用户名: 密码: 验证码:
保险与金融中CEV模型的最优化问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常方差弹性系数(CEV)模型是几何布朗运动(GBM)模型的一个推广.它最早常用于计算期权等资产的定价,敏感性分析和隐含波动率等问题,近年来, CEV模型开始用于最优化投资问题.本文主要讨论了有限时间水平下CEV模型在保险和金融中两大方面的应用,一是一般投资人的最优消费和投资问题;一是保险人的最优再保险和投资问题.
     在投资行为中,财务顾问通常推荐年轻的投资人相对于年老的投资人来说应该投入较多的资产到风险资产中,这是因为年轻的投资人拥有更长的时间来进行投资行为.这说明投资者所面临不的剩余时间不同,他们的投资策略就不应相同.为了切合实际,我们考虑的是有限时间水平.在有限时间水平下,从不同的时刻出发,剩余时间也不同,这样所得到的策略不再像无限时间水平下那样与时间无关.
     投资与消费是社会总需求的重要组成部分,投资与消费关系又是经济理论和实证研究中最重要、最复杂的关系之一.对投资人来说,他把资产进行投资的目的就是增强自己的消费能力.本文在第三章研究了最优化消费和投资问题,投资人把总资产的一部分投资到无风险资产(存入银行或购买债券),剩下的部分投入到风险资产(股票或基金),同时投资者还进行消费,且以最大化直到固定终端时刻的期望指数消费效用(指数效用函数是唯一一个满足“零效益”原则的效用函数)为目的,寻求最优化消费和投资策略.本章首先利用动态规划的方法建立了本问题的HJB方程,然后通过幂变换和变量替换等手段,求得了最优消费和投资策略的明确表达式.
     保险人的最优再保险和投资问题是保险问题和金融活动的一个很好的结合,具有很强的实用性和研究价值.再保险是保险公司规避风险的一个有力手段,投资则是保险公司提高收益的重要保障.本文的第四章考虑了保险公司的超额损失再保险和投资策略.保险公司收取保费,就要承担索赔.为了避免大额索赔出现的危险,于是进行再保险;同时为了确保资金的保值与增值,需要把手中的资金进行一种无风险资产和一种风险资产的投资分配.针对最大化固定终端时刻指数效用的目标,利用动态规划的方法求出了相应的HJB方程,然后通过求解HJB方程,得到了最优的超额损失再保险和投资策略.
     第五章和第六章研究的是比例再保险和投资行为的结合.其中第五章关心的是均值-方差问题,也就是在达到预期效益的同时要确保风险最小化.这是一个以期望收益和风险(即均值和方差)为双目标的最优化问题.本章采用的路线是首先通过拉格朗日乘数的引入把两个目标融合在一起,化为一个单目标问题,并建立其HJB方程,然后求解HJB方程,得到了带有拉格朗日乘数的最优策略,最后借由Lagrange对偶定理,求出了原问题的有效边界和有效策略.
     在前面几章的研究中,为了突出问题的重点,都假设了投资者只投资到一种无风险资产和一种风险资产.第六章为了更加贴近实际,不再只考虑单一风险资产,而是投资于多种风险资产,同时结合比例再保险,目标依然是最大化固定终端时刻的期望指数效用.本章在建立了相应的HJB方程的基础上,借由幂变换和变量替换的技巧,得到了其最优比例再保险和投资策略的明确表达式.
The CEV model is an extension model of geometric Brownian motion (GBM). It was usu-ally applied to calculating the theoretical price, sensitivities and implied volatility of options. Inrecent years, the CEV model began to be applied in optimal investment research. In this paper,we discuss two aspects application of CEV model with finite horizon. One is the investor’s opti-mal consumption and investment problem, the other is the insurer’s reinsurance and investmentproblem.
     In the action of investment, the financial advisers always recommend that younger in-vestors allocate a greater share of wealth to risky asset than older investors. The cause is thatthe younger investors have longer period to hold on to the investment. This indicates that thedifferent remaining horizon that the investors faced with the investors’ strategies will different.Therefore, we consider with the case that the horizon is finite. And in the finite horizon case,unlike the infinite case, starting from each initial time the remaining horizon is different andthus the strategies may change depending on how close it is to the terminal time.
     Investment and consumption are important component parts of the total demand of wholesociety. The relationship between investment and consumption is very important and complex.For an investor, the aim of investment is to improve his ability of consumption. In section3,we study the optimal consumption and investment policy of a constant absolute risk aversion(CARA) investor. The investor’s interesting is to maximizing the fix terminal expectation ofexponential utility function. The investor can trade in one risk-free asset and a risky asset.First, the Hamilton-Jacobi-Bellman (HJB) equation for the value function of the optimizationproblem is established by the dynamic programming approach. The optimal consumption andinvestment policy is derived via power transformation technique and variable change method.
     Insurer’s optimal reinsurance and investment problem is a strongly practical and theoreti-cal combination of insurance and finance. Reinsurance is an important technique for a insurerto refrain from his risk. And investment is the powerful guarantee for insurer to improve hisbenefit. In section4, we discuss the the optimal excess-of-loss reinsurance and investment strat-egy.The insurance company charges premium as while as undertakes claim. In order to avoidthe huge amount of claim account, the insurance company pays reinsurance premium to an an-other insurance company. At the same time, the insurer invest his wealth in one risk-free assetand a risky asset to assure his benefit. For the purpose of maximizing the fix terminal expec-tation of exponential utility function, the corresponding HJB equation is obtained by dynamic programming principle. Via solving the HJB equation, the explicit expression of the optimalexcess-of-loss reinsurance and investment strategy is formulated.
     In the rest of this paper, we pay attention to proportional reinsurance and investment prob-lem. In section5, we focus on a mean-variance problem. This is a problem with two objectswhich is to achieve expect profit as while as minimizing the risk. First, a Lagrange multiplieris introduced to simplify the mean-variance problem and the corresponding Hamilton-Jacobi-Bellman (HJB) equation is established. Via power transformation technique and variable changemethod, the optimal strategies with the Lagrange multiplier are obtained. Final, based on theLagrange duality theorem, the optimal strategies and optimal value for the original problem (i.e.the efficient strategies and efficient frontier) are derived explicitly.
     In the above sections,we suppose that the investor only trade in a risk-free asset and onerisky asset. In section6, the investor can invest his wealth in a risk-free asset and multiple riskyassets. Meanwhile, the proportional reinsurance is considered. In order to maximizing the fixterminal expectation of exponential utility function, the corresponding HJB equation is formu-lated by dynamic programming principle.By the means of power transformation technique andvariable change method, the explicit expression of the optimal proportional reinsurance and in-vestment strategy is obtained.
引文
[1] Markowitz H.Portfolio selection[J].The Journal of Finance,1952,7(1):77―91.
    [2] Merton RC. Lifetime portfolio selection under uncertainty: the continuous-time case[J]. TheReview of Economics and Statistics,1969,51:247-257.
    [3] Merton RC. Optimum consumption and portfolio rules in a continuous-time model[J]. Journalof Economic Theory,1971,3:373-413.
    [4] Cox J, Huang C. A variational problem arising in financial economics, mimeo, Sloan School ofManagement[M]. Massachusetts Institute of Technology,1985.
    [5] Borch k. An attempt to determine the optimal amount of stop loss insurance[J]. Transactions ofthe16-th Internatinal Congress of Actuaries,1960, I:597-610.
    [6] Fama E F. Multiperiod consumption-investment decision[J]. Amer Econom Rev,1970,60:163-174.
    [7] Fama E.F. Multiperiod consumption-investment decisions:a correction[J]. Amer Econom Rev,1976,66:723-724.
    [8] Karatzas I, Lehoczky JP, Sethi SP, Shreve SE. Explicit solution of a general consumption/in-vestment problem[J]. Mathematics of Operations Research,1986,11:261-94.
    [9] Karatzas I, Lehoczky JP, Shreve SE. Optimal portfolio and consumption decisions for a“smallinvestor”on a finite horizon[J]. SIAM Journal on Control and Optimization,1987,25:1157-1586.
    [10] Karatzas I, Lehoczky JP, Shreve SE, Xu GL. Martingale and duality methods for utility maxi-mization in an incomplete market[J]. SIAM Journal on Control and Optimization,1991,29:702-730.
    [11] Zariphopoulou T. Consumption investment models with constraints[J]. SIAM Journal of Controland Optimization,1994,32:59-84.
    [12] Grossman S J, Zhou Z Q. Optimal investmeng strategies for controlling drawdowns[J]. Mathe-matical Finance,1993,3(3):241-276.
    [13] Cvitanic J, Karatzas I. On portfolio optimization under“drawdown”constraints[J]. Mathemat-ical Finance, Springer Verlag, New York,1995,35-46.
    [14] Constantinides G.Multiperiod consumption and investment behavior with convex transactioncosts[J].Management Science,1979,25(11):1127-1137.
    [15] Akian M, Menaldi J L, Sulem A.On the investment-consumption model with transaction cost-s[J].SIAM Joumal of Control and Optimization,1996,34(1):329-364
    [16] Lynch A W, Tan S N. Mutiple risky assets, transaction costs and return predictability: Implica-tions for portfolio choice[M]. Working paper, New York University,2002.
    [17] Liu H, Loewenstein M.Optimal portfolio selection with transaction costs and finite horizon-s[J].Review of Financial Studies,2002,15(3):805-835.
    [18] Shreve S E, Soner H M. Optimal investment and consumption with transaction costs[J]. Annalsof Applied Probability,1994,4:609-692.
    [19] Zhao X Y, Nie Z K. Multi-asset investment-consumption model with transaction cost-s[J].Journal ofMathematicalAnalysis andApplications,2005,309(1):198-210.
    [20] Muthuraman K.A computational scheme for optimal investment-consumption with propor-tional transaction costs[J].JournalI of Economic Dynamics and Control,2007,31(4):1132-1159.
    [21] Yi F H,Yang Z.A variational inequality arising from European option pricing with transactioncosts[J].Science in China Series A:Mathematics,2008,51(5):935-954.
    [22] Dai M, Jiang L, Li P, Yi F.Finite horizon optimal investment and consumption with withtransaction costs[J].SIAM Journal on Control and Optimization,2009,48(2):1134―1154.
    [23] Borch K. The Theory of Risk[J]. Journal of the Royal Statistical Society,1967, Series B29:432-452.
    [24] Borch K. The Capital Structure of a Firm[J]. Swedish Journal of Economics,1969,71:1-13.
    [25] Gerber H U. Entscheidigungskriterien fu¨r den zusammengesetzten Poisson Prozess[J]. Mit-teilungen der Vereinigung Schweizer Versicherungsmathe-matiker,1969,19:185-228.
    [26] Bu¨hlmann H. Mathematical Methods in Risk Theory[M]. Springer, Berlin,1970.
    [27] Dayananda P W A. Optimal reinsurance[J]. Journal of Applied Proba-bility,1970,7:134-156.
    [28] Martin-Lo¨f A. A method for finding the optimal decision rule for a policy holder of an insurancewith a bonus system[J]. Scandinavaian Actuarial Journal,1973,23-39.
    [29] Martin-Lo¨f A. Premium control in an insurance system, an approach using linear control theo-ry[J]. Scandinavaian Actuarial Journal,1983,1-27
    [30] Martin-Lo¨f A. Lectures on the use of control theory in insurance[J]. Scan-dinavaian ActuarialJournal,1994,1-25.
    [31] Browne S.Optimal investment policies for a firm with random risk process: Exponential utilityand minimizing the probability of ruin[J]. Mathematics of Operations Research,1995,20:937-958.
    [32] Browne S. Survival and Growth with Liability: Optimal Portfolio Strategies in ContinuousTime[J]. Mathematics of Operations Research,1997,22(2):468-493.
    [33] Browne S. Beating a Moving Target: Optimal Portfolio Strategies for Outperforming a Stochas-tic Benchmark[J]. Finance and Stochastics,1999,3:275-94.
    [34] Jeanblanc-Picque′M, Shiryaev A N. Optimization of the ow of dividends[J]. Russian Math.Surveys,1995,50:257-277.
    [35] Asmussen S, Taksar M. Controlled diffusion models for optimal dividend pay-out[J]. Insurance:Mathematics and Economics,1997,20:1-15.
    [36] Hipp C, Michael T. Stochastic Control for Optimal New Business[J]. Insurance: Mathematicsand Economics,2000,26:185-92.
    [37] Hipp C, Michael P. Optimal Investment for Insurers[J]. Insurance: Mathematics and Economics,2000,27:215-28.
    [38] H jgaard B, Taksar M. Controlling risk exposure and dividend pay-out scemes: Insurance com-pany example[J]. Mathematical Finance,2000,9:153-182.
    [39] H jgaard B, Taksar M. Optimal dynamic portfolio selection for a corporation with controllablerisk and dividend distribution policy[J]. Submittet for publication.2000.
    [40] Asmussen S, H jgaard B, Taksar M. Optimal risk control and dividend distribution policies.Example of excess-of loss reinsurance for an insurance corporation[J]. Finance and Stochastics,2000,4,299-324.
    [41] Schmidli H. Optimal proportional reinsurance policies in a dynamic setting[J]. ScandinavianActuarial Journal,2001,1:55-68.
    [42] Schmidli H. On minimizing the ruin probability by investment and reinsurance[J]. The Annalsof Applied Probability,2002,12:890-907.
    [43] Taksar M, Markussen C. Optimal dynamic reinsurance policies for large insurance portfolios[J].Finance and Stochastics,2003,7:97-121.
    [44] Liu C S, Yang H L. Optimal investment for an insurer to minimize its probability of ruin[J].North American Actuarial Journal,2004,8:11-31.
    [45] Promislow S D, Young V R. Minimizing the probability of ruin when claims follow Brownianmotion with drift[J]. North American Actuarial Journal,2005,9:109-128.
    [46] Liang Z B, Guo J Y. Optimal proportional reinsurance and ruin probability[J]. Stochastic Mod-els,2007,23:333-350.
    [47] Liang Z B, Guo J Y. Upper bound for ruin probabilities under optimal investment and propor-tional reinsurance[J]. Applied Stochastic Models in Business and Industry,2008,24:109-128.
    [48] Bai L, Guo J. Optimal proportional reinsurance and investment with multiple risky assets andno-shorting constraint[J]. Insurance: Math. Econom,2008,42(3):968-975.
    [49] Luo S Z, Taksar M, Tsoi A. On reinsurance and investment for large insurance port-folios[J].Insurance: Mathematics and Economics,2008,42:434-444.
    [50] Azcue P, Muler N. Optimal investment strategy to minimize the ruin probability of an insurancecompany under borrowing constraints[J]. Insurance: Mathematics and Economics,2009,26-34.
    [51] Luo S Z. Ruin minimization for insurers with borrowing constraints[J]. North American Actu-arial Journal,2009,12:143-174.
    [52] Irgens C, Paulsen J. Optimal control of risk exposure, reinsurance and investment for insuranceportfolios[J]. Insurance: Mathematics and Economics,2004,35:21-51.
    [53] Liang Z B. Optimal proportional reinsurance for controlled risk process which is perturbed bydiffusion[J]. Acta Mathematicae Applicatae Sinica, English Series,2007,23:477-488.
    [54] Xu L, Wang R M, Yao D J. On maximizing the expected terminal utility by investment andreinsurance[J]. Journal of Industrial and Management Optimization,2008,4:801-815.
    [55] Cao Y, Wan N. Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation[J]. Insurance: Math. Econom,2009,45(2):157-162.
    [56] Ba¨uerle N. Benchmark and mean-variance problems for insurers[J]. Mathematical Methods ofOperations Research,2005,62:159-165.
    [57] Delong L, Gerrard R. Mean-variance portfolio selection for a non-life insurance company, Math-ematical Methods of Operations Research,2007,66:339-367.
    [58] Wang Z W, Xia J M, Zhang L H. Optimal investment for an insurer: The martingale approach[J].Insurance: Mathematics and Economics,40(2007),322-334.
    [59] Bai L H, Zhang H Y. Dynamic mean-variance problem with constrained risk control for theinsurers[J]. Mathematical Methods of Operations Research,2008,68:181-20
    [60] Zeng Y, Li Z F, Liu J. Optimal strategies of benchmark and mean-variance portfo-lio selectionproblems for insurers[J]. Journal of Industrial and Management Optimization,2010,6:483-496.
    [61] Zeng Y, Li Z F. Optimal time-consistent investment and reinsurance policies for mean-varianceinsurers[J]. Insurance: Mathematics and Economics,2011,49:145-154.
    [62] Li Z F, Zeng Y, Lai Y L. Optimal time-consistent investment and reinsurance strategies forinsurers under Heston’s SV model[J]. Insurance: Mathematics and Economics,2011.
    [63] Black F, Scholes M.The pricing of options and corporate liabilities[J]. Journal of political econ-omy,1973,81:637-654.
    [64] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal ofFinancial Economics,1976,3(1):125-144.
    [65] Jones E P. Option arbitrage and strategy with large price changes[J]. J. Financial Econom,1984,13:91-113.
    [66] Jeanblance-Picque M, Pontier M. Optimal portfolio for a small investor in a market model withdiscontinuous prices[J]. Applied Mathematics and Optimization,1990,22:287-310.
    [67] Bardhan I, Chao XL. Martingale analysis for assets with discontinous returns[J]. Mathematicsof Operations Research,1995,20:243-256.
    [68] Guo W, Xu C. Optimal portfolio selection when stock prices follow an jump diffusion process[J].Mathematic Methods of Operation Research,2004,60:485-496.
    [69] Hobson D G, Rogers L C G. Complelte models with stochastic volatility[J]. Mathematical Fi-nance,1998,8:27-48.
    [70] Hull J, White A. The pricing of options on assets with stochastic volatilities[J]. The Journal ofFiance,1987,42:281-300.
    [71] Heston S. A closed-form solution for options with stochastic volatility with applications to bondand currency options[J]. Review of Financial Studies,1993,6:327-343.
    [72] Jonsson M, Sircar R. Optimal investment problems and volatility homogenization approxima-tions[J]. In Bourlioux A, Gander M, Sabidussi G, Mordern Methods in Scientific Computingand Applications. kluwer Academic Publishers, Dordrecht,2002,255-281.
    [73] Bates D. Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche markoptions[J]. Review of Financial Studies,1996,9:69-107.
    [74] Duffie D, Pan J, Singleton K. Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica,2000,68:1343-1376.
    [75] Liu J, Longstaff F A, Pan J. Dynamic asset allocation with event risk[J]. Journal of Finace,2003,58:231-259.
    [76] Cox J C, Ross S A. The valuation of options for alternative stochastic processes[J]. J FinancEcon,1976,4:145-166.
    [77] Schroder M. Computing the Constant Elasticity of Variance Option Pricing Formula[J]. TheJournal of Finance,1989,44(1):211-219.
    [78] Cox J C. The constant elasticity of variance option pricing model[J]. J Portfolio Manage.,1996,22:16-17.
    [79] Bechers S. The constant elasticity of variance model and its implications for option pricing[J]. JFinanc,1980,35(3):661-673.
    [80] MacBeth J D, Merville L J. Tests of the Black-Scholes and Cox call option valuation models[J].Journal of Finance,1980,35:285-300.
    [81] Emanuel D C, MacBeth J D. Further results on the constant elasticity of variance call optionpricing model[J]. Journal of Financial and Quantitative Analysis,1982,17:533-554.
    [82] Lo C F, Yuen P H, Hui C H. Constant elasticity of variance option pricing model with time-dependent parameters[J]. Int J Theor Appl Financ.,2000,3:661-674.
    [83] Davydov D, Linetsky V. The valuation and hedging of barrier and lookback option under theCEV process[J]. Manage Sci.,2001,48:949-965.
    [84] Yuen K C, Yang H, Chu K L. Estimation in the constant elasticity of variance model[J]. BritishActuarial Journal,2001,7:275-292
    [85] Detemple J, Tian W D. The valuation of American options for a class of diffusion processes[J].Manage Sci.,2002,48:917-937.
    [86] Jones C. The dynamics of the stochastic volatility: Evidence from underlying and options mar-kets[J]. Journal of Econometrics,2003,116:181-224.
    [87] Hsu Y L, Lin T I, Lee C F. Constant elasticity of variance (CEV) option pricing model: integra-tion and detailed derivation[J]. Mathematics and Computers in Simulation,2008,79:60-71.
    [88] Xiao J W, Hong Z, Qin, C L. The constant elasticity of variance (CEV) model and the legendretransform-dualsolution for annuity contracts[J], Insur Math Econ.,2007,40:302-310.
    [89] Gao J. Optimal portfolios for DC pension plans under a CEV model[J], Insur Math Econ.,2009,44:479-490.
    [90] Gu M D, Yang Y P, Li S D, Zhang J Y. Constant elasticity of variance model for proportionalreinsurance and investment strategies[J]. Insur Math Econ.,2010,46:580-587.
    [91] Bai L, Guo J. Optimal dynamic excess-of-loss reinsurance and multidimensional portgolio se-lection under short-selling prohibition[J]. Science China Mathemaitcs,2010,53(7):1787-1804.
    [92] Bellman R. DYnamic programming[M]. Princeton university press.1957.
    [93] Samuelson P A. Lifetime Portfolio Selection by Dynamic Stochastic Programming[J]. Reviewof Economics and Statistics,1969,51:239-46.
    [94] Liu H.Optimal consumption and itnvestment with transaction costs and multiple risky asset-s[J].The Joumal of Finance,2004,59(1):289-338.
    [95] Fleming W H, Soner H M. Controlled Markov process and viscosity slotions[M]. Berlin,NewYork: Springer,1993.
    [96] Sundt B. On excess of loss reinsurance with reinstatements[J]. Bulletin of Swiss Actuaries,1991,1-15.
    [97] Mata A J. Pricing excess of loss reinsurance with reinstatements[J]. Astin Bulletin,2000,349-368.
    [98] Walhin J F, Herfurth L, Longueville P. The practical pricing of Excess of Loss treaties[J]. actu-arial, financial, economic and commercial aspects, Belgian Actuarial Bulletin,2001,31-17.
    [99] Hess K T, Schmidt K D. Optimal premium plans for reinsurance with reinstatements[J]. AstinBulletin,2004,34:299-313.
    [100] Iglehart D. Diffusion approximations in collective risk theory[J]. Journal of Applied Probability,1969,6:285-292.
    [101] Grandlle J. Aspects of Risk Theory[M]. Springer Series in Statistics: Probability and its Appli-cations, Springer-Verlag, New York,1991.
    [102] Pham H. Continuous-time stochastic control and optimization with fiancial application[M]. Dor-dreeht, Springer,2009.
    [103] Bai L H, Zhang H Y. Dynamic mean-variance with constrained risk control for the insurer[J].Math method Oper Res.,2008,68(1):181-205.
    [104] Luenberger D G. Optimization by vector space methods[M]. New York: Wiler,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700