [13]Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E. W. Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylene vinylene)s [J]. J. Am. Chem. Soc, 2001,123(3):409-416.
    [14] Jonkheijm, P.; Hoeben, F. J. M; Kleppinger, R.; van Herrikhuyzen, J.; Schenning,A. P. H. J.; Meijer, E. W. Transfer of π-conjugated columnar stacks from solution to surfaces [J]. J. Am.Chem. Soc, 2003,125(51):15941-15949.
    [15] Jonkheijm, P.; van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly [J]. Science,2006, 313(5783):80-83.
    [16]Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; DeFeyter, S.;Schenning, A. P. H. J.; De Schryver, F. C.; Meijer, E. W. π-Conjugated oligo-(p-phenylenevinylene) rosettes and their tubular Self-Assembly [J]. Angew.Chem., Int. Ed, 2004,43(1):74-78.
    [17]Iwaura, R.; Hoeben, F. J. M.; Masuda, M.; Schenning, A. P. H. J.; Meijer, E. W.;Shimizu, T. Molecular-level helical stack of a nucleotide-appended oligo(p-phenylenevinylene) directed by supramolecular self-assembly with a complementary oligonucleotide as a template [J]. J. Am. Chem. Soc, 2006,128(40):13298-13304.
    [18]Shinkai, S.; Murata, K. Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers [J]. J. Mater.Chem., 1998, 8(3):485-495.
    [19] Snip, E.; Shinkai, S.; Reinhoudt, D. N. Organogels of a nucleobase-bearing gelator and the remarkable effects of nucleoside derivatives and a porphyrin derivative on the gel stability [J]. Tetrahedron Lett., 2001, 42(11):2153-2156.
    [20]Ishi-I, T.; Iguchi, R.; Snip, E.; Ikeda, M.; Shinkai, S. [60] Fullerene can reinforce the organogel structure of porphyrin-appended cholesterol derivatives: Novel odd-even effect of the (CH2)_n spacer on the organogel stability [J]. Langmuir, 2001,17(19):5825-5833.
    [21] Wang, R.; Geiger, C; Chen, L.; Swanson, B.; Whitten, D. G Direct observation of sol-gel conversion: the role of the solvent in organogel formation [J]. J. Am.Chem. Soc, 2000,122(10):2399-2400.
    [22]Duncan, D. C; Whitten, D. G.~1 H NMR Investigation of the composition,structure, and dynamics of cholesterol-stilbene tethered dyad organogels [J].Langmuir, 2000,16(16), 6445-6452.
    [23]Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-aided supramolecular control over chromophore packing: twisted and coiled helices with distinct optical, chiroptical, and morphological features [J]. Angew. Chem.,Int. Ed, 2006,45(3):456-460.
    [24] Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. RGB emission throughcontrolled donor self-assemly and modulation of excitation energy transfer:A novel strategy to white-light-emitting organogels [J]. Adv. Mater., 2009,21, 1-5.DOI: 10.1002/adma.200802932.
    [25]Furman, I.; Weiss, R. G. Factors influencing the formation of thermally reversible gels comprised of cholesteryl 4-(2-anthryloxy)butanoate in hexadecane, 1-octanol,or their mixtures [J]. Langmuir, 1993, 9(8):2084-2088.
    [26] Lin, Y. C.; Kachar, B.; Weiss, R. G. Liquid-crystalline solvents as mechanistic probes. Part 37. Novel family of gelators of organic fluids and the structure of their gels [J]. J.Am. Chem. Soc, 1989, 111(15):5542-5551.
    [27]Lu, L.; Cocker, T. M.; Bachman, R. E.; Weiss, R. G. Gelation of organic liquids by some 5α-cholestan-3β-yl N-(2-aryl)carbamates and 3β-cholesteryl 4-(2-anthrylamino)butanoates. How important are H-bonding interactions in the gel and neat assemblies of aza aromatic-linker-steroid gelators? [J]. Langmuir,2000, 16(1):20-34.
    [28] Huang, X.; Raghavan, S. R.; Terech, P.; Weiss, R. G. Distinetic kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties [J]. J. Am. Chem. Soc, 2006, 128(47):15341-15352.
    [29] Huang, X.; Terech, P.; Raghavan, S. R.; Weiss, R. G. kinetics of 5α-Cholestan-3β-yl-N-(2-aryl)carbamates / n-alkane organogel formation and its influence on the fibrillar networks [J]. J. Am. Chem. Soc, 2005,127(12):4336-4344.
    [30] Jung, J. H.; Kobayashi, H.; Bommel, K. J. C; Shinkai, S.; Shimizu, T. Creation of novel helical ribbon and double-layered nanotube TiO structures using an organogel template [J]. Chem. Mater. 2002,14(4):1445-1447.
    [31]Jung, J. H.; Lee, S. J.; Rim, J. A.; Lee, H.; Bae, T.; Lee, S. S.; Shinkai, S.Stabilization of crown-based organogelators by charge-transfer interaction [J].Chem. Mater., 2005,17(3):459-462.
    [32]Jung, J. H.; Shinkai, S.; Shimizu, T. Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica [J].Chem. Mater., 2003,15(11):2141-2145.
    [33] Sugiyasu, K.; Kawano, S.; Fujita, N.; Shinkai, S. Self-sorting organogels with p#n heterojunction points [J]. Chem. Mater., 2008,20(9):2863-2865.
    [34] Bommel, K. J. C; Shinkai, S. Silica transcription in the absence of a solution catalyst: the surface mechanism [J]. Langmuir, 2002,18(12):4544-4548.
    [35] Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives [J]. Angew. Chem. Int. Ed., 2004,43(10):1229-1232.
    [36] Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J. K.; Xu, B. Enzymatic formation of supramolecular hydrogels [J].Adv Mater., 2004,16(16):1440-1444.
    [37] Yang, Z.; Xu, B. A simplevisual assay based on small molecule hydrogels for detecting inhibitors of enzymes [J]. Chem. Commun., 2004,2424-2425.
    [38] Yang, Z.; Xu, K.; Wang, L.; Gu, H.; Wei, H.; Zhang, M.; Xu. B. Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds [J]. Chem. Commun., 2005,4414-4416.
    [39]Zhang, Y; Gu, H.; Yang, Z.; Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction [J]. J. Am. Chem. Soc, 2003, 125(45):13680-13681.
    [40]Zhou, S.; Matsumoto, S.; Tian, H.; Yamane, H.; Ojida, A.; Kiyonaka, S.; Hamachi,I. pH-responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules [J]. Chem. Eur. J., 2005, 11(4):1130-1136.
    [41]Yamaguchi, S.; Yoshimura, I.; Kohira, T.; Tamarm, S.; Hamachi, I. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives [J]. J. Am. Chem. Soc, 2005,127(33):11835-11841.
    [42]Yoshimura, I.; Miyahara, Y; Kasagi, N.; Yamane, H.; Ojida, A.; Hamachi, I.Molecular recognition in a supramolecular hydrogel to afford a semi-wet sensor chip [J].J.Am. Chem. Soc.,2004,126(39): 12204-12205.
    [43]Miravet, J. F.; Escuder, B. Reactive organogels: self-assembled support for functional materials [J]. Org. Lett, 2005, 7(22):4791-4794.
    [44]Bhattacharya, S.; Acharya, S. N. G. Pronounced hydrogel formation by the self-assembled aggregates of N-alkyl disaccharide amphiphiles [J]. Chem. Mater.,1999,11(12):3504-3511.
    [45] Yoza, K.; Amanokura, N.; Ono, Y; Akao, T.; Shinmori, H.; Takeuchi, M.; Shinkai,S.; Reinhoudt, D. N. Sugar-integrated gelators of organic solvents-their remarkable diversity in gelation ability and aggregate structure [J]. Chem. Eur. J.,1999,5(9):2722-2729.
    [46]Hafkamp, R. J. H.; Feiters, M. C.; Nolte, R. J. M. Organogels from carbohydrate amphiphiles [J].J. Org. Chem., 1999,64(2):412-426.
    [47] Jung, J. H.; John, G.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T.Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure [J]. Langmuir, 2001, 17(23):7229-7232.
    [48]John, G.; Jung, J.H.; Masuda, M.; Shimizu, T. Unsaturation effect on gelation behavior of aryl glycolipids [J]. Langmuir, 2004,20(6):2060-2065.
    [49]Vemula, P. K.; Li, J.; John, G Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs [J]. J. Am. Chem. Soc, 2006, 128(27):8932-8938.
    [50] Jung, J. H.; Shinkai, S.; Shimizu, T. Nanometer-level sol-gel transcription of cholesterol assemblies into monodisperse inner helical hollows of the silica [J].Chem. Mater., 2003, 15(11):2141-2145.
    [51] Jung, J. H.; Ono, Y.; Sakurai, K.; Sano, M; Shinkkai, S. Novel vesicular aggregates of crown-appended cholesterol derivatives which act as gelator of organic solvents and as templates for silica transcription [J]. J. Am. Chem. Soc,2000,122(36):8648-8653.
    [52]Yagai, S.; Iwashima, T.; Kishikawa, K.; Nakahara, S.; Karatsu, T.; Kitamura, A.Photoresponsive self-assembly and self-organization of hydrogen-bonded supramolecular tapes [J]. Chem. Eur. J., 2006,12(15):3984-3994.
    [53] Jung, J. H.; Kobayashi, H.; Masuda, M.; Shimizu, T.; Shinkai, S. Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription [J]. J. Am. Chem. Soc, 2001,123(36):8785-8789.
    [54]Zhou, Y.; Xu, M.; Yi, T.; Xiao, S.; Zhou, Z.; Li, F.; Huang, C.Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system [J]. Langmuir, 2007,23(1):202-208.
    [55]Yagai, S.; Nakajima, T.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A.Hierarchical organization of photoresponsive hydrogen-bonded rosettes [J]. J. Am.Chem. Soc, 2005,127(31):11134-11139.
    [56] Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M; Esch, J. H.; Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality [J].Science, 2004,304(5668):278-281.
    [57] Jong, J. J. D.; Feringa, B. L.; Esch, J. H. Light-driven dynamic pattern formation [J]. Angew. Chem. Int. Ed., 2005,44(16):2373-2376.
    [58]Jong, J. J. D.; Tiemersma, T. D.; Esch, J. H.; Feringa, B. L. Dynamic chiral selection and amplification using photoresponsive organogelators [J]. J. Am.Chem. Soc, 2005,127(40): 13804-13805.
    [59] Wang, S.; Shen, W.; Feng, Y. L.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator [J]. Chem. Commun., 2006,1497-1499.
    [60]Naota, T.; Koori, H. Molecules that assemble by sound: An application to the instant gelation of stable organic fluids [J]. J. Am. Chem. Soc, 2005, 127(26):9324-9325.
    [61]Isozaki, K.; Takaya, H.; Nata, T. Ultrasound-induced gelation of organic fluids with metalated peptides [J]. Angew. Chem. Int. Ed., 2007,46(16):2855-2857.
    [62]Qin, J.; Asempah, I.; Laurent, S.; Fornara, A.; Muller, R. N.; Muhammed, M.Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs [J].Adv. Mater., 2009,21, 1354-1357.
    [63]Hu, S.; Liu, T.; Liu, D.; Chen, S. Controlled pulsatile drug release from a ferrogel by a high-fFrequency magnetic field [J]. Macromolecules, 2007,40(19):6786-6788.
    [64]Kawano, S.; Fujita, N.; Shinkai, S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli [S].J. Am. Chem. Soc, 2004,126(28):8592-8593.
    [65]Nobusawa, K.; Ikeda, A.; Kikuchi, j.; Kawano, S.; Fujita, N.; Shinkai, S.Reversible solubilization and precipitation of carbon nanotubes through oxidation-reduction reactions of a solubilizatng agent [J]. Angew. Chem. Int. Ed,2008,47(24):4577-4580.
    [66] Webb, J. E. A.; Crossley, M. J.; Turner, P.; Thordarson, P. Pyromrllitamide aggregates and their response to anion stimuli [J]. J. Am. Chem. Soc. 2007,129(22):7155-7162.
    [67]D(?)oli(?), Z.; Cametti, M.; Cort, A. D.; Mandolini, L.; Zinic, M.Fluoride-responsive organogelator based on oxalamide-derived anthraxquinone [J].Chem. Commun., 2007, 3535 - 3537.
    [68] Wang, C; Zhang, D.; Zhu, D. A chiral low-molecular-weight gelator based on binaphthalene with two urea moieties: modulation of the CD spectrum after gel formation [J]. Langmuir, 2007, 23(3):1478-1482.
    [69] Yang, H.; Yi, T.; Zhou, Z.; Zhou, Y.; Wu, J.; Xu, M.; Li, F.; Huang, C.Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives [J]. Langmuir, 2007, 23(15):8224-8230.
    [70] Yamanaka, M.; Nakamura, T.; Nakagawa, T.; Itagaki, H. Reversible sol-gel transition of a tris-urea gelator that responds to chemical stimuli [J]. Tetrahedron Lett., 2007,48(51):8990-8993.
    [71]Applegarth, L.; Clark, N.; Richardson, A. C; Parker, A. D. M.; Radosavljevic-Evans, I.; Goeta, A. E.; Howard, J. A. K.; Steed, J. W. Modular nanometer-scale structuring of gel fibres by sequential self-organization [J]. Chem.Commun., 2005, 5423 - 5425.
    [72]Liu, Q.; Wang, Y.; Li, W.; Wu, L. Structural characterization and chemical response of a Ag-coordinated supramolecular gel [J]. Langmuir, 2007,23(15):8217-8223.
    [73]Kishimura, A.; Yamashita, T.; Aida, T. Phosphorescent organogels via"Metallophilic" interactions for reversible RGB-color switching [J]. J. Am. Chem.Soc, 2005,127(1):179-183.
    [74] Kim, H.; Zin, W.; Lee, M. Anion-directed self-assembly of coordination polymer into tunable secondary structure [J]. J. Am. Chem. Soc, 2004,126(22):7009-7014.
    [75]Kim, H.; Lee, J.; Lee, M. Stimuli-responsive gels from reversible coordination polymers [J].Angew. Chem. Int. Ed, 2005,44(36):5810-5814.
    [76]Koumura, N.; Kudo, M.; Tamaoki, N. Photocontrolled gel-to-sol-to-gel phase transitioning of meta-substituted azobenzene bisurethanes through the breaking and reforming of hydrogen bonds [J]. Langmuir, 2004,20(23), 9897-9900.
    [77]Kang, S. H.; Jung, B. M.; Kim, W. J.; Chang, J. Y. Emebedding nanofibers in a polymer matrix by polymerization of organogels comprising heterobifunctional organogelators and monomeric solvents [J]. Chem. Mater., 2008,20(17):5532-5540.
    [78]Kawano, S.; Fujita, N.; Shinkai, S. Quarter-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol-gel phase transition [J]. Chem. Eur. J., 2005, 11(16):4735-4742.
    [79] Ray, S.; Das, A. K.; Banerjee, A. Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks [J]. Chem. Commun., 2006, 2816-2818.
    [80] Tu, T.; Assenmacher, W.; peterlik, H.; Schnakenburg, G; Dotz, K. H.Pyridine-bridged benzimidazolium salts: synthesis, aggregation, and application as phase-transfer catalysts [J]. Angew. Chem. Int., Ed, 2008,47(37):7127-7131.
    [81]Tu, T.; Bao, X.; Assenmacher, W.; Peterlik, H.; Daniels, J.; Dotz, K. H. Efficient air-stable organometallic low-molecular-mass gelators for ionic liquids: synthesis, aggregation and application of pyridine-bridged Bis(benzimidazolylidene)-palladium complexes [J]. Chem. Eur. J., 2009,15(8):1853-1861.
    [82]Xing, B.; Yu, C; Chow, K.; Ho, P.; Fu, D.; Xu, B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaerials [J]. J. Am. Chem. Soc, 2002,124(50): 14846-14847.
    [83]Nakashima, T.; Kimizuka, N. Light-harvesting supramolecular hydrogels assembled from short-legged cationic L-glutamate derivatives and anionic fluorophores [J]. Adv. Mater., 2002,14(11):1113-1116.
    [84] Tiller, J. C. Increasing the local conccentration of drugs by hydrogel formation [J].Angew. Chem. Int., Ed, 2003,42(27):3072-3075.
    [1] Ehrick, J. D.; Deo, S. K.; Browning, T. W.; Bachas, L. G.; Madou, M. J.; Daunert, S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics [J]. Nat. Mater., 2005,4(4):298-302.
    [2] Lehn, J. M. Supramolecular polymer chemistry - scope and perspectives [J].Polym. Int., 2002, 51(10):825 - 839.
    [3] Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules [J].Chem. Rev.,2004,104(3):1201-1218.
    [4] Bommel, K. J. C; Friggeri, A.; Shinkai, S. Organic templates for the generation of inorganic materials [J]. Angew. Chem. Int. Ed., 2003,42(9):980 - 999.
    [5] Miravet, J. F.; Escuder, B. Reactive organogels: Self-assembled support for functional materials [J]. Org Lett., 2005, 7(22):4791-4794.
    [6] Hirst, A. R.; Smith, D. K. Two-component gel-phase materials -highly tunable self-assembling systems [J]. Chem. Eur. J, 2005,11(19):5496 -5508.
    [7] Hirst, A. R.; Smith, D. K.; Harrington, J. P. Unique nanoscale morphologies underpinning organic gel-phase materials [J]. Chem. Eur. J., 2005, 11(22):6552 -6559.
    [8] Verplanck, N.; Galopin, E.; Camart, J-C; Thorny, V. Reversible electrowetting on superhydrophobic silicon nanowires [J]. Nano Lett., 2007,7(3):813-817.
    [9] Garcia, N.; Benito, E.; Guzman, J.; Tiemblo, P. Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces: Preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica [J]. J. Am. Chem. Soc, 2007, 129(16):5052-5060.
    [10] Zhou, Y. F.; Yi, T.; Li, T. C.; Zhou, Z. G.; Li, F. Y.; Huang, W.; Huang, C. H.Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions [J]. Chem. Mater., 2006,18(13):2974-2981.
    [11] Dautel, O. J.; Robitzer, M.; Lere-Porte, J.-P.; Serein-Spirau, F.; Moreau, J. J. E.Self-organized ureido substituted diacetylenic organogel. photopolymerization of one-dimensional supramolecular assemblies to give conjugated nanofibers [J]. J.Am. Chem. Soc, 2006,128(50): 16213 -16223.
    [12] Kawano, S.-I.; Fujita, N.; Shinkai, S. Quater-, quinque-, and sexithiophene organogelators: Unique thermochromism and heating-free sol-gel phase transition [J]. Chem. Eur. 1,2005,11(16):4735-4742.
    [13] Naota, T.; Hiroshi, K. Molecules that assemble by sound: An application to the instant gelation of stable organic fluids [J]. J. Am. Chem. Soc, 2005,127(26):9324-9325.
    [14] Weng, W.; Beck, J. B.; Jamieson, A. M; Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels [J]. J. Am. Chem. Soc, 2006,128(35): 11663-11 672.
    [15] Isozaki, K.; Takaya, H.; Naota, T. Ultrasound-induced gelation of organic fluids with metalated peptides [J].Angew. Chem. Int. Ed, 2007,46(16):2855- 2857.
    [16] Shirakawa, M.; Fujita, N.; Shinkai, S. A stable single piece of unimolecularly π-stacked porphyrin aggregate in a thixotropic low molecular weight gel: A one-dimensional molecular template for polydiacetylene wiring up to several tens of micrometers in length [J]. J. Am. Chem. Soc, 2005,127(12):4164-4165.
    [17] Paulusse, J. M. J.; Sijbesma, R. P. Reversible mechanochemistry of a Pd (Ⅱ) coordination polymer [J]. Angew. Chem. Int. Ed., 2004,43(34):4460- 4462.
    [18] Paulusse, J. M. J.; van Beek, D. J. M; Sijbesma, R. P. Reversible switching of the sol-gel transition with ultrasound in Rhodium(Ⅰ) and Iridium(Ⅰ) coordination networks [J]. J. Am. Chem. Soc, 2007,129(8):2392-2397.
    [19] Paulusse, J. M. J.; Huijbers, J. P. J.; Sijbesma, R. P. Quantification of ultrasound-induced chain scission in Pd(Ⅱ)-phosphine coordination polymers [J].Chem. Eur. J., 2006,12(18):4928-4934.
    [20] Wang, C.; Zhang, D. Q.; Zhu, D. B. A low-molecular-mass gelator with an eectroactive tetrathiafulvalene group: Tuning the gel formation by charge-transfer interaction and oxidation [J]. J. Am. Chem. Soc, 2005, 127(47): 16372-16373.
    [21] Huang, X.; Raghavan, S. R.; Terech, P.; Weiss, R. G. Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties [J].J.Am. Chem. Soc., 2006, 128(47):15341-15352.
    [22] Huang, X.; Terech, P.; Raghavav, S. R.; Weiss, R. G. Kinetics of 5α-cholestan-3β-yl -N-(2-naphthyl)carbamate/n-alkane organogel formation and its influence on the fibrillar networks [J]. J. Am. Chem. Soc, 2005,127(12):4336-4344.
    [23] George, M.; Weiss, R. G. Molecular organogels: Soft matter comprised of low-molecular-mass organic gelators and organic liquids [J]. Acc. Chem. Res.,2006,39(8):489 - 497.
    [24] Estroff, L. A.; Leiserowitz, L.; Addadi, L.;Weiner, S.; Hamilton, A. D.Characterization of an organic hydrogel: A Cryo-transmission electron microscopy and X-ray diffraction study [J]. Adv. Mater., 2003,15(1):38-42.
    [25] Hanabusa, K.; Matsumoto, M.; Kimura, M.; Kakehi, A.; Shirai, H. Low molecular weight gelators for organic fluids: Gelation using a family of cyclo(dipeptide)s [J]. J. Colloid Interface Sci., 2000, 224(2):231-244.
    [26] Cravotto, G.; Cintas, P. Forcing and controlling chemical reactions with ultrasound [J]. Angew. Chem. Int. Ed, 2007, 46(29):5476 - 5478.
    [27] Cai, Y.; Pan, X.; Xu, X.; Hu, Q.; Li, L.; Tang, R. Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: A smart and biocompatible drug release system [J]. Chem. Mater., 2007,19(13):3081-3083.
    [28] Sun, T.; Feng, L.; Gao, X.; Jiang, L. Bioinspired surfaces with special wettability [J]. Acc. Chem. Res., 2005, 38(8):644 - 652.
    [29] Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.;Zhu, D. Super-hydrophobic surfaces: From natural to artificial [J]. Adv. Mater.,2002, 14(24): 1857-1860.
    [30] Calliea, M.; QuLrL, D. On water repellency [J]. Soft Matter, 2005, 1(1):55-61.
    [31] Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.;Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces [J]. Nature ,1997, 388(6641):431-432.
    [32] Feng, C; Zhang, Y.; Jin, J.; Song, Y.; Xie, L.; Qu, G.; Jiang, L.; Zhu, D. Reversible wettability of photoresponsive fluorine-containing azobenzene polymer in Langmuir-Blodgett films [J]. langmuir, 2001,17(15):4593 - 4597.
    [33] Yu, X.; Wang, Z.; Jiang, Y.; Shi, F.; Zhang, X. Reversible pH-responsive surface:From superhydrophobicity to superhydrophilicity [J]. Adv. Mater, 2005,17(10):1289-1293.
    [34] Jiang, Y.; Wang, Z.; Yu, X.; Shi, F.; Xu, H.; Zhang, X.; Smet, M.; Dehaen, W.Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: Toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces [J]. Langmuir, 2005,21(5): 1986-1990.
    [35] Sun, T.; Wang, G.; Feng, L.; Liu, B.; Ma, Y.; Jiang, L.; Zhu, D. Reversible switching between superhydrophilicity and superhydrophobicity [J]. Angew.Chem. Int. Ed, 2004,43(3):357 -360.
    [1] Kuhn, W.; Hargitay, B.; Katchalsky, A.; Eisenberg, H. Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks [J]. Nature, 1950,165, 514-516.
    [2] Tanaka, T.; Wang, C; Pande, V.; Grosberg, A.Y.; English, A.; Masamune, S.; Gold,H.; Levy, R.; King, K. Polymer gels that can recognize and recover molecules [J].Faraday Discuss., 1995,101,201-206.
    [3] Zhang, Y.; Ji, H. F.; Brown, G M.; Thundat, T. Detection of CrO_(42)- using a hydrogel swelling microcantilever sensor [J]. Anal. Chem., 2003,75(18):4773-4777.
    [4] Li, W.; Zhao, H.; Teasdale, P. R.; John, R.; Zhang, S. Synthesis andcharacterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd [J]. Funct. Polym., 2002, 52(1):31-41.
    [5] Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, C; Jo, B. H.Functional hydrogel structures for autonomous flow control inside microfluidic channels [J]. Nature, 2000,404(6778):588-590.
    [6] Richter, A.; Paschew, G; Klatt, S.; Lienig, J.; Arndt, K. F.; Adler, H. J. P. Review on hydrogel-based pH sensors and microsensors [J]. Sensors, 2008, 8(1):561-581.
    [7] Cordier, P.; Tournilhac, F.; Ziakovic, C. S.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly [J]. Nature, 2008,451(7181):977-980.
    [8] Wool, R. P. Self-healing materials: a review [J]. Soft Matter, 2008,4(3):400-418.
    [9] Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C.Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis[J]. Science, 2008, 319(5868):1370-1374.
    [10] Organic [J]. Nanostructures (Eds: Atwood, J. L.; Steed, J. W.) Wiley-VCH:Weinheim, Germany, 2008.
    [11] Palmer, L. C; Stupp, S. I. Molecular self-assembly into one-dimensional nanostructures [J].Acc. Chem. Res., 2008, 41(12):1674-1684.
    [12] Ajayaghosh, A.; Varghese, R.; George, S. J.; Vijayakumar, C. Transcription and amplification of molecular chirality to oppositely biased supramolecular helices [J].Angew. Chem. Int. Ed, 2006,45(7): 1141-1144.
    [13] Babu, S. S.; Praveen, V. K.; Prasanthkumar, S.; Ajayaghosh, A. Self-assembly of oligo(para-phenylenevinylene)s through arene-perfluoroarene interactions: a gels with longitudinally controlled fiber growth and supramolecular exciplex-mediated enhanced emission [J]. Chem. Eur. J., 2008,14(31):9577-9584.
    [14] Dou, X.; Pisula, W.; Wu, J.; Bodwell, G. J.; Mullen, K. Reinforced self-assembly of hexa-peri-hexabenzocoronenes by hydrogen bonds: from microscopic aggregates to macroscopic fluorescent organogels [J]. Chem. Eur. J., 2008,14(1):240-249.
    [15] Behanna, H. A.; Rajangam, K.; Stupp, S. I. Modulation of fluorescence through coassembly of molecules in organic nanostructures [J]. J. Am. Chem. Soc, 2007,129(2):321-327.
    [16] Ajayaghosh, A.; Praveen, V. K. Organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions [J].Acc. Chem. Res., 2007,40(8):644-656.
    [17] Terech, P.; Weiss, R. G. Low-molecular mass gelators of organic liquids and the properties of their gels [J]. Chem. Rev., 1997,97(8):3133-3159.
    [18] Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly [J]. Nature, 2008,451(7181):977-980.
    [19] Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H.K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding [J].Science, 1997, 278(5343): 1601-1604.
    [20] Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules [J].Chem. Rev., 2004, 104(3):1201-1218.
    [21] Bommel, K. J. C; Friggeri, A.; Shinkai, S. Organic templates for the generation of inorganic materials [J].Angew. Chem. Int. Ed., 2003, 42(9):980-999.
    [22] Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry [J]. Chem. Soc. Rev., 2007,36(2): 151-160.
    [23] "Low Molecular Mass Gelators": Fages, F. [J]. Top. Curr. Chem., 2005,256,283.
    [24] "Supramolecular Dye Chemistry": Ishi-i, T.; Shinkai, S.; Wurthner, F. [J]. Top.Curr. Chem., 2005,258,119-160.
    [25] Abdallah, D. J.; Weiss, R. G. Organogels and low molecular mass organic gelators [J]. Adv. Mater., 2000,12(17):1237-1247.
    [26] Van Esch, J. H.; Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design [J]. Angew. Chem.Int. Ed, 2000, 39(13):2263-2266.
    [27] Yagai, S.; Nakajima, T.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A.Hierarchical organization of photoresponsive hydrogen-bonded rosettes [J]. J. Am. Chem. Soc, 2005,127(31):11134-11139.
    [28] Nobusawa, K.; Ikeda, A.; Kikuchi, J.; Kawano, S.; Fujita, N.; Shikai, S.Reversible solubilization and precipitation of carbon nanotubes through oxidation-reduction reactions of a solubilizing agent [J]. Angew. Chem. Int. Ed,2008,47(24):4577-4580.
    [29] Ajayaghosh, A.; Chithra, P.; Varghese, R. Self-assembly of tripodal squaraines: cation-assisted expression of molecular chirality and change from spherical to helical morphology [J]. Angew. Chem. Int. Ed, 2007,46(1-2):230-233.
    [30] Mamada, A.; Tanaka, T.; Kungwatchakun, D.; Irie, M. Photoinduced phase transition of gels [J]. Macromolecules, 1990,23(5): 1519-1526.
    [31] Frkanec, L.; Jokic, M.; Makarevic, J.; Wolsperger, K.; Zinic, M. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system [J]. J. Am. Chem. Soc, 2002,124(33):9716-9717.
    [32] Kumar, N. S. S.; Varghese, S.; Narayan, G; Das, S. Hierarchical self-assembly of donor-acceptor-substituted butadiene amphiphiles into photoresponsive vesicles and gels [J].Angew. Chem. Int. Ed., 2006,45(38):6317-6321.
    [33] Xiao, S.; Zou, Y.; Yu, M.; Yi, T.; Zhou, Y; Li, F.; Huang, C. A photochromic fluorescent switch in an organogel system with nondestructive readout ability [J].Chem. Commun., 2007,4758-4760.
    [34] Zhou, Y.; Xu, M; Yi, T.; Xiao, S.; Zhou, Z.; Li, F.; Huang, C. Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system [J]. Langmuir, 2007,23(l):202-208.
    [35] Cai, W.; Wang, G T.; Xu, Y. X.; Jiang, X. K.; Li, Z. T. Vesicles and organogels from foldamers: a solvent-modulated self-assembling process [J]. J. Am. Chem. Soc, 2008,130(22):6936-6937.
    [36] Zhou, Y; Yi, T.; Li, T.; Zhou, Z.; Li, R; Huang, W.; Huang, C. Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions [J]. Chem. Mater., 2006, 18(13):2974-2981.
    [37] Yang, H.; Yi, T.; Zhou, Z.; Zhou, Y; Wu, J.; Xu, M.; Li, R; Huang, C. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives [J]. Langmuir, 2007, 23(15):8224-8230.
    [38] Kim, H.-J.; Lee, J.-H.; Lee, M. Stimuli-responsive gels from reversible coordination polymers [J]. Angew. Chem. Int. Ed., 2005,44(36):5810-5814.
    [39] Ajayaghosh, A.; Chithra, P.; Varghese, R.; Divya, K. P. Controlled self-assembly of squaraines to ID supramolecular architectures with high molar absorptivity [J].Chem. Commun., 2008, 969-971.
    [40] Hwang, I.; Jeon, W. S.; Kim, H.-J.; Kim, D.; Kim, H.; Selvapalam, N.; Fujita, N.;Shinkai, S.; Kim, K. Cucurbit[7]uril: A simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior [J]. Angew.Chem. Int. Ed, 2006,46(1-2):210-213.
    [41] Paulusse, J. M. J.; Sijbesma, R. J. Molecule-based rheology switching [J]. Angew.Chem. Int. Ed, 2006,45(15):2334-2337.
    [42] Paulusse, J. M. J.; van Beck, D. J. M.; Sijbesma, R. P. Reversible switching of the sol-gel transition with ultrasound in Rhodium(Ⅰ) and Iridium(Ⅰ) coordination networks [J]. J. Am. Chem. Soc, 2007, 129(8):2392-2397.
    [43] Paulusse, J. M. J.; Huijbers, J. P. J.; Sijbesma, R. P. Quantification of ultrasound-induced chain scission in Pd(Ⅱ)-phosphine coordination polymers [J]. Chem. Eur. J,2006,12(18):4928-4934.
    [44] Naota, T.; Koori, H. Molecules that assemble by sound: An application to the instant gelation of stable organic fluids [J]. J. Am. Chem. Soc, 2005,127(26):9324-9325.
    [45] Isozaki, K.; Takaya, H.; Naoto, T. Ultrasound-induced gelation of organic fluids with metalated peptides [J].Angew. Chem. Int. Ed, 2007,46(16):2855-2857.
    [46] Avalos, M; Babiano, R.; Cintas, P.; Gomez-Carretero, A.; Jimenez, J. L.; Lozano,M.; Ortiz, A. L.; Palacios, J. C; Pinazo, A. A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: synthesis,gelation under thermal and sonochemical stimuli, and mesomorphic characterization [J]. Chem. Eur. J., 2008,14(18):5656-5669.
    [47] Wang, Y.; Zhan, C; Fu, H.; Li, X.; Sheng, X.; Zhao, Y.; Xiao, D.; Ma, Y.; Ma, J.S.; Yao, J. Switch from intra- to intermolecular H-bonds by ultrasound: Induced gelation and distinct nanoscale morphologies [J]. Langmuir, 2008,24(15):7635-7638.
    [48] Zhang, S.; Yang, S.; Lan, J.; Tang, Y.; Xue, Y; You, J. Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents [J]. J. Am. Chem. Soc, 2009,131(5): 1689-1691.
    [49] Wang, C; Zhang, D. Q.; Zhu, D. B. A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: Tuning the gel formation by charge-transfer interaction and oxidation [J]. J. Am. Chem. Soc, 2005,127(47):16372-16373.
    [50] Wu, J. C; Yi, T.; Shu, T. M.; Yu, M. X.; Zhou, Z. G; Xu, M.; Zhou, Y. F.; Zhang,H. J.; Han, J. T.; Li, F.Y.; Huang, C. H. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system [J]. Angew. Chem. Int. Ed., 2008,47(6): 1063-1067.
    [51] Liang, H. D.; Blomley, M. J. K. The role of ultrasound in molecular imaging [J].Br. J. Radiol, 2003, 76(Spec. lss. 2):S140-S150.
    [52] Huang, X.; Raghavan, S. R.; Terech, P.; Weiss, R. G Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties [J]. J. Am. Chem. Soc, 2006, 128(47):15341-15352.
    [53] Huang, X.; Terech, P.; Raghavav, S. R.; Weiss, R. G. Kinetics of 5α-cholestan-3β-yl N-(2-naphthyl)carbamate/n-alkane organogel formation and its influence on the fibrillar networks [J]. J. Am. Chem. Soc, 2005,127(12):4336-4344.
    [54] George, M; Weiss, R. GMolecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids [J]. Acc. Chem. Res.,2006, 39(8):489-497.
    [55] Kawano, S.; Fujita, N.; Shinkai, S. Quater-, quinque-, and sexithiophene organogelators: Unique thermochromism and heating-free sol-gel phase transition [J]. Chem. Eur. J., 2005, 11(16):4735-4742.
    [56] Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives [J]. Angew. Chem. Int. Ed., 2004,43(10):1229-1233.
    [57] Yagai, S.; Ishii, M.; Karatsu, T.; Kitamura, A. Gelation-assisted control over excitonic interaction in merocyanine supramolecular assemblies [J]. Angew. Chem.Int. Ed, 2007,46(42):8005-8009.
    [58] Fujita, N.; Sakamoto, Y.; Shirakawa, M.; Ojima, M; Fujii, A.; Ozaki, M; Shinkai, S. Polydiacetylene nanofibers created in low-molecular-weight gels by post modification: Control of blue and red phases by the odd-even effect in alkyl chains [J]. J. Am. Chem. Soc, 2007, 129(14):4134-4135.
    [59] Ishi-i, T.; Iguchi, R.; Snip, E.; Ikeda, M.; Shinkai, S. [60] Fullerene can reinforce the organogel structure of porphyrin-appended cholesterol derivatives: Novel odd-even effect of the (CH_2) _n spacer on the organogel stability [J]. Langmuir,2001, 17(19):5825-5833.
    [60] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto,F.; Ueda, K.; Shinkai, S. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation [J]. J. Am. Chem. Soc,1994, 116(15):6664-6676.
    [61] Jones, R. A. L Soft Condensed Matter, Oxford University Press: New York, 2002; Chapter 8.
    [62]Lescanne, M.; Grondin, P.; D'Aleo, A.; Fages, F.; Pozzo, J. L.; Mondain Monval, O.; Reinheimer, P.; Colin, A. Thixotropic organogels based on a simple N-hydroxyalkyl amide: Rheological and aging properties [J]. Langmuir, 2004,20(8):3032-3041.
    [63]Abdallah, D. J.; Weiss, R. G. The influence of the cationic center, anion, and chain length of tetra-n-alkylammonium and -phosphonium salt gelators on the properties of their thermally reversible organogels [J]. Chem. Mater., 2000,12(3):406-413.
    [64]Galkin, O.; Vekilov, P. G Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state [J]. J. Mol. Biol. 2004, 336(1):43-59.
    [65] Seo, S. H.; Chang, J. Y.; Tew, G. N. Self-assembled vesicles from an amphiphilic ortho-phenylene ethynylene macrocycle [J]. Angew. Chem. Int. Ed., 2006,45(45):7526-7530.
    [66] Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Schenning, A. P. H. J.;Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.; Feast, W. J.; Guerzo, A. D.;Desvergne, J. P.; Maan, J. C. Magnetic deformation of self-assembled sexithiophene spherical nanocapsules [J]. J. Am. Chem. Soc, 2005,127(4):1112-1113.
    [67] Hirst, A. R.; Coates, I. A.; Boucheteau, T. R.; Miravet, J. F.; Escuder, B.;Castelletto, V.; Hamley, I. W.; Smith, D. K. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model [J]. J. Am. Chem. Soc, 2008,130(28):9113-9121.
    [68] hyun, K.; Kim, S. H.; Ahn, K. H.; Lee, S. J. Large amplitude oscillatory shear as a way to classify the complex fluids [J]. J. Non-Newtonian Fluid Mech, 2002,107(1-3):51-65.
    [69] Hyun, K.; Nam, J. G; Wilhellm, M.; Ahn, K. H.; Lee, S. J. Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions [J].Rheol Acta, 2006,45(3):239-249.
    [70] Kasapis, S.; Al-Marhoobi, I. M.; Deszczynski, M.; Mitchell, J. R.; Abeysekera, R. Gelatin vs.polysaccharide in mixture with sugar[J].Biomacromolecules,2003,4(5):1142-1149.
    [71]Srinivasan,S.;Babu,S.S.;Praveen,V.K.;Ajayaghosh,A.Carbon nanotube triggered self-assembly of oligo(p-phenylene vinylene)s to stable hybrid pi-gels [J].Angew.Chem.Int.Ed.,2008,47(31):5746-5749.
    [72]Cravotto,G.;Cintas,P.Forcing and controlling chemical reactions with ultrasound[J].Angew.Chem.Int.Ed.,2007,46(29):5476-5478.
    [73]Cai,Y.;Pan,X.;Xu,X.;Hu,Q.;Li,L.;Tang,R.Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres:A smart and biocompatible drug release system[J].Chem.Mater.,2007,19(13):3081-3083.
    [74]Sirinivasan,S.;Praveen,V.K.;Philip,R.;Ajayaghosh,A.Bioinspired superhydrophobic coatings of carbon nanotubes and linear pi systems based on the "bottom-up" self-assembly approach[J].Angew.Chem.Int.Ed.,2008,47(31):5750-5754.
    [75]Sun,T.;Feng,L.;Gao,X.;Jiang,L.Bioinspired surfaces with special wettability [J].Acc.Chem.Res.,2005,38(8):644-652.
    [76]Feng,L.;Li,S.;Li,Y.;Li,H.;Zhang,L.;Zhai,J.;Song,Y.;Liu,B.;Jiang,L.;Zhu,D.Super-hydrophobic surfaces:from natural to artificial[J].Adv.Mater.,2002,14(24):1857-1860.
    [77]Calliea,M.;Qu(?)r(?),D.On water repellency[J].Soft.Matter.,2005,1(1):55-61.
    [1] Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry[J]. Chem. Soc. Rev., 2007, 36(2): 151-160.
    [2] Lehn, J. M. Toward self-organization and complex matter[J]. Science, 2002,295(5564):2400-2403.
    [3] Ehrick, J. D.; Deo, S. K.; Browning, T.W.; Bachas, L. G.; Madou, M. J.; Daunert,S. Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics[J]. Nat. Mater., 2005,4(4): 298-302.
    [4] Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Ky Hirschberg, J. H.K.; Lange, R. F. M. J.; Lowe, K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J].Science, 1997,278(5343): 1601.
    [5] Kuksenok, O.; Yashin, V. V.; Balazs, A. C. Mechanically induced chemical oscillations and motion in responsive gels[J]. Soft Matter, 2007,3(9):1138-1144.
    [6] Jaycox, G. D. Stimuli-responsive polymers. Ⅶ. Photomodulated chiroptical switches: Periodic copolyaramides containing azobenzene, phenylene, and chiral binaphthylene main-chain linkages. J. Polym. Sci. A, Polym. Chem., 2006, 44,207;
    [7] Luzinov, I.; Minko, S.; Tsukruk, V. V. Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers[J]. Prog. Polym. Sci., 2004,29(7):635-698.
    [8] Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn, J. M. Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays-formation, characterization, and properties[J].Chem. -Eur. J., 2002, 8(5): 1227-1244.
    [9] Annaka, M.; Tanaka, T. Multiple phase of polymer gels[J]. Nature,l992,355(6359):430-432.
    [10] Unal, B.; Hedden, R. C. Gelation and swelling behavior of end-linked hydrogels prepared from linear poly(ethylene glycol) and poly(amidoamine) dendrimers[J].Polymer, 2006,47(24):8173-8182.
    [11] Zhao, Y.; Kang, J.; Tan, T. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid) [J]. Polymer, 2006,47(22):7702-7710.
    [12] Karbarz, M.; Pulka, K.; Misicka, A.; Stojek, Z. pH and temperature-sensitive N-isopropylacrylamide ampholytic networks incorporating L-lysine[J]. Langmuir,2006,22(18):7843-7847.
    [13] DePierro, M. A.; Carpenter, K. G.; Guymon, C. A. Influence of polymerization conditions on nanostructure and properties of polyacrylamide hydrogels templated from lyotropic liquid crystals[J]. Chem. Mater., 2006, 18(23): 5609-5617.
    [14] Kim, S. J.; Spinks, G. M.; Prosser, S.; Whitten, P. G.; Wallace, G. G.; Kim, S. I.Surprising shrinkage of expanding gels under an external load[J]. Nat. Mater.,2006, 5(1): 48-51.
    [15] Ladet, S.; David, L.; Domard, A. Multi-membrane hydrogels[J]. Nature, 2008,452(7183):76-79.
    [16] Varga, I.; Szalai, I.; Meszaros, R.; Gilanyi, T. Pulsating pH-responsive nanogels[J]. J. Phys. Chem. B, 2006,110(41):20297-20301.
    [17] Juodkazis, S.; Mukai, N.; Wakaki, R.; Yamaguchi, A.; Matsuo, S.; Misawa, H.Reversible phase transitions in polymer gels induced by radiation forces[J]. Nature, 2000,408(6809):178-181.
    [18] Wang, J.; Gan, D.; Lyon, L. A.; El-Sayed, M. A. Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions[J].J. Am. Chem. Soc, 2001, 123(45):11284-11289.
    [19] Zhang, X. Z.; Yang, Y. Y.; Wang, F. J.; Chung, T. S. Thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with expanded network structures and improved oscillating swelling-deswelling properties[J]. Langmuir,2002, 18(6):2013-2018.
    [20] Markstroem, M.; Gunnarsson, A.; Orwar, O.; Jesorka, A. Dynamic microcompartmentalization of giant unilamellar vesicles by sol-gel transition and temperature induced shrinking/swelling of poly(N-isopropyl acrylamide) [J]. Soft Matter, 2007, 3(5): 587-595.
    [21] Khutoryanskaya, O. V.; Mayeva, Z. A.; Mun, G. A.; Khutoryanskiy, V. V.Designing temperature-responsive biocompatible copolymers and hydrogels based on 2-hydroxyethyl(meth)acrylates[J]. Biomacromolecules, 2008, 9, 3353;
    [22]Okeyoshi, K.; Abe, T.; Noguchi, Y.; Furukawa, H.; Yoshida, R. Shrinking behavior of surfactant-grafted thermosensitive gels and the mechanism of rapid shrinking[J]. Macromol. Rapid Commun., 2008,29(11):897-903.
    [23] Mamada, A.; Tanaka, T.; Kungwatchakun, D.; Irie, M. Photoinduced phase transition of gels[J]. Macromolecules, 1990,23,1519;
    [24] Frkanec, L.; Jokic, M.; Makarevic, J.; Wolsperger, K.; Zinic, M. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system[J]. J. Am. Chem. Soc, 2002,124(33):9716-9717.
    [25] Hu, Z.; Chen, L.; Betts, D. E.; Pandya, A.; Hillmyer, M. A.; DeSimone, J. M.Optically transparent, amphiphilic networks based on blends of perfluoro-polyethers and polyethylene glycol[J]. J. Am. Chem. Soc, 2008,130(43):14244-14252.
    [26]Sershen, S. R.; Mensing, G. A.; Ng, M.; Halas, N. J.; Beebe, D. J.; West, J. L.Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels[J]. Adv. Mater., 2005,17(11):1366-1368.
    [27] (a) McCoy, C. P.; Roony, C.; Edwards, C. R.; Jones, D. S.; Gorman, S. P.Light-triggered molecule-scale drug dosing devices[J]. J. Am. Chem. Soc, 2007,129(31): 9572-9573.
    [28] Vemula, P. K.; Li, J.; John, G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs[J]. J. Am. Chem. Soc, 2006,128(27): 8932-8938.
    [29] Seo, S. H.; Chang, J. Y. Organogels from lH-imidazole amphiphiles: Entrapment of a hydrophilic drug into strands of the self-assembled amphiphiles[J]. Chem.Mater., 2005,17(12):3249-3254.
    [30] Terech, P.; Weiss, R. G. Low-molecular mass gelators of organic liquids and the properties of their gels[J]. Chem. Rev., 1997,97(8):3133-3159.
    [31] Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008,451(7181), 977-980.
    [32] Estroff, L. A.; Hamilton, A. D. Water gelation by small organic molecules[J].Chem. Rev.,2004,104(3):1201-1217.
    [33] van Bommel, K. J. C; Friggeri, A.; Shinkai, S. Organic templates for the generation of inorganic materials[J]. Angew. Chem., Int. Ed, 2003,42(9):980-999.
    [34] Ajayaghosh, A.; Praveen. V. K. Pi-organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions[J].Acc. Chem. Res. ,2007,40(8):644-656.
    [35] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto,F.; Ueda, K.; Shinkai, S. Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation[J]. J. Am. Chem.Soc.,1994,116(15):6664-6676.
    [36] Aggeli, A.; Bell, M.; Boden, N.; Keen, J. N.; Knowles, P. F.; McLeish, T. C. B.;Pitkeathly, M.; Radford, S. E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes[J]. Nature, 1997,386(6622):259-262.
    [37] Petka, W. A.; Harden, J. L.; McGrath, K. P.; Wirtz, D.; Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins[J]. Science, 1998, 281(5375):389-392.
    [38] van Esch, J. H.; Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design[J]. Angew. Chem.,Int. Ed, 2000, 39(13):2263-2266.
    [39] Estroff, L. A.; Hamilton, A. D. Effective gelation of water using a series of bis-urea dicarboxylic acids[J].Angew. Chem., Int. Ed, 2000, 39(19):3447-3450.
    [40] Collier, J. H.; Hu, B.-H.; Ruberti, J.W.; Zhang, J.; Shum, P.; Thompson, D. H.;Messersmith, P. B. Thermally and photochemically triggered self-assembly of peptide hydrogels[J]. J. Am. Chem. Soc, 2001,123(38):9463-9464.
    [41] Nowak, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, J. D.; Pochan, D.;Deming, T. J. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles[J]. Nature, 2002,417(6887):424-428.
    [42] Kobayashi, H.; Friggeri, A.; Koumoto, K.; Amaike, M.; Shinkai, S.; Reinhoudt,D. N. Molecular design of "super" hydrogelators: understanding the gelation process of azobenzene-based sugar derivatives in water[J]. Org. Lett., 2002,4(9): 1423-1426.
    [43] Pochan, D. J.; Schneider, J. P.; Kretsinger, J.; Ozbas, B.; Rajagopal, K.; Haines,L. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide[J]. J Am. Chem. Soc, 2003, 125(39):11802-11803.
    [44] Suzuki, M; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group[J]. Chem. -Eur. J., 2003,9(l):348-354.
    [45] van Bommel, K. J. C.; van der Pol, C.; Muizebelt, I.; Friggeri, A.; Heeres, A.;Meetsma, A.; Feringa, B. L.; van Esch, J. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture[J]. Angew. Chem.,Int. Ed., 2004,43(13): 1663-1667.
    [46] Maeda, H.; Haketa, Y.; Nakanishi, T. Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels[J]. J. Am. Chem.Soc, 2007, 129(44): 13661-13674.
    [47] Moon, K.; Kim, H.; Lee, E.; Lee, M. Self-assembly of T-shaped aromatic amphiphiles into stimulus-responsive nanofibers[J]. Angew. Chem., Int. Ed., 2007,46(36):6807-6810.
    [48] Kiyonaka, S.; Sugiyasu, K.; Shinkai, S.; Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid[J]. J. Am. Chem. Soc,2002,124(37):10954-10955.
    [49] Zhang, Y.; Gu, H.; Yang, Z.; Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction[J]. J. Am. Chem. Soc, 2003,125(45):13680-13681.
    [50] Zhou, S. L.; Matsumoto, M. S.; Tian, H. D.; Yamane, H.; Ojida, A.; Kiyonaka, S.;Hamachi, I. pH-responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules[J]. Chem. -Eur. J., 2005, 11(4):1130-1136.
    [51] Yang, Z.; Xu, B. Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules[J].J. Mater. Chem., 2007,17(23):2385-2393.
    [52] Wu, J. C.; Yi, T.; Shu, T. M.; Yu, M. X.; Zhou, Z. G.; Xu, M.; Zhou, Y. F.;Zhang, H. J.; Han, J. T.; Li, F. Y.; Huang, C. H. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system[J]. Angew. Chem., Int. Ed., 2008,47(6):1063-1067.
    [53] Zhou, Y. F.; Yi, T.; Li, T. C.; Zhou, Z. G.; Li, F. Y.; Huang, W.; Huang, C. H.Morphology and wettability tunable two-dimensional superstructure assembled by hydrogen bonds and hydrophobic interactions[J].Chem.Mater.,2006,18(13):2974-2981.
    [54] Yang, H.; Yi, T.; Zhou, Z.; Zhou, Y.; Xu, M.; Wu, J.; Li, F.; Huang, C.Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives[J]. Langmuir, 2007, 23(15):8224-8230.
    [55] Zhou, Y.; Xu, M.; Yi, T.; Xiao, S.; Zhou, Z.; Li, F.; Huang, C.Morphology-tunable and photoresponsive properties in a self-assembled two-component gel system[J]. Langmuir, 2007, 23(1):202-208.
    [56] Shu, T.; Wu, J.; Lu, M.; Chen, L.; Yi, T.; Li, F.; Huang, C. Tunable red-green-blue fluorescent organogels on the basis of intermolecular energy transfer[J].J. Mater. Chem. ,2008,18(8):886-893.
    [57] Bocchi, V.; Giuseppe, C.; Arnaldo, D.; Rosangela. M. Esterification of amino acids and dipeptides under mild conditions; Part Ⅱ: via sodium salts. Synthesis1979,12,961-962.
    [58] Ramaiah, D.; Joy, A.; Chandrasekhar, N.; Eldho, N. V.; Das, S.; George, M. V.Halogenated squaraine dyes as potential photochemotherapeutic agents. Synthesis and study of photophysical properties and quantum efficiencies of singlet oxygen generation[J]. Photochem. Photobiol. ,1997,65(5): 783-790.
    [59] Jyothish, K.; Avirah, R. R.; Ramaiah, D. Synthesis of new cholesterol- and sugar-anchored squaraine dyes: Further evidence of how electronic factors influence dye formation[J]. Org. Lett., 2006, 8(1):111-114.
    [60] Arunkumar, E.; Forbes, C. C; Noll, B. C; Smith, B. D. Squaraine-derived rotaxanes: sterically protected fluorescent near-IR dyes[J]. J. Am. Chem.Soc. ,2005,127(10):3288-3289.
    [61] Ajayaghosh, A.; Chithra, P.; Varghese, R. Self-assembly of tripodal squaraines: cation-assisted expression of molecular chirality and change from spherical to helical morphology[J].Angew. Chem., Int. Ed., 2007,46(1+2):230-233.
    [62] Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A. Squaraine dyes: a mine of molecular materials[J]. J. Mater. Chem., 2008,18(3):264-274.
    [63]Ajayaghosh, A. Chemistry of squaraine-derived materials: Near-IR dyes, low band gap systems, and cation sensors[J]. Acc. Chem. Res. ,2005,38(6): 449-459.
    [64] (a) Ros-Lis, J. V.; Garcia, B.; Jimenez, D.; Martinez-Manez, R.; Sancenon, F.;Soto, J.; Gonzalvo, F.; Valldecabres, M. C. Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols[J].J. Am. Chem. Soc, 2004,126(13):4064-4065.
    [65] Ros-Lis, J. V.; Martinez-Manez, R.; Soto, J. A selective chromogenic reagent for cyanide determination[J]. Chem. Commun. ,2002,(19): 2248-2249.
    [66] Sreejith, S.; Divya, K. P.; Ajayaghosh, A. A near-infrared squaraine dye as a latent ratiometric fluorophore for the detection of aminothiol content in blood plasma[J]. Angew. Chem., Int. Ed, 2008,47(41):7883-7887.
    [67] (a) Geiger, C.; Stanescu, M.; Chen, L.; Whitten, D. G. Organogels resulting from competing self-assembly units in the gelator: Structure, dynamics, and photophysical behavior of gels formed from cholesterol-stilbene and cholesterol-squaraine gelators[J]. Langmuir, 1999,15(7):2241-2245.
    [68] Ajayaghosh, A.; Chithra, P.; Varghese, R. Self-assembly of tripodal squaraines:cation-assisted expression of molecular chirality and change from spherical to helical morphology[J].Angew. Chem. Int. Ed. ,2007,46(1+2):230-233.
    [69]Ajayaghosh, A.; Chithra, P.; Varghese, R.; Divya, K. P. Controlled self-assembly of squaraines to 1D supramolecular architectures with high molar absorptivity[J].Chem. Commun. ,2008,(8) :969-971.
    [70] Chithra, P.; Varghese, R.; Divya, K. P.; Ajayaghosh, A. Solvent-induced aggregation and cation-controlled self-assembly of tripodal squaraine dyes: optical, chiroptical and morphological properties[J]. Chemistry-An Asian Journal, 2008,3(8-9): 1365-1373.
    [71] George, M.; Weiss, R. G. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids[J]. Acc. Chem. Res.,2006,39(8):489-497.
    [72] Huang, X.; Raghavan, S. R.; Terech, P.; Weiss, R. G. Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties[J].J. Am. Chem. Soc.,2006, 128(47):15341-15352.
    [73] Ajayaghosh, A.; Vijayakumar, C.; Varghese, R.; George, S. J. Cholesterol-aided supramolecular control over chromophore packing: Twisted and coiled helices with distinct optical, chiroptical, and morphological features[J]. Angew. Chem.,Int. Ed., 2006,45(3):456-460.
    [74] Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives[J]. Angew. Chem. Int.Ed. ,2004,43(10):1229-1233.
    [75] Tamaoki, N.; Shimada, S.; Okada, Y.; Belaissaoui, A.; Kruk, G.; Yase, K.;Matsuda, H. Polymerization of a Diacetylene Dicholesteryl Ester Having Two Urethanes in Organic Gel States[J]. Langmuir ,2000, 16(19): 7545-7547.
    [76] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto,F.; Ueda, K.; Shinkai, S. Thermal and light control of the Sol-Gel phase transition in cholesterol-based organic gels, novel helical aggregation modes as detected by circular dichroism and electron microscopic observation[J]. J. Am. Chem.Soc. ,1994,116(15): 6664-6676.
    [77] Koumura, N.; Kudo, M.; Tamaoki, N. Photocontrolled gel-to-sol-to-gel phase transitioning of meta-substituted azobenzene bisurethanes through the breaking and reforming of hydrogen bonds[J]. Langmuir ,2004,20(23):9897-9900.
    [78]Wang, S.; Shen, W.; Feng, Y.; Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator[J]. Chem. Commun, 2006,(14):1497-1499.
    [79] Kawano, S.; Fujita, N.; Shinkai S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli[J].J.Am. Chem. Soc. ,2004,126(28):8592-8593.
    [80] Kawano, S.; Fujita, N.; Shinkai, S. Quater-, quinque-, and sexithiophene organogelators: Unique thermochromism and heating-free sol-gel phase transition[J]. Chem. Eur. J. ,2005,11(16):4735-4742.
    [81] J. Jung, W.; Ono, Y.; Sakurai, K.; Sano, M.; Shinkai, S. Novel vesicular aggregates of crown-appended cholesterol derivatives which act as gelators of organic solvents and as templates for silica transcription[J]. J. Am. Chem. Soc,2000,122(36):8648-8653.
    [82] Zepik, H. H.; Walde, P.; Ishikawa, T. Vesicle formation from reactive surfactants[J]. Angew. Chem., Int. Ed., 2008,47(7):1323-1325.
    [83]Fuhrhop, J.; Helfrich, W. Fluid and solid fibers made of lipid molecular bilayers[J] [J]. Chem. Rev., 1993,93(4): 1565-1582.
    [84] Fuhrhop, J.; Wang, T. Bolaamphiphiles[J]. Chem. Rev., 2004, 104(6):2901-2937.
    [85] Kunitz, M. Syneresis and the swelling of gelatin[J]. J. Gen. Physiol., 1928, (12):289-312.
    [86] Chen, H. J.; Herkstroeter, W. G.; Perlstein, J.; Law, K. Y.; Whitten, D. G.Aggregation of a surfactant squaraine in langmuir-blodgett films, solids, and solution[J].J. Phys. Chem., 1994,98(19):5138-5146.
    [87] Battaglia, G.; J. Ryan, A. The evolution of vesicles from bulk lamellar gels[J].Nat. Mater., 2005,4(11):869-876.
    [88] Israelachvili, J.; Wennerstrom, H. Role of hydration and water structure in biological and colloidal interactions[J]. Nature, 1996, 379(6562):219-225.
    [89] Ostwald, W. Studies on the formation and transformation of solid compounds:Report I. Supersaturation and practicing cooling. [machine translation] [J]. Z. Phys.Chem. 1897, (22): 289-330.
    [1] Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display [J]. Science, 1996,273(5279): 1185-1189.
    [2] Wang, L.; Li, Y. D. Na(Y_(1.5) Na_(0.5))F_6 single-crystal nanorods as multicolor luminescent materials[J]. Nano Lett, 2006,6(8): 1645-1649.
    [3] Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids[J].Chem. Rev, 2004,104(1):139-173.
    [4] Heer, S.; Lehmann, O.; Haase, M.; Gudel, H. U. Blue, green, and red upconversion emission from lanthanide-doped LuPO_4 and YbPO_4 nanocrystals in a transparent colloidal solution[J]. Angew. Chem. Int. Ed, 2003, 42(27):3179-3182.
    [5] Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF_4 nanocrystals[J].Adv. Mater, 2004,16(23-24): 2102-2105.
    [6] Ehlert, O.; Thomann, R.; Darbandi, M.; Nann, T. A four-color colloidal multiplexing nanoparticle system[J]. ACS Nano, 2008,2(1):120-124.
    [7] DiMaio, J. R.; Kokuoz, B.; Ballato, J. White light emissions through down-conversion of rare-earth doped LaF3 nanoparticles[J]. Opt. Express, 2006,14(23): 11412-11417.
    [8] Zhou, Z.; Hu, H.; Yang, H.; Yi, T.; Huang, K.; Yu, M.; Li, F.; Huang, C.Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors[J]. Chem. Commun, 2008, (39):4786-4788.
    [9] Sandrock, T.; Scheife, H.; Heumann, E.; Huber, G. High-power continuous-wave upconversion fiber laser at room temperature [J]. Opt. Lett, 1997, 22(11): 808-810.
    [10]Li, Z.; Zhang, Y; Jiang, S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J]. Adv. Mater, 2008, 20(24):4765-4769.
    [11]Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C.Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels [J]. J. Am.Chem. Soc, 2008, 130(10):3023-3029.
    [12] Yu, M.; Li, F.; Chen, Z.; Hu, H.; Zhan, C; Yang, H.; Huang, C. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors [i].Anal. Chem, 2009, 81(3): 930-935.
    [13] Hu, H.; Yu, M.; Li, F.; Chen, Z.; Gao, X.; Xiong, L.; Huang, C. Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels [J]. Chem. Mater, 2008,20(22):7003-7009.
    [14] Hu, H.; Xiong, L.; Zhou, J.; Li, F.; Cao, T.; Li, C.; Huang, C. Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties [J]. Chem. Eur. J, 2009,15(10):2310-2316.
    [15] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis [J]. Nature, 2005,437(7055):121-124.
    [16] Nyk, M.; Kumar, R.; Ohulchanskyy, T. Y; Bergey, E. J.; Prasad, P. N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm~(3+) and Yb~(3+) doped fluoride nanophosphors [J].Nano Lett., 2008, 8(11), 3834-3838.
    [17] Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: the case of alkylamines on CdSe nanocrystals [J]. J. Am. Chem. Soc, 2008,130(17), 5726-5735.
    [18] Hu, H.; Chen, Z.; Cao, T.; Zhang, Q.; Yu, M.; Zhou, Z.; Li, F.; Yi, T.; Huang, C.Hydrothermal synthesis of hexagonal lanthanide-doped LaF3 nanoplates with bright upconversion luminescence [J]. Nanotechnology, 2008,19(37):375702-375709.
    [19] Sivakumar, S.; Van Veggel, F. C. J. M.; May, P. S. Near-Infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La_(0.45) Yb_(0.50)Er_(0.05)F_3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): A new up-conversion process [J]. J. Am. Chem. Soc, 2007, 129(3):620-625.
    [20] Lezhnina, M. M.; Juestel, T.; Kaetker, H.; Wiechert, D. U.; Kynast, U. H.Efficient luminescence from rare-earth fluoride nanoparticles with optically functional shells[J].Adv.Funct.Mater.,2006,16(7):935-942.
    [21]Wang,F.;Liu,X.Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF_4 nanoparticles[J].J.Am.Chem.Soc.,2008,130(17):5642-5643.
    [22]Mai,H.-X.;Zhang,Y.-W.;Si,R.;Yan,Z.-G.;Sun,L.-D.;You,L.-P.;Yan,C.-H.High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J].J.Am.Chem.Soc.,2006,128(19):6426-6436.
    [23]Zhang,Y.W.;Sun,X.;Si,R.;You,L.P.;Yan,C.H.Single-crystalline and monodisperse LaF_3 triangular nanoplates from a single-source precursor[J].J.Am.Chem.Soc.,2005,127(10):3260-3261.
    [24]Terech,P.;Weiss,R.G.Low-molecular mass gelators of organic liquids and the properties of their gels[J].Chem.Rev.,1997,97(8):3133-3159.
    [25]Estroff,L.A.;Hamilton,A.D.Water gelation by small organic molecules[J].Chem.Rev.,2004,104(3):1201-1217.
    [26]van Bommel,K.J.C.;Friggeri,A.;Shinkai,S.Organic templates for the generation of inorganic materials[J].Angew.Chem.Int.Ed.,2003,42(9):980-999.
    [27]Lehn,J.M.From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry[J].Chem.Soc.Rev.,2007,36(2):151-160.
    [28]Ladet,S.;David,L.;Domard,A.Multi-membrane hydrogels[J].Nature,2008,452(7183):76-79.
    [29]Kiyonaka,S.;Sada,K.;Yoshimura,I.;Shinkai,S.;Kato,N.;Hamachi,I.Semi-wet peptide/protein array using supramolecular hydrogel[J].Nature Mater.,2004,3(1):58-64.
    [30]Smith,A.M.;Williams,R.J.;Tang,C.;Coppo,P.;Collins,R.F.;Turner,M.L.;Saiani,A.;Ulijn,R.V.Fmoc-diphenylalanine self-assembles to a hydrogel via a novel architecture based on.pi.-.pi.interlocked.beta.-sheets[J].Adv.Mater.,2008,20(1):37-41.
    [31]Cai,W.;Wang,G.;Xu,Y.;Jiang,X.;Li,Z.Vesicles and organogels from foldamers:a solvent-modulated self-assembling process[J].J.Am.Chem.Soc.,2008,130(22):6936-6937.
    [32] Van Esch, J. H.; Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design [J]. Angew. Chem.Int. Ed., 2000, 39(13):2263-2266.
    [33] Yagai, S.; Nakajima, T.; Kishikawa, K.; Kohmoto, S.; Karatsu, T.; Kitamura, A.Hierarchical organization of photoresponsive hydrogen-bonded rosettes [J]. J. Am.Chem. Soc.,2005,127(31):11134-11349.
    [34] Nobusawa, K.; Ikeda, A.; Kikuchi, J.; Kawano, S.; Fujita, N.; Shikai, S.Reversible solubilization and precipitation of carbon nanotubes through oxidation-reduction reactions of a solubilizing agent [J]. Angew. Chem. Int. Ed.,2008,47(24):4577-4580.
    [35] Ajayaghosh, A.; Chithra, P.; Varghese, R. Self-assembly of tripodal squaraines:cation-assisted expression of molecular chirality and change from spherical to helical morphology [J]. Angew. Chem. Int. Ed, 2007,46(1+2):230-233.
    [36]H. Yang, T. Yi, Z. Zhou, Y. Zhou, J. Wu, M. Xu, F. Li, C. Huang, Switchable Fluorescent Organogels and Mesomorphic Superstructure Based on Naphthalene Derivatives [J].Langmuir, 2007,23(15):8224-8230.
    [37] Kim, H.-J.; Lee, J.-H.; Lee, M. Stimuli-responsive gels from reversible coordination polymers [J]. Angew. Chem. Int. Ed, 2005,44(36):5810-5814.
    [38]Ajayaghosh, A.; Chithra, P.; Varghese, R.; Divya, K. P. Controlled self-assembly of squaraines to 1D supramolecular architectures with high molar absorptivity [J].Chem. Commun., 2008, (8): 969-971.
    [39] Hwang, I.; Jeon, W. S.; Kim, H.-J.; Kim, D.; Kim, H.; Selvapalam, N.; Fujita, N.;Shinkai, S.; Kim, K. Cucurbit[7]uril: a simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior [J]. Angew.Chem. Int. Ed, 2007,46(1+2):210-213.
    [40] Wu, J.; Yi, T.; Shu, T.; Yu, M.; Zhou, Z.; Xu, M.; Zhou, Y.; Zhang, H.; Han, J.;Li, F.; Huang, C. Ultrasound switch and thermal self-repair of morphology and surface wettability in a cholesterol-based self-assembly system [J]. Angew. Chem.Int. Ed., 2008,47(6):1063-1067.
    [41] Paulusse, J. M. J.; Sijbesma, R. J. Molecule-based rheology switching [J]. Angew.Chem. Int. Ed, 2006,45(15):2334-2337.
    [42] Paulusse, J. M. J.; van Beck, D. J. M.; Sijbesma, R. P. Reversible switching of the sol-gel transition with ultrasound in rhodium(Ⅰ) and iridium(Ⅰ) coordination networks [J]. J. Am. Chem. Soc, 2007,129(8):2392-2937.
    [43] Isozaki, K.; Takaya, H.; Naoto, T. Ultrasound-induced gelation of organic fluids with metalated peptides [J]. Angew. Chem. Int. Ed, 2007,46(16):2855-2857.
    [44] (?)valos, M.; Babiano, R.; Cintas, P.; Gomez-Carretero, A.; Jimenez, J. L.;Lozano, M.; Ortiz, A. L.; Palacios, J. C; Pinazo, A. A family of hydrogels based on ureido-linked aminopolyol-derived amphiphiles and bolaamphiphiles: synthesis, gelation under thermal and sonochemical stimuli, and mesomorphic characterization [J]. Chem. Eur. J., 2008,14(18):56565659.
    [45] Wang, Y.; Zhan, C; Fu, H.; Li, X.; Sheng, X.; Zhao, Y.; Xiao, D.; Ma, Y.; Ma, J.S.; Yao, J. Switch from intra- to intermolecular H-bonds by ultrasound: induced gelation and distinct nanoscale morphologies [J]. Langmuir, 2008,24(15):7635-7638.
    [46] Zhang, S.; Yang, S.; Lan, J.; Tang, Y.; Xue, Y.; You, J. Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents [J]. J. Am. Chem. Soc, 2009, 131(5):1689-1691.
    [47] Wang, C.; Zhang, D. Q.; Zhu, D. B. A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation [J]. J. Am. Chem. Soc, 2005,127(47):16372-16373.
    [48] Asoh, T.; Matsusaki, M.; Kaneko, T.; Akashi, M. Fabrication of temperature-responsive bending hydrogels with a nanostructured gradient [J]. Adv.Mater., 2008, 20(11):2080-2083.
    [49] Li, L. S.; Stupp, S. I. One-dimensional assembly of lipophilic inorganic nanoparticles templated by peptide-based nanofibers with binding functionalities [J]. Angew. Chem. Int. Ed, 2005, 44(12):1833-1836.
    [50] Kimura, M.; Kobayashi, S.; Kuroda, T.; Hanabusa, K.; Shirai, H. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators [J]. Adv.Mater., 2004,16(4):335-338.
    [51] Li, Y.; Liu, M. Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel [J]. Chem. Commun., 2008, (43):5571-5573.
    [52] Mantion, A.; Guex, A. G.; Foelske, A.; Mirolo, L.; Fromm, K. M.; Painsi, M.;Taubert, A. Silver nanoparticle engineering via oligovaline organogels [J]. Soft Matter, 2008,4(3):606-617.
    [53] Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. In situ synthesis of gold nanoparticles using molecular gels and liquid crystals from vitamin-c amphiphiles[J]. Chem. Mater., 2007,19(2):138-140.
    [54] Ray, S.; Das, A. K.; Banerjee, A. Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks [J]. Chem. Commun., 2006, (26):2816-2818.
    [55] Bhattacharya, S.; Srivastava, A.; Pal, A. Modulation of viscoelastic properties of physical gels by nanoparticle doping: influence of the nanoparticle capping agent [J]. Angew. Chem. Int. Ed, 2006,45(18):2934-2937.
    [56] Simmons, B.; Li, S.; John, V. T.; McPherson, G. L.; Taylor, C; Schwartz, D. K.;Maskos, K. Spatial compartmentalization of nanoparticles into strands of a self-assembled organogel [J]. Nano Lett., 2002,2(10):1037-1042.
    [57] Nobusawa, K.; Ikeda, A.; Kikuchi, J.; Kawano, S.; Fujita, N.; Shinkai, S.Reversible solubilization and precipitation of carbon nanotubes through oxidation-reduction reactions of a solubilizing agent [J]. Angew. Chem. Int. Ed,2008,47 (24):4577-4580.
    [58] Srinivasan, S.; Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Carbon nanotube triggered self-assembly of oligo(p-phenylene vinylene)s to stable hybrid .pi.-gels [J]. Angew. Chem. Int. Ed, 2008, 47(31):5746-5749.
    [59] Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.;Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbon nanotubes [J]. Angew. Chem. Int. Ed,2001,40(9): 1721-1725.
    [60] a) Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J. Organogels based on self-assembly of diphenylalanine peptide and their application to immobilize quantum dots [J]. Chem. Mater., 2008,20(4): 1522-1526.
    [61] Gaponik, N.; Wolf, A.; Marx, R.; Lesnyak, V.; Schilling, K. Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: gels and aerogels as building blocks for nanotechnology [J]. Adv. Mater., 2008,20(22):4257-4262.
    [62] Bardelang, D.; Zaman, M. Z.; Moudrakovski, I. L.; Pawsey, S.; Margeson, J. C.;Wang, D.; Wu, X.; Ripmeester, J. A.; Ratcliffe, C. I.; Yu, K. Interfacing supramolecular gels and quantum dots with ultrasound: smart photoluminescent dipeptide gels [J].Adv. Mater, 2008,20(23): 4517-4520.
    [63] Huang, X.; Raghavan, S. R.; Terech, P.; Weiss, R. G. Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties [J].J.Am. Chem. Soc, 2006,128(47):15341-15352.
    [64] Huang, X.; Terech, P.; Raghavav, S. R.; Weiss, R. G. Kinetics of 5alpha-cholestan-3beta-yl N-(2-naphthyl)carbamate/n-alkane organogel formation and its influence on the fibrillar networks [J]. J. Am. Chem. Soc, 2005,127(12):4336-4344.
    [65] Madbouly, S. A.; Otaigbe, J. U. Rheokinetics of thermal-induced gelation of waterborne polyurethane dispersions [J]. Macromolecules, 2005, 38(24):10178-10184.
    [66] Horst, R. H.; Winter, H. H. Stable critical gels of a copolymer of ethene and 1-butene achieved by partial melting and recrystallization [J]. Macromolecules,2000, 33(20):7538-7543.
    [67] Yao, S.; Beginn, U.; Gress, T.; Lysetska, M; Wiirthner F. Supramolecular polymerization and gel formation of bis(merocyanine) dyes driven by dipolar aggregation [J]. J. Am. Chem. Soc, 2004, 126(26):8336-8348.
    [68] Heer, S.; Lehmann, O.; Hasse, M.; G(?)del, H. U. Blue, green, and red upconversion emission from lanthanide-doped LuPO_4 and YbPO_4 nanocrystals in a transparent colloidal solution[J].Angew.Chem.Int.Ed.,2003,42(27):3179-3182.
    [69]Heer,S.;K(o|¨)mpe,K.;G(u|¨)del,H.U.;Haase,M.Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF_4nanocrystals[J].Adv.Mater.,2004,16(23-24):2102-2105.
    [70]Ehlert,O.;Thomann,R.;Darbandi,M.;Nann,T.A four-color colloidal multiplexing nanoparticle system[J].ACS Nano,2008,2(1):120-124.
    [71]Wang,F.;Liu,X.Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF_4 nanoparticles[J].J.Am.Chem.Soc.,2008,130(17):5642-5643.
    [72]Yi,G.;Chow,G.M.Synthesis of hexagonal-phase NaYF_4:Yb,Er and NaYF_4:Yb,Tm nanocrystals with efficient up-conversion fluorescence[J].Adv.Funct.Mater.,2006,16(18):2324-2329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700