用户名: 密码: 验证码:
肺炎衣原体诱导THP-1源性泡沫细胞形成的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肺炎衣原体感染对THP-1源性泡沫细胞形成的影响
     背景胆固醇酯在巨噬细胞内过度堆积并形成泡沫细胞是动脉粥样硬化的一个典型病理特征。
     目的以THP-1(人急性单核细胞性白血病细胞株)为研究对象,体外观察肺炎衣原体(C.pn)感染对THP-1源性泡沫细胞形成的影响。
     方法C.pn在人喉上皮癌(Hep-2)细胞内增殖。THP-1单核细胞给予160 nmol /L佛波酯(PMA)孵育48 h,诱导分化为巨噬细胞后随机分为4组:①阴性对照组:给予含50μg/ml低密度脂蛋白(LDL)的培养基孵育48 h;②阳性对照组:给予含50μg/ ml氧化型低密度脂蛋白(ox-LDL)的培养基孵育48 h;③C.pn感染浓度组:在负荷50μg / ml LDL的条件下,分别给予1×10~5、4×10~5、5×10~5、1×10~6 IFU C.pn感染48 h;④C.pn感染时间组:在负荷50μg / ml LDL的条件下,给予1×10~6IFU C.pn感染0、24、48、72 h。透射电镜和聚合酶链反应(PCR)鉴定C.pn有无感染Hep-2和THP-1源性巨噬细胞。运用油红O染色光镜下观察细胞浆内脂滴的变化,采用酶比色法分别检测细胞内总胆固醇(TC)和胆固醇酯(CE)含量的变化。
     结果与阴性对照组比较,阳性对照组细胞内的脂滴明显增多,CE /TC比值明显增加(>50%) (p <0.05)。随着C.pn感染浓度的增加和时间的延长,细胞内的脂滴、CE和TC含量逐渐增多。与阴性对照组相比,高浓度的C.pn (5×10~5和1×10~6IFU)感染组的细胞内脂滴显著增多,CE /TC的比值分别有明显增加(>50%) (p < 0.05)。但CE/TC比值在C.pn感染72 h (68.6)和48 h (66.4%)时,差异无统计学意义(p>0.05)。与阳性对照组比较,1×10~6 IFU C.pn感染组细胞内的脂滴数量、CE /TC比值无统计学差异(p>0.05)。
     结论在负荷LDL的条件下,高浓度的C.pn (5×10~5和1×10~6IFU)感染诱导THP-1源性泡沫细胞形成。
     第二部分肺炎衣原体感染对参与巨噬细胞胆固醇代谢关键基因表达的影响
     背景胆固醇代谢稳态的失衡贯穿于泡沫细胞形成的整个过程。
     目的观察参与细胞内胆固醇代谢关键基因-清道夫受体A (SR-A1)、B (CD36)、血凝素样氧化低密度脂蛋白受体1(LOX-1)、酰基辅酶A:胆固醇酰基转移酶1(ACAT1)、ATP结合盒转运体A1 (ABCA1)和G1 (ABCG1)在肺炎衣原体(C.pn)诱导泡沫细胞形成中的作用。
     方法THP-1单核细胞给予160 nmol/LPMA孵育48 h,诱导分化为巨噬细胞后随机分为4组:①对照组:给予含50μg/ml低密度脂蛋白(LDL)的培养基孵育48 h;②C.pn感染浓度组:在负荷LDL(50μg/ml)的条件下,分别给予1×10~5、4×10~5、5×10~5、1×10~6 IFU C.pn感染48 h;③C.pn感染时间组:在负荷LDL (50μg / ml)的条件下,给予1×10~6IFU C.pn感染0、24、48、72 h。④抗CD36单克隆抗体+ C.pn感染组:分别给予1:100、1:200、1:400的鼠抗人CD36单克隆抗体预孵1h,再给予含50μg/mlLDL和1×10~6 IFU C.pn感染48 h。分别运用RT-PCR和Western-blot检测①~③组SR-A1、CD36、LOX-1、ACAT1、ABCA1、ABCG1 mRNA和蛋白表达。运用油红O染色光镜下观察细胞浆内脂滴的变化,采用酶比色法分别检测细胞内总胆固醇(TC)和胆固醇酯(CE)含量的变化。
     结果随着C.pn感染浓度的增加和时间的延长,SR-A1、ACAT1 mRNA和蛋白表达不仅逐渐上调,而且ABCA1、ABCG1 mRNA和蛋白表达也逐渐下降(所有p<0.05)。然而,C.pn感染不影响LOX-1 mRNA和蛋白表达(p>0.05)。与对照组比较,高浓度的C.pn感染组(1×10~6 IFU)的CD36 mRNA和蛋白表达有明显降低(p< 0.05)。从形态学和生化学的角度观察,给予不同滴度的鼠抗人CD36单克隆抗体干预后,C.pn (1×10~6IFU)感染诱导的泡沫细胞形成无显著变化。
     结论C.pn感染负荷LDL的THP-1源性巨噬细胞后,通过增加SR-A1和ACAT1表达,抑制CD36、ABCA1和ABCG1表达,破坏巨噬细胞内胆固醇代谢的稳态,进而诱导泡沫细胞形成。
     第三部分过氧化物酶体增殖物活化受体通路在肺炎衣原体诱导泡沫细胞形成中的作用
     背景过氧化物酶体增殖物活化受体(PPARs)是调控巨噬细胞胆固醇代谢的关键核受体。
     目的以THP-1源性巨噬细胞为研究对象,体外观察过氧化物酶体增殖物活化受体α(PPARα)、γ(PPARγ)在肺炎衣原体(C.pn)感染调控的关键基因(SR-A1、CD36、ACAT1、ABCA1、ABCG1)和泡沫细胞形成中的作用。
     方法THP-1单核细胞给予160 nmol/LPMA孵育48 h,诱导分化为巨噬细胞后随机分为7组,①对照组:给予含50μg/ml低密度脂蛋白(LDL )的培养基孵育48 h;②C.pn感染浓度组:在负荷50μg / ml LDL的条件下,分别给予1×10~5、4×10~5、5×10~5、1×10~6 IFU C.pn感染48 h;③C.pn感染时间组:在负荷50μg / ml LDL的条件下,给予1×10~6 IFU C.pn感染0、24、48、72 h;④PPARα激动剂非诺贝特+C.pn感染组:分别给予含10、20、50μmol /L非诺贝特的培养基预孵2h后,再给予含50μg / ml LDL和1×10~6 IFU C.pn感染48 h;⑤非诺贝特组:给予含50μmol /L非诺贝特的培养基孵育48 h;⑥PPARγ配体罗格列酮+C.pn感染组:分别给予含1、10、20μmol /L罗格列酮的培养基预孵2h后,再给予含50μg / ml LDL和1×10~6 IFU C.pn感染48 h;⑦罗格列酮组:给予含20μmol /L罗格列酮的培养基孵育48 h。分别运用RT-PCR和Western-blot检测各组PPARα、PPARγ、SR-A1、CD36、ACAT1、ABCA1、ABCG1mRNA和蛋白表达。运用油红O染色观察细胞浆内脂滴的变化,酶比色法检测各组细胞内总胆固醇和胆固醇酯含量的变化。
     结果C.pn感染呈浓度和时间依赖性地下调PPARα、PPARγmRNA和蛋白表达(p< 0.05)。与C.pn感染组比较,非诺贝特和罗格列酮不仅浓度依赖性地抑制C.pn感染诱导的SR-A1、ACAT1 mRNA和蛋白表达的增加(p < 0.05),而且浓度依赖性地抑制C.pn对ABCA1、ABCG1mRNA和蛋白表达的下调效应(p< 0.05)。与C.pn感染组比较,20μmol /L的罗格列酮可以逆转C.pn感染诱导的CD36 mRNA和蛋白表达的下调(p <0.05)。此外,从形态学和生化学的角度观察,高浓度的非诺贝特(20和50μmol /L)和罗格列酮(10和20μmol /L)明显抑制C.pn诱导的THP-1源性泡沫细胞形成。
     结论C.pn部分通过PPARα和PPARγ途径,上调SR-A1、ACAT1表达,下调CD36、ABCA1、ABCG1表达,诱导THP-1源性泡沫细胞形成,这可能为进一步阐明C.pn感染促进动脉粥样硬化发生发展提供新的理论依据。
PartⅠEffect of Chlamydia pneumoniae infection on the formation ofTHP-1-derived foam Cells
     Background A typical pathological hallmark of atherosclerosis is the excessiveaccumulation of cholesteryl esters in macrophages,leading to their conversion to foam cells.
     Objective To observe the effect of Chlamydia pneumoniae (C.pn) infection on theformation of THP-1-derived foam cells in vitro.
     Methods C.pn was propagated in Hep-2 cells.Human monocytic cell line (THP-1)were induced into macrophages by 160 nmol/L phorbol myristate acetate (PMA) for 48 h,and then were randomly allocated into four groups:①negative control group,RPMI 1640medium containing 50μg / ml low density lipoprotein (LDL) for 48 h;②positive controlgroup,RPMI 1640 medium containing 50μg / ml oxidized low density lipoprotein (ox-LDL)for 48 h;③different concentrations of C.pn infection group,50μg / ml LDL plus 1×10~5,4×10~5,5×10~5 and 1×10~6 IFU C.pn infection for 48 h;④different time of C.pn infectiongroup,50μg / ml LDL plus 1×10~6 IFU C.pn infection for 0,24,48 and 72 h.The infection ofC.pn on Hep-2 and THP-1 macrophages were assessed by transmission electron microscopeand polymerase chain reaction (PCR).Lipid droplets in cytoplasm were observed by oil red Ostaining.The contents of intracellular total cholesterol (TC) and cholesteryl esters (CE) weredetected by enzymic chromatometry.
     Results Compared with negative control,there were significantly increases in theaccumulation of lipid droplets and the ratio of CE to TC (more than 50 percent) in positivecontrol (p<0.05).C.pn infection increased the contents of intracellular lipid droplets,TC andCE in concentration-dependent and time-dependent manner.Higher concentrations of C.pninfection (5×10~5 and 1×10~6 IFU) group also obviously increased the accumulation of lipiddroplets and the ratio of CE to TC (more than 50 percent) compared with negative control (p<0.05).However,the ratio of CE to TC in C.pn infection 72 h group (68.6 %) and 48 h group(66.4 % ) had no difference (p>0.05).Compared with positive control,there was nodifferences in the number of lipid droplets and the ratio of CE to TC in C.pn infection (1×10~6IFU) group (p>0.05).
     Conclusion In the presence of LDL,higher concentrations of C.pn infection (5×10~5 and1×10~6 IFU) induce the formation of THP-1-derived foam cells.
     PartⅡEffect of Chlamydia pneumoniae infection on the expressionsof key genes involved in macrophage cholesterol metabolism
     Background The imbalance of cholesterol metabolism homeostasis in macrophagecontributes to foam cell formation.
     Objective To investigate the roles of scavenger receptor A1 (SR-A1),B (CD36),lectin-like oxidized low density lipoprotein receptor-1(LOX-1),acyl-coenzyme A:cholesterolacyltransferase 1 (ACAT1),ATP binding cassette transporter A1 (ABCA1) and G1 (ABCG1)in Chlamydia pneumoniae (C.pn)-induced foam cell formation.
     Methods THP-1 monocytes were induced into macrophages by 160 nmol/L PMA for48 h,and then were randomly allocated into four groups:①control group,RPMI 1640medium containing 50μg / ml low density lipoprotein (LDL) for 48 h;②differentconcentrations of C.pn infection group,50μg / ml LDL plus 1×10~5,4×10~5,5×10~5 and 1×10~6IFU C.pn infection for 48 h;③different time of C.pn infection group,50μg / ml LDL plus 1×10~6 IFU C.pn infection for 0,24,48 and 72 h;④mouse anti-human CD36 monoclonalantibody plus C.pn infection group,pre-treatment with different dilutions of mouseanti-human CD36 monoclonal antibody (1:100,1:200,1:400) for 1 h,50μg / ml LDL plus1×10~6 IFU C.pn infection for 48 h.The mRNA and protein expressions of SR-A1,CD36,LOX-1,ACAT1,ABCA1 and ABCG1 from group①to group③were determined byRT-PCR and Western-blot,respectively.Intracellular lipid droplets were observed by oil red Ostaining.The contents of intracellular total cholesterol (TC) and cholesteryl esters (CE) weredetected by enzymic chromatometry.
     Results C.pn infection not only up-regulated the mRNA and protein expressions ofSR-A1 and ACAT1,but also down-regulated the mRNA and protein expressions of ABCA1and ABCG1 in concentration-dependent and time-dependent manner in LDL-treated THP-1macrophages (all p<0.05).However,C.pn infection had no effect on the expression ofLOX-1 at mRNA and protein levels compared with control group (p>0.05).Compared withcontrol group,the down-regulation of CD36 at mRNA and protein expressions was observedin high concentration of C.pn infection (1×10~6 IFU) group.In addition,from morphologicaland biochemical criteria,C.pn-induced foam cell formation derived from THP-1 had not beeninfluenced after pre-treatment with different dilutions of mouse anti-human CD36 monoclonalantibody.
     Conclusion C.pn infection may destroy the homeostasis of intracellular cholesterolmetabolism by increasing SR-A1 and ACAT1 expressions,and inhibiting CD36,ABCA1 andABCG1 expressions in LDL-treated THP-1-derived macrophages,which leads to foam cellformation.
     PartⅢThe roles of peroxisome proliferator-activated receptorspathways in Chlamydia pneumoniae-induced foam cell formation
     Background peroxisome proliferator-activated receptors (PPARs) are key nuclearreceptors that regulate macrophage cholesterol metabolism.
     Objective To investigate the effects of peroxisome proliferator-activated receptorα(PPARα) andγ(PPARγ) on the expressions of SR-A1,CD36,ACAT1,ABCA1 andABCG1 regulated by Chlamydia pneumoniae (C.pn) infection,and to discuss the pathways ofC.pn-induced foam cell formation.
     Methods THP-1 monocytes were induced into macrophages by 160 nmol/L PMA for48 h.and then were randomly allocated into seven groups:①control group,RPMI 1640medium containing 50μg / ml low density lipoprotein (LDL) for 48 h;②differentconcentrations of C.pn infection group,50μg / ml LDL plus 1×10~5,4×10~5,5×10~5 and 1×10~6IFU C.pn infection for 48 h;③different time of C.pn infection group,50μg / ml LDL plus1×10~6 IFU C.pn infection for 0,24,48 and 72 h;④Fenofibrate (a specific PPARαagonist)plus C.pn infection group,pretreatment with different concentrations of fenofibrate (10、20、50μmol/L) for 2 h,50μg / ml LDL plus 1×10~6 IFU C.pn infection for 48 h;⑤Fenofibrategroup,RPMI 1640 medium containing 50μmol/L fenofibrate for 48 h;⑥Rosiglitazone (aspecific PPARγligand) plus C.pn infection group,pretreatment with different concentrationsof rosiglitazone (1、10、20μmol/L) for 2 h,50μg / ml LDL plus 1×10~6 IFU C.pn infection for48 h;⑦Rosiglitazone group,RPMI 1640 medium containing 20μmol/L rosiglitazone for48 h.The mRNA and protein expressions of PPARα,PPARγ,SR-A1,ACAT1,ABCA1 andABCG1 were determined by RT-PCR and Western-blot,respectively.Lipid droplets incytoplasm were observed by oil red O staining.The contents of intracellular cholesteryl esterswere detected by enzymic chromatometry.
     Results C.pn infection suppressed the expressions of PPARαand PPARγat mRNAand protein levels in concentration-dependent and time-dependent manner in LDL-treatedTHP-1 macrophages (all p<0.05).Compared with C.pn infection group,not only the up-regulation of SR-A1 and ACAT1 but also the down-regulation of ABCA1 and ABCG1 atmRNA and protein levels by C.pn infection were concentration-dependently inhibited byfenofibrate and rosiglitazone (all p<0.05).Compared with C.pn infection group,20μmol/Lrosiglitazone reversed the down-regulation of CD36 by C.pn infection (p<0.05).In addition,from morphological and biochemical criteria,higher concentrations of fenofibrate (20 and 50μmol/L) and rosiglitazone (10 and 20μmol/L) markedly inhibited THP-1-derived foam cellformation induced by C.pn infection.
     Conclusion C.pn infection induces THP-1-derived foam cell formation byup-regulating SR-A1 and ACAT1 expressions and down-regulating CD36,ABCA1 andABCG1 expressions partly via PPARαand PPARγ-dependent pathways,which mayprovide new insights for the development and progression of atherosclerosis initiated by C.pninfection.
引文
1.Saikku P,Leinonen M,Mattila K,et al.Serological evidence of an association of a novel Chlamydia,TWAR,with chronic coronary heart disease and acute myocardial infarction.Lancet,1988,332(8618):983-986.
    2.Kuo CC,Shor A,Campbell LA,et al.Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries.J Infect Dis,1993,167 (4):841-849.
    3.Blessing E,Campbell LA,Rosenfeld ME,et al.Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice,Atherosclerosis,2001,158(1):13-17.
    4.Romano Carratelli C,Nuzzo Ⅰ,Cozzolino D,et al.Relationship between Chlamydia pneumoniae infection,inflammatory markers,and coronary heart diseases.Int Immunopharmacol,2006,6(5):848-853.
    5.Grayston JT,Kuo CC,Wang SP,et al.A new Chlamydia psittaci strain,TWAR,isolated in acute respiratory tract infections.N Engl J Med,1986,315(3):161-168.
    6.Grayston JT,Wang SP,Kuo CC,et al.Current knowledge on Chlamydia pneumoniae,strain TWAR,an important cause of pneumonia and other acute respiratory diseases.Eur J Clin Microbiol Infect Dis,1989,8(3):191-202.
    7. Mahmoudi M, Curzen N, Gallagher PJ. Atherogenesis: the role of inflammation and infection. Histopathology, 2007, 50(5):535-546.
    8. Gaydos CA, Summersgill JT, Sahney NN, et al. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells.Infect Immun, 1996, 64 (5): 1614-1620.
    9. Mussa FF, Chai H, Wang X. Chlamydia pneumoniae and vascular disease: an update. J Vasc Surg, 2006,46(6):1301-1307.
    10. Kalayoglu MV, Hoerneman B, LaVerda D, et al. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis, 1999,180 (3):780-790.
    11. Kalayoglu MV, Indrawati, Morrison RP, et al. Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. J Infect Dis, 2000,181 (Suppl 3):S483- S 489.
    12. Kalayoglu MV, Byrne GI. A Chlamydia pneumoniae component that induces macrophage foam cell formation is Chlamydial lipopolysaccharide. Infect Immun, 1998,66 (11):5067-5072.
    13. Kalayoglu MV, Miranpuri GS, Golenbock DT, et al. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae. Microbes Infect, 1999, 1(6):409-418.
    14. Llaverias G, Lacasa D, Vazquez-Carrera M, et al. Cholesterol regulation of genes involved in sterol trafficking in human THP-1 macrophages. Mol Cell Biochem, 2005,273(1-2): 185-191.
    15. Yoshida T, Koide N, Mori I, et al. Chlamydia pneumoniae infection enhances lectin-like oxidized low-density lipoprotein receptor (LOX-1) expression on human endothelial cells.FEMS Microbiol Lett, 2006, 260(l):17-22.
    16. Kunjathoor W, Febbraio M, Podrez EA, et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem, 2002, 277(51):49982-9988.
    17. Miller YI, Chang MK, Binder CJ, et al. Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol, 2003,14(5): 437-445.
    18.Chen M,Masaki T,Sawamura T.LOX-1,the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis.Pharmacol Ther,2002,95(1):89-100.
    19.Buhman KF,Accad M,Farese RV.Mammalian acyl-COA:cholesterol acyltransferases.Biochim Biophys Acta,2000,1529(1-3):142-154.
    20.Chang TY,Chang CC,Lin S,et al.Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2.Curr Opin Lipidol,2001,12 (3):289-296.
    21.何平,成蓓,彭雯,等.泡沫细胞形成过程中酰基CoA:胆固醇酰基转移酶1活性改变及其机制研究.中华心血管病杂志,2004,32(2):158-160.
    22.何平,成蓓,戚本玲.酰基辅酶A:胆固醇酰基转移酶1反义寡核苷酸对泡沫细胞形成的影响.中国病理生理杂志,2008,24(8):1616-1619.
    23.Maxfiled F R,Wastner D.Intracellular cholesterol transport.J Clin Invest,2002,10(7):891-898.
    24.Oram J F,Vaughan A M.ATP-binding cassette cholesterol transporters and cardiovascular disease.Circ Res,2006,99 (10):1031-1043.
    25.Wang X,Collins HL,Ranalletta M,et al.Macrophage ABCA1 and ABCG1,but not SR-BI,promote macrophage reverse cholesterol transport in vivo.J Clin Invest,2007,117(8):2216-2224.
    26.Yvan-Charvet L,Ranalletta M,Wang N,et al.Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice.J Clin Invest,2007,117 (12):3900-3908.
    27.Van Eck M,Singaraja RR,Ye D,et al.Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice.Arterioscler Thromb Vasc Biol,2006,26(4):929-934.
    28.Baranova Ⅰ,Vishnyakova T,Bocharov A,et al.Lipopolysaccharide down regulates both scavenger receptor B1 and ATP binding cassette transporter A1 in RAW cells.Infect Immun,2002,70(6):2995-3003.
    29.Lee CH,Olson P,Evans RM.Minireview:lipid metabolism,metabolic diseases,and peroxisome proliferator-activated receptors.Endocrinology,2003,144 (6):2201-2207.
    30.Fernandez AZ.Peroxisome proliferator-activated receptors in the modulation of the immune/inflammatory response in atherosclerosis.PPAR Res,2008,2008:285842-285848.
    31.Dushkin MI,Khoshchenko OM,Posokhova EN,et al.Agonists of PPAR-alpha,PPAR-gamma,and RXR inhibit the formation of foam cells from macrophages in mice with inflammation.Bull Exp Biol Med,2007,144(5):713-716.
    32.Chinetti G,Lestavel S,Fruchart JC.Peroxisome proliferator-activated receptor reduces cholesterol esterification in macrophages.Circ Res,2003,92 (2):212-217.
    33.白志峰,成蓓,李长运,等.PPAR γ对单核/巨噬细胞酰基辅酶A:胆固醇酰基转移酶-1表达效应的研究.中国老年学杂志,2004,24(8):717-720.
    34.Babaev VR,Ishiguro H,Ding L,et al.Macrophage expression of peroxisome proliferator-activated receptor alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice.Circulation,2007,116 (12):1404-1412.
    35.Li A,Brown K,Silvestre M,et al.Peroxisome proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice.J Clin Invest,2000,106 (4):523-531.
    36.Kim YH,Choi SY,Suh JH,et al.The effect of Chlamydia pneumoniae on the expression of peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells.Yonsei Med J,2008,49 (2):230-236.
    1.潭健苗,杨永宗,袁中华,等.巨噬细胞源性与肌源性泡沫细胞的不同特性研究.广州医学院学报,2001,29(2):25-29.
    2.Linton MF,Fazio S.Class A scavenger receptors,macrophages,and atherosclerosis.Curr Opin Lipidol,2001,12(5):489-495.
    3.Shashkin P,Dragulev B,Ley K.Macrophage differentiation to foam cells.Curr Pharm Des,2005,11(23):3061-3072.
    4.de Boer O J,van der Wal AC,Becker AE.Atherosclerosis,inflammation and infection.J Pathol,2000,190:237-243.
    5.Ngeh J,Anand V,Gupta S.Chlamydia pneumoniae and atherosclerosis-what we know and what we don't.Clin Microbiol Infect,2002,8 (1):2-13.
    6.Liu C,Waters DD.Chlamydia pneumoniae and atherosclerosis:From Koch postulates to clinical trials.Prog Cardiovasc Dis,2005,47(4):230-239.
    7.de Kruif MD,van Gorp EC,Keller TT,et al.Chlamydia pneumoniae infections in mouse models:relevance for atherosclerosis research.Cardiovasc Res,2005,65(2):317-327.
    8.Watson C,Alp NJ.Role of Chlamydia pneumoniae in atherosclerosis.Clin Sci (Lond),2008,114(8):509-531.
    9.Kuo CC,Gown AM,Benditt EP,et al.Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain.Arterioscler Thromb,1993,13(10):1501-1504.
    10.Kalayoglu MV,Byrne GI.Induction of macrophage foam cell formation by Chlamydia pneumoniae.J Infect Dis,1998,177 (2):725-729.
    11.Roblin PM,Dumornay W,Hammerschlag MR.Use of HEP-2 cells for improved isolation and passage of Chlamydia pneumoniae.J Clinical Microbiology,1992,30 (8):1968-1971.
    12.Mukhopadhyay S,Clark AP,Sullivan ED,et al.Detailed protocol for purification of Chlamydia pneumoniae elementary bodies.J Clin Microbiol,2004,42(7):3288-3290.
    13.王淳本,宗义强,吴万生,等.两步超速离心法快速分离血浆极低密度脂蛋白及低密度脂蛋白.同济医科大学学报,1995,24(3):169-171.
    14.Steinberg D,Parthasarathy S,Carew T,et al.Beyond cholesterol modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med,1989,320 (14):915-924.
    15.Chen Q,Esterbauen H,Jurgegns G.Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal.Biochemical characterization and determination.Biochem J,1992,288 (pt 1):249-254.
    16.Kritharides L,Jessup W,Gifford J,et al.A method for defining the stages of LDL oxidation by the separation of cholesterol and cholesteryl ester oxidation products by HPLC.Anal Biochem,1993,213:79-89.
    17.Janero D.Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury.Free Radic Biol Med,1990,9 (6):515-540.
    18.Auwerx J.The human leukemia cell line,THP-1:a multifaceted model for the study of monocyte-macrophage differentiation.Experientia,1991,47(1):22-31.
    19.施毅,夏锡荣,宋勇,等.肺炎衣原体急性呼吸道感染的临床研究.中华结核和呼吸杂志,1998,21(5):280-283.
    20.Wada Y,Sugiyama A,Yamamoto T,et al.Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.Arterioscler Thromb Vasc Biol,2002,22(10):1712-1719.
    21.Fogelman AM,Shechter I,Seager J,et al.Malondialdehyde alteration of low density lipoprotein leads to cholesteryl ester accumulation in human monocyte-macrophages.Proc Natl Acad Sci USA,1980,77(4):2214-2218.
    22.Kuo CC,Grayston JT.Factors affecting viability and growth in HeLa 229 cells of Chlamydia sp. strain TWAR. J Clin Microbiol, 1988, 26(5): 812-815.
    23. Moulder JW. Interaction of chlamydiae and host cells in vitro. Microbiol Rev, 1991,55(1):143-190.
    24. Beatty WL, Byrne GI, Morrison RP. Morphologic and antigenic characterization of interferon gamma mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci USA, 1993, 90 (9): 3998-4002.
    25. Wolf K, Fischer E, Hackstadt T. Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells. Infect Immun, 2000, 68:2379-2385.
    26. Gaydos CA, Summersgill JT, Sahney NN, et al. Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells.Infect Immun, 1996, 64 (5): 1614-1620.
    27. Palikhe A, Tiirola T, Puolakkainen M, et al. Chlamydia pneumoniae DNA is present in peripheral blood mononuclear cells during acute coronary syndrome and correlates with chlamydial lipopolysaccharide levels in serum. Scand J Infect Dis, 2009, 41(3):201- 205.
    28. Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Phsiol Rev,2004, 84 (4): 1381-478.
    29. Jones NL, Reagan JW, Willingham MC. The pathogenesis of foam cell formation:modified LDL stimulates uptake of co-incubated LDL via macropincytosis. Arterioscler Thromb Vase Biol, 2000, 20 (3): 773-781.
    30. Kalayoglu MV, Indrawati, Morrison RP, et al. Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. J Infect Dis, 2000,181 (Suppl 3):S483- S489.
    1.Vainio S,Ikonen E.Macrophage cholesterol transport:a critical player in foam cell formation.Ann Med,2003,35(3):146-155.
    2.Shashkin P,Dragulev B,Lev L.Macrophage differentiation to foam cells.Curr Pharm Des,2005,11(23):3061-3072.
    3.De-WintherMP,van-Dijk Kw,Havekes LM,et al.Macrophage scavenger receptor class A:A multifunctional receptor in atherosclerosis.Arterioscler Thromb Vasc Biol,2000,20 (2):290-297.
    4.Kunjathoor VV,Febbraio M.Scavenger receptors class A-Ⅰ / Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages.J Biol Chem,2002,277(51):49982-49988.
    5.何平,成蓓,彭雯,等.泡沫细胞形成过程中酰基CoA:胆固醇酰基转移酶1活性改变及其机制研究.中华心血管病杂志,2004,32(2):158-160.
    6.Jessup W,Gelissen IC,Gaus K,et al.Roles of ATP binding cassette transporters A1 and G1,scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Curr Opin Lipidol,2006,17(3):247-257.
    7.Cavellier C,Lorenzi.I,Rohrer L,et al.Lipid efflux by the ATP-binding cassette transporters ABCA1 and ABCG1.Biochim Biophys Acta,2006,1761(7):655-666.
    8. Out R, Hoekstra M, Habets K, et al. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels. Arterioscler Thromb Vase Biol,2008, 28(2):258-264.
    9. Out R, Jessup W, Le Goff W, et al. Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1. Circ Res, 2008,102(1): 113-120.
    10. Shor A, Kuo CC, Patton DL. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J, 1992, 82(3): 158-161.
    11. Watson C, Alp NJ. Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci (Lond),2008,114(8): 509-531.
    12. Dugan JP, Feuge RR, Burgess DS. Review of evidence for a connection between Chlamydia pneumoniae and atherosclerotic disease. Clin Ther, 2002, 24(5): 719-735.
    13. Pennings M, MeuTS I, Ye D, et al. Regulation of cholesterol homeostasis in macrophages and consequences for atherosclerotic lesion development. FEBS Lett, 2006, 580 (23):5588-5596.
    14. Kalayoglu MV, Byrne GI. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis. 1998,177 (2): 725-729.
    15. Kalayoglu MV, Byrne GI. AChlamydia pneumoniae component that induces macrophage foam cell formation is Chlamydial lipopolysaccharide. Infect Immun, 1998, 66(11):5067-5072.
    16. Kalayoglu MV, Hoerneman B, LaVerda D, et al. Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis, 1999,180 (3):780-790.
    17. Kalayoglu MV, Miranpuri GS, Golenbock DT, et al. Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae. Microbes Infect, 1999, 1(6):409-418.
    18. Suzuki H, Kufihaa'a Y, Takeya M, et al. A role for the macrophage scavenger receptors in atheroselerosis and suseeptihility to infection. Nature, 1997, 386 (6622): 292-296.
    19. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inftammation, and lipid metabolism. J Clin Invest, 2001,108(6):785-791.
    20.Hihunen TP,Luoma JS,Nikkari T,et al.Expression of LDL receptor,VLDL Receptor,LDL Receptor-related protein,and scavenger Receptor in Rabbit Atherosclerotic lesions.Circulation,1998,97(11):1079-1086.
    21.Yoshida T,Koide N,Mori I,et al.Chlamydia pneumoniae infection enhances lectin-like oxidized low-density lipoprotein receptor (LOX-1) expression on human endothelial cells.FEMS Microbiol Lett,2006,260:17-22.
    22.Chen M,Masaki T,Sawamura T.LOX-1,the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis.Pharmacol Ther,2002,95(1):89-100.
    23.Tiwari RL,Singh V,Barthwal MK.Macrophages:an elusive yet emerging therapeutic target of atherosclerosis.Med Res Rev,2008,28(4):483-544.
    24.Mattaliano MD,Huard C,Cao W,et al.LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells.Am J Physiol Cell Physiol,2009 Mar 11.[Epub ahead of print]
    25.何平,成蓓,王洪星,等.酰基辅酶A胆固醇酰基转移酶1基因过表达对泡沫细胞形成的影响.中国动脉硬化杂志,2007,15(5):325-328.
    26.何平,成蓓,戚本玲.酰基辅酶A:胆固醇酰基转移酶1反义寡核苷酸对泡沫细胞形成的影响.中国病理生理杂志,2008,24(8):1616-1619.
    27.He P,Cheng B,Wang Y,et al.Effect of tumor necrosis factor-alpha on acyl coenzyme A:cholesteryl acyltransferase activity and ACAT1 gene expression in THP-1 macrophages.J Huazhong Univ Sci Technolog Med Sci,2007,27(2):170-172.
    28.Lei L,Xiong Y,Chen J,et al.TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation.J Lipid Res,2009 Feb 2.[Epub ahead of print]
    29.Yang JB,Duan ZJ,Yao W,et al.Synergistic transcriptional activation of human Acyl-coenzyme A:cholesterol acyltransterase-1 gene by interferon-gamma and all-trans-retinoic acid THP-1 cells.J Biol Chem,2001,276(24):20989-20998.
    30.Wang X,Rader DJ.Molecular regulation of macrophage reverse cholesterol transport.Curr Opin Lipidol,2007,22(4):368-372.
    31.Oram JF,Vaughan AM.ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res, 2006, 99(10):1031-1043.
    32. Tall AR, Yvan-Charvet L, Terasaka N, et al. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab, 2008, 7(5): 365-375.
    33. Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and Toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell,2003,12(4):805-816.
    1. Krull M, Kramp J, Petrov T, et al. Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells. Infect Immun, 2004,72 (11): 6615-6621.
    2. Kim YH, Choi SY, Suh JH, et al. The effect of Chlamydia pneumoniae on the expression of peroxisome proliferator activated receptor-y in vascular smooth muscle cells. Yonsei Med J, 2008, 49(2): 230-236.
    3. Huang B, Dong Y, Mai W, et al. Effect of Chlamydia pneumoniae infection and hyperlipidaemia on the expression of PPAR y, P50 and c-Fos in aortic endothelial cells in C57BL/6J mice. Acta Cardiol, 2005, 60 (1): 43-49.
    4. Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 2008,454(7203): 470-477.
    5. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology, 2003,144 (6): 2201-2207.
    6. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs):nuclear receptors at the crossroads between lipid metabolism andinflammation. Inflamm Res, 2000,49(10):497-505.
    7. Kuusisto J, Andrulionyte L, Laakso M. Atherosclerosis and cardiovascular risk reduction with PPAR agonists. Curr Atheroscler Rep, 2007, 9 (4):274-280.
    8. Cabrero A, Cubero M, Llaverias G, et al. Differential effects of peroxisome proliferator-activated receptor activators on the mRNA levels of genes involved in lipid metabolism in primary human monocyte-derived macrophages. Metabolism, 2003, 52(5):652-657.
    9. Feige JN, Gelman L, Michalik L, et al. From molecular action to physiological outputs:peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res, 2006, 45(2): 120-159.
    10.Chinetti G,Lestavel S,Fruchart JC,et al.Peroxisome Proliferator-Activated Receptor α Reduces Cholesterol Esterification in Macrophages.Circ Res,2003,92 (2):212-217.
    11.白志峰,成蓓,李长运,等.PPARγ对单核/巨噬细胞酰基辅酶A:胆固醇酰基转移酶-1表达效应的研究.中国老年学杂志,2004,24(8):717-720.
    12.Bouhlel MA,Staels B,Chinetti-Gbaguidi G.Peroxisome proliferator-activated receptors--from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease.J Intern Med,2008,263(1):28-42.
    13.Chinetti G,Fruchart JC,Staels B,et al.Peroxisome proliferator-activated receptors:new targets for the pharmacological modulation of macrophage gene expression and function.Curr Opin Lipidol,2003,14(5):459-468.
    14.Chinetti G,Lestavel S,Bocher V,et al.PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.Nat Med,2001,7(1):53-58.
    15.Ogata M,Tsujita M,Hossain MA,et al.On the mechanism for PPAR agonists to enhance ABCA1 gene expression.Atherosclerosis,2009 Jan 19.[Epub ahead of print]
    16.Rosenson RS.Fenofibrate:treatment of hyperlipidemia and beyond.Expert Rev Cardiovasc Ther,2008,6(10):1319-1330.
    17.Lefebvre AM,Peinado-Onsurbo J,Leitersdor FI,et al.Regulation of lipoprotein metabolism by thiazolidinediones occurs through a distinct but complementary mechanism relative to fibrate.Arterioscler Thromb Vasc Biol,1997,17(9):1756-1764.
    18.Chawla A,Barak Y,Nagy L,et al.PPAR-gamma dependent and independent effects on macrophage·gene expression in lipid metabolism and inflammation.Nat Med,2001,7(1):48-52.
    19.Winther MPJ,Dijk KWV,Havekes LM,et al.Macrophage scavenger receptor classA:a multifunctional receptor in atherosclerosis.Artefioscler Thromb Vasc Biol,2000,20(2):290-297.
    20. Argmann CA, Sawyez CG, McNeil CJ, et al. Activation of peroxisome proliferator-activated receptor gamma and retinoid X receptor results in net depletion of cellular cholesteryl esters in macrophages exposed to oxidized lipoprotein. Arterioscler Thromb Vase Biol, 2003,23(3): 475-482.
    21. Jandeleit-Dahm KA, Calkin A, Tikellis C, et al. Direct antiatherosclerotic effects of PPAR agonists. Curr Opin Lipidol, 2009, 20 (l):24-29.
    22. Villacorta L, Schopfer FJ, Zhang J, et al. PPAR gamma and its ligands: therapeutic implications in cardiovascular disease. Clin Sci (Lond), 2009,116(3):205-218.
    23. Chen S, Sorrentino R, Shimada K, et al. Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation. J Immunol, 2008,181(10):7186-7193.
    24. Ricote M, Valledor AF, Glass CK. Decoding Transcriptional Programs Regulated by PPARs and LXRs in the Macrophage: Effects on Lipid Homeostasis, Inflammation, and Atherosclerosis. Arterioscler Thromb Vasc Biol, 2004, 24(2): 230-239.
    25. Rigamonti E, Helin L, Lestavel S, et al. Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages. Circ Res, 2005,97(7):682-689.
    26. Li AC, Glass CK. PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res, 2004, 45(12):2161-2173.
    27. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma -LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell, 2001, 7(1):161-171.
    28. Tobias P, Curtiss LK. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res, 2005, 46(3): 404- 411.
    29. Joyee AG, Yang X. Role of toll-like receptors in immune responses to chlamydial infections. Curr Pharm Des, 2008,14(6):593-600.
    30. Rodriguez N, Wantia N, Fend F, et al. Differential involvement of TLR2 and TLR4 in host survival during pulmonary infection with Chlamydia pneumoniae. Eur J Immunol,2006, 36(5):1145-1155.
    31.Bulut Y, Faure E, Thomas L, et al. Chlamydial Heat Shock Protein 60 activates macrophages and endothelial cells through Toll-Like receptor 4 and MD2 in a MyD88-dependent Pathway. J Immun, 2002,168 (3): 1435-1440.
    32. Cao F, Castrillo A, Tontonoz P, et al. Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun, 2007, 75(2):753-759.
    33. Naiki Y, Sorrentino R, Wong MH, et al. TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol, 2008,181(10):7176-7185.
    1.Libby P.Inflammation in atherosclerosis.Nature,2002,420 (6917):868-894.
    2.Hansson GK.Inflammation,atherosclerosis,and coronary artery disease.N Engl J Med,2005,352 (16):1685-1695.
    3.Jaber J,Mur(?)n J,Kinov(?) S,et al.The role of infection and inflammation in the pathogenesis of atherosclerosis.Vnitr Lek,2002,48 (7):657-666.
    4.Mehta JL,Saldeen TGP,Rand K.Interactive role of infection,inflammation and traditional risk factors inatherosclerosis and coronary disease.J Am Coll Cardiol,1998,31(6):1217-1225.
    5.O'Connor S,Taylor C,Campbell LA,et al.Potential infectious etiologies of atherosclerosis:a multifactorial perspective.Emerg Infect Dis,2001,7 (5):780-788.
    6.Kalayoglu MV,Libby P,Byrone GI.Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease.JAMA,2002,288 (21):2724-2731.
    7.Davidson M,Kuo CC,Middaugh JP,et al.Confirmed previous infection with Chlamydia pneumoniae (TWAR) and its presence in early coronary atherosclerosis.Circulation,1998,98 (7):628-633.
    8.Gaydos CA,Summersgill JT,Sahney NN,et al.Replication of Chlamydia pneumoniae in vitro in human macrophages,endothelial cells,and aortic artery smooth muscle cells.Infect Immun,64 (5):1614-1620.
    9.Liu L,Hu H,Ji H,et al.Chlamydia pneumoniae infection significantly exacerbates aortic atherosclerosis in an LDLR~(-/-) mouse model within six months.Mol Cell Biochem,2000,215 (1-2):123-128.
    10.Grayston JT,Kuo CC,Wang SP,et al.A new Chlamydia psittaci strain,TWAR,isolated in acute respiratory tract infections.N Engl J Med,1986,315 (3):161-168.
    11. Moulder JW. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 1991,55(1):143-190.
    12. Wolf K, Fischer E, Hackstadt T. Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells. Infect Immun, 2000, 68 (4):2379-2385.
    13. Grayston JT, Kuo CC, Campbell LA, et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis, 1990,161 (4): 618-625.
    14. Saikku P, Leinonen M, Mattila K, et al. Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction.Lancet, 1988,332(8618): 983-986.
    15. Wimmer MLJ, Sandmann-Strupp R, Saikku P, et al. Association of Chlamydial infection with cerebrovascular disease. Stroke, 1996,27 (12): 2207-2210.
    16. Grayston JT. Background and current knowledge of Chlamydia pneumoniae in atherosclerosis. J Infect Dis, 2000,181 (Suppl 3): S402-S410.
    17. Krayenbuehl PA, Wiesli P, Maly FE, et al. Progression of peripheral arterial occlusive disease is associated with Chlamydia pneumoniae seropositivity and can be inhibited by antibiotic treatment. Atherosclerosis, 2005,179 (1): 103-110.
    18. Lindholt JS, Ashton HA, Scott RA. Indicators of infection with Chlamydia pneumoniae are associated with expansion of abdominal aortic aneurysms. J Vas Surg, 2001, 34 (2):212-215.
    19. Shor A, Kuo CC, Patton D. Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J, 1992, 82:158-161.
    20. Rassu M, Cazzavillan S, Scagnelli M, et al. Demonstration of Chlamydia pneumoniae in atherosclerotic arteries from various vascular regions. Atherosclerosis, 2001, 158 (l):73-79.
    21. Muhlestein JB, Hammond EH, Carlquist JF, et al. Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol, 1996, 27 (7): 1556-1561.
    22. Ramirez JA. Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae /Atherosclerosis Study Group.Ann Intern Med, 1996,125 (12): 979-982.
    23. Muhlestein JB. Chlamydia pneumoniae-induced atherosclerosis in a rabbit model. J Infect Dis, 2000,181(Suppl 3): S505-S507.
    24. Campbell LA, Blessing E, Rosenfeld M, et al. Mouse models of C. pneumoniae infection and atherosclerosis. J Infect Dis, 2000,181 (Suppl 3): S508-S513.
    25. Blessing E, Lin TM, Campbell LA, et al. Chlamydia pneumoniae induces inflammatory changes in the heart and aorta of normocholesterolemic C57BL/6J mice. Infect Immun,2000, 68 (8): 4765-4768.
    26. Campbell LA, Rosenfeld M, Kuo CC. The role of Chlamydia pneumoniae in atherosclerosis-recent evidence from animal models. Trends Microbiol, 2000, 8 (6):255-257.
    27. Muhlestein JB, Anderson JL, Hammond EH, et al. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation, 1998, 97 (7): 633-636.
    28. Kaul R, Wenman WM. Chlamydia pneumoniae facilitates monocyte adhesion to endothelial and smooth muscle cells. Microbial Pathog, 2001, 30 (3):149-155.
    29. Kern JM, Maass V, Maass M. Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview. Clin Microbiol Infect, 2009,15 (1):36-41.
    30. Romano Carratelli C, Nuzzo I, Cozzolino D, et al. Relationship between Chlamydia pneumoniae infection, inflammatory markers, and coronary heart disease. Int Immunopharmacol, 2006, 6 (5): 848-853.
    31. Villegas E, Sorlozano A, Camacho A, et al. Chlamydophila pneumoniae: from proteomics to atherosclerosis. Enferm Infect Microbiol Clin, 2008, 26 (10): 629-637.
    32. Cunningham AF, Ward ME. Characterization of human humoral responses to the major outer membrane protein and OMP2 of Chlamydophila pneumoniae. FEMS Microbiol Lett,2003, 277 (1): 73-79.
    33. Huittinen T, Leinonen M, Tenkanen L, et al Autoimmunity to human heat shock protein 60, Chlamydia pneumoniae infection, and inflammation in predicting coronary risk. Aterioscler Thromb Vasc Biol, 2002, 22 (3): 431- 437.
    34. Kol A, Lichtman AH, Finberg RW, et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol, 2000,164 (1):13-17.
    35. Gupta S, Leatham EW, Carrington D et al. Elevated Chlamydia pneumoniae antibodies,cardiovascular events and azithromycin in male survivors of myocardial infarction.Circulation, 1997, 96 (2): 404- 407.
    36. Gurfinkel E, Bozovich G, Beck E, et al. Treatment with antibiotic roxithromycin in patients with non-Q-wave coronary syndromes. The final report of the ROXIS study. Eur Heart J, 1999,20 (2): 121-127.
    37. Muhlestein JB, Anderson JL, Carlquist JF, et al. Randomized secondary prevention trial of azithromycin in patients with coronary artery disease: primary clinical results of the ACADEMIC study. Circulation, 2000,102 (15): 1755-1760.
    38. Neumann F, Kastrati A, Miethke T et al. Treatment of Chlamydia pneumoniae infection with roxithromycin and effect on neointima proliferation after coronary stent placement (ISAR-3): a randomised, double-blind, placebo-controlled trial. Lancet, 2001, 357 (9274):2085-2089.
    39. Vammen S, Lindholt JS, Ostergaard L, et al. Randomized double-blind controlled trial of roxithromycin for prevention of abdominal aortic aneurysm expansion. Br J Surg, 2001,88 (8): 1066-1072.
    40. Ngeh J, Anand V, Gupta S. Chlamydia pneumoniae and atherosclerosis -what we know and what we don't. Clin Microbiol Infect, 2002, 8 (1):2-13.
    41. Sessa R, Nicoletti M, Di Pietro M, et al. Chlamydia pneumoniae and atherosclerosis:current state and future prospectives. Int J Immunopathol Pharmacol, 2009, 22 (1): 9-14.
    42. Krull M, Klucken AC, Wuppermann FN, et al. Signal transduction pathways activated in endothelial cells following infection with Chlamydia pneumoniae. J Immunol, 1999, 162(8): 4834-4841.
    43. Shi Y, Tokunaga O. Chlamydia pneumoniae (C. pneumoniae) infection upregulates atherosclerosis - related gene expression in human umbilical vein endothelial cells (HUVECs). Atherosclerosis, 2004,177 (2): 245-253.
    44. Krull M, Kramp J, Petrov T, et al. Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells. Infect Immun, 2004, 72 (11): 6615-6621.
    45.Kalayoglu MV,Indrawati,Morrison RP,et al.Chlamydial virulence determinants in atherogenesis:the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions.J Infect Dis,2000,181 (Suppl 3):S483-S489.
    46.Yamaguchi H,Haranaga S,Widen R,et al.Chlamydia pneumoniae Infection Induces Differentiation of Monocytes into Macrophages.Infect Immun,2002,70 (5):2392-2398.
    47.Bea F,Puolakkainen MH,McMillen T,etal.Chlamydia pneumoniae induces tissue factor expression in mouse macrophages via activation of Egr-1 and the MEK-ERK1/2 pathway.Circ Res,2003,92 (4):394-401.
    48.Vehmaan-Kreula P,Puolakkainen M,Sarvas M,et al.Chlamydia pneumoniae proteins induce secretion of the 92-kDa gelatinase by human monocyte-derived macrophages.Arterioscler Thromb Vasc Biol,2001,21 (1):E1-E8.
    49.Kalayoglu MV,Byrne GI.A Chlamydia pneumoniae component that induces macrophage foam cell formation is Chlamydial lipopolysaccharide.Infect Immun,1998,66 (11):5067-5072.
    50.Kalayoglu MV,Miranpuri GS,Golenbock DT,et al.Characterization of low-density lipoprotein uptake by murine macrophages exposed to Chlamydia pneumoniae.Microbes Infect,1999,1 (6):409-418.
    51.Kalayoglu MV,Hoememan B,LaVerda D,et al.Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae.J Infect Dis,1999,180 (3):780-790.
    52.梅春丽,何平,成蓓,等.肺炎衣原体通过下调ABCA1和ABCG1诱导THP-1源性泡沫细胞形成.中国免疫学杂,2009,25(2):108-113
    53.Mei Chun-li,He Ping,Cheng Bei,et al.Chlamydia pneumoniae induces macrophage-derived foam cell formation via PPAR α and PPAR γ dependent pathways.Cell Biol Int,2009,33 (3):301-308.
    54.He Ping,Mei Chunli,Cheng Bei,et al.Chlamydia pneumoniae induces macrophage-derived foam cell formation by up-regulating acyl-coenzyme A:cholesterol acyltransferase 1.Microbes Infect,2009,11(2):157-163.
    55.Coombes BK,Mahoney JB.Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell-derived soluble factor(s).Infect Immun,1999,67 (6):2909-2915.
    56. Sasu S, LaVerda D, Qureshi N,et al. Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll - like receptor 4 and p44/ p42 mitogen - activated protein kinase activation. Circ Res, 2001, 89(3): 244-250.
    57. Coombes BK, Chiu B, Fong IW, et al. Chlamydia pneumoniae infection of endothelial cells induces transcriptional activation of platelet-derived growth factor-B: a potential link to intimal thickening in a rabbit model of atherosclerosis. J Infect Dis, 2002, 185 (1):1621-1630.
    58. Miller SA, Selzman CH, Shames BD, et al. Chlamydia pneumoniae activates nuclear factor kappa B and activator protein 1 in human vascular smooth muscle and induces cellular proliferation. J Surg Res, 2000, 90 (1): 76-81.
    59. Dechend R, Maass M, Gieffers J. Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappa B and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis. Circulation, 1999, 100 (13):1369-1373.
    60. Paterson DL, Hall J, Rasmussen SJ, et al. Failure to detect Chlamydia pneumoniae in atherosclerotic plaques of Australian patients. Pathology, 1998, 30 (2): 169-172.
    61. Zhang L, Ishikawa Y, Akasaka Y, et al. Limited association of Chlamydia pneumoniae detection with coronary atherosclerosis. Atherosclerosis, 2003, 167 (1): 81-88
    62. O'Connor CM, Dunne MW, Pfeffer MA, et al. Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial.JAMA, 2003, 290 (11): 1459-1466.
    63. Andraws R, Berger JS, Brown DL. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: A meta-analysis of randomized controlled trials. JAMA,2005, 293 (21): 2641-2647.
    64. Grayston JT, Kronmal RA, Jackson LA, et al.Azithromycin for the secondary prevention of coronary events. N Engl J Med, 2005, 352 (16):1637-1645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700