用户名: 密码: 验证码:
门静脉耐受中CD_4~+CD_(25)~+Foxp_3~+调节性T细胞及Th17细胞的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分门静脉耐受中CD_4~+T和CD_8~+T细胞不同作用
     目的:探讨门静脉耐受中不同T细胞成分的作用。
     方法:门静脉输注经丝裂霉素处理过的C57小鼠脾细胞给Balb/C,建立门静脉输注模型,使用去增殖的C57小鼠淋巴细胞作为刺激细胞,PⅥ小鼠或正常Balb/c小鼠作为反应细胞,单向混培后,Alamar Blue检测细胞增殖。于门静脉输注后7d行C57和C3H小鼠心脏移植,观察心脏移植存活。流式分选分选门静脉输注小鼠中CD_3~+、CD_4~+、CD_8~+T细胞,分选后测定分选细胞纯度;过继输注给另一BalB/C,并同时行C57或C3H来源的心脏移植,观察并比较心脏移植物存活时间。于移植后7d取心脏移植物,HE染色检测移植物中淋巴细胞浸润情况。
     结果:C57小鼠淋巴细胞刺激后,PⅥ鼠和正常鼠淋巴细胞增殖的比例分别为(14.5±3.5)%和(31.3±5.6)%,P<0.01。C57小鼠淋巴细胞门静脉输注后,后续移植的C57小鼠心脏存活时间明显延长,而对第三系C3H供心存活时间无明显延长,门静脉输注同种抗原可以诱导抗原特异性的免疫耐受。过继输注PⅥ小鼠T细胞(CD_3~+)可以转移门静脉输注所诱导的耐受。CD_4~+、CD_8~+T细胞过继输注证实,CD_4~+T细胞转移抗原特异性的耐受,明显延长C57小鼠移植物存活时间,而CD_8~+T细胞无此效应。移植物病理检测证实,过继输注PⅥ小鼠CD_4~+T后,术后第7d,移植物中淋巴细胞浸润明显减轻,心肌结构基本正常。
     结论:门静脉输注同种抗原可以诱导抗原特异性的免疫耐受,过继输注耐受小鼠的CD_4~+T细胞可以转移耐受,而过继输注耐受小鼠CD_8~+T细胞无此效应。
     第二部分CD_4~+CD_(25)~+Foxp_3~+调节性T细胞在门静脉耐受中的作用
     目的:探讨门静脉耐受模型中CD_4~+CD_(25)~+Foxp_3~+调节性T细胞的比例,及其在诱导耐受中的作用及机制。
     方法:于门静脉输注同种抗原后第7,14及21天,取小鼠血、肝及脾脏,流式细胞仪检测CD_4~+CD_(25)~+Foxp_3~+调节性T细胞的比例。流式细胞仪分选PⅣ小鼠CD_4~+CD_(25)~+T细胞,以不同的浓度加入C57所刺激的Balb/c小鼠淋巴细胞混培体系中,观察对细胞增殖的影响。分别于门静脉输注后第1,3,5天给予CD_(25)单抗腹腔注射,第7天检测CD_4~+CD_(25)~+Foxp_3~+调节性T细胞的比例;并于第7天行C57小鼠的心脏移植,观察移植物存活。门静脉输注后,给予CD_(25)单抗(或同型对照抗体)腹腔注射,ELISPOT检测外周血淋巴细胞分泌IL-2,IL-4,IL-10及IFN-γ的能力;TUNEL染色检测肝内CD_4~+T细胞CD_8~+T细胞的凋亡比例。
     结果:门静脉输注同种抗原后,CD_4~+CD_(25)~+T细胞的比例明显升高,术后第7天达到高峰,之后逐渐下降,至第21天仍然维持在高于正常小鼠的水平。CD_4~+CD_(25)~+Foxp_3~+T占CD_3~+T比例表现出同样的趋势。CD_4~+CD_(25)~+T在体外可以明显抑制C57细胞所刺激的Balb/c小鼠淋巴细胞增殖,并呈现出浓度依赖性。CD_(25)单抗腹腔注射可以清除体内70%CD_4~+CD_(25)~+T细胞,门静脉输注小鼠给予CD_(25)单抗腹腔注射后,后续的心脏移植物存活时间明显缩短,伴随着CD_4~+CD_(25)~+Foxp_3~+T占CD_3~+T细胞的比例明显下降。ELISPOT检测发现,门静脉输注后分泌IL-4的细胞比例明显增多,给予CD_(25)单抗清除CD_4~+CD_(25)~+T细胞后,分泌IL-4的细胞比例下降,伴随分泌IL-10,IL-2及IFN-γ的细胞比例增多。门静脉输注后,CD_4~+T细胞CD_8~+T细胞的凋亡比例明显增加,给予CD_(25)单抗清除CD_4~+CD_(25)~+T细胞后,CD_4~+T,特别是CD_8~+T细胞的凋亡比例明显降低。
     结论:门静脉输注同种抗原后,血液、肝脏及脾脏中CD_4~+CD_(25)~+Foxp_3~+T明显增加,升高的调节性T细胞在耐受的诱导中起重要作用。使用CD_(25)单抗降低CD_4~+CD_(25)~+T细胞水平后,诱导了后续移植器官的排斥反应,并且伴随着IL-4分泌细胞的减少和T细胞凋亡的降低。
     第三部分Th17细胞参与同种异体排斥反应的发生
     目的:探讨Th17细胞在同种异体排斥反应中的作用。
     方法:建立C57→Balb/c皮肤移植模型,与术后第7天取皮肤移植物,免疫组化检测皮肤移植物中IL-17的表达,以自体皮肤移植为对照。流式分选CD_4~+T细胞,使用IL-6,TGF-β诱导CD_4~+T细胞向Th17分化,并观察IL-1β,TNF-α,IL-23在Th17分化中的作用。建立C57→Balb/c裸鼠的皮肤移植模型,过继输注不同浓度的Th17细胞,观察对排斥反应发生的影响。
     结果:免疫组化可见,同种异体移植物中腺体结构破坏,有大量Th17细胞浸润,多集中在真皮层。IL-1β,TNF-α可明显增加IL-6和TGF-β诱导的CD_4~+T细胞向Th17分化,而IL-23在二次刺激中可使CD_4~+T细胞向Th17分化进一步增强。C57→Balb/c裸鼠的皮肤移植手术近期不被排斥,给予体外诱导的Th17细胞后皮肤移植物的存活时间明显缩短,且与输注的Th17细胞浓度呈负相关。
     结论:IL-6和TGF-β是Th17所必须的细胞因子,IL-1β,TNF-α,IL-23在维持Th17增殖和存活中起重要作用。Th17参与了同种排斥反应的发生。
     第四部分门静脉耐受过程中CD_4~+CD_(25)~+Foxp_3~+T细胞和Th17的相互作用
     目的:探讨门静脉耐受中CD_4~+CD_(25)~+Foxp_3~+T和Th17细胞的相互作用。
     方法:C57脾细胞Balb/c门静脉输注后第7天行C57小鼠皮肤移植,以Balb/c小鼠同基因输注为对照,移植后第7天取皮肤移植物,Wetern-Blot检测移植物中IL-17及Foxp3的表达。体外诱导CD_4~+CD_(25)~+T细胞,在na(i|¨)ve CD_4~+CD_(25)~+T和induced CD_4~+CD_(25)~+T培养体系中分别加入IL-6,观察对CD_4~+CD_(25)~+T细胞分化的影响。在Th17细胞培养体系中加入IL-2(或IL-2+TGF-β),观察对Th17分化的影响。建立同种门静脉输注模型,并输注IL-6或Th17观察对后续移植皮肤存活的影响。
     结果:同种门静脉输注与同基因门静脉输注相比,后续移植物中Foxp3的表达明显升高,而IL-17的表达明显降低。体外实验证实IL-6可诱导CD_4~+CD_(25)~+T细胞向Th17转化,且活化的CD_4~+CD_(25)~+T细胞接受IL-6的刺激后更易于向Th17转化。IL-2和TGF-β共同存在的条件下,Th17可向CD_4~+CD_(25)~+T细胞转化。过继输注Th17或IL-6均可打破门静脉耐受,后续移植的皮肤移植物明显缩短。
     结论:门静脉输注可以使移植物中Treg的比例明显升高,而Th17的比例明显降低。Treg和Th17在体外实验中可以互相转化,分化方向取决于细胞因子环境。过继输注IL-6和Th17可以打破已建立的门静脉耐受。
PartⅠThe roles of different subsets of T lymphocytes in portal veininjection induced tolerance.
     Objective: To analyze the role of different subsets of T lymphocytes in transferring toleranceinduced by portal vein injection.
     Methods: C57BL/6 (B6) mice were used as donors. 7 days after portal vein injection ofmitomycin-treated B6 splenocytes into BALB/c mice, the splenocytes of the recipient wereisolate. Mitomycin-treated B6 splenocytes were used as stimulator, PVI splenocytes or normalBALB/c splenocytes were used as reactor. And lymphocytes proliferations were conducted byAlamar Blue. CD4~+, CD8~+T lymphocytes were then sorted from PVI mice by FACSAria. Thesorted CD4~+ (CD8~+) T lymphocytes were then transfused into another BALB/c mice followedby heterotopic implantation of a B6 heart allograft. A C3H heart allograft and normal BALB/cwere used as controls. The rejection and survival of the allograft were observed. And 7 daysafter transplantation, the grafts were collected for HE stain.
     Results: Portal vein injection of alloantigen can prolong the subsequently transplantedallograft survival, when transfusion with CD4~+T lymphocytes isolated from PVI mice, thesubsequent transplanted B6 allograft was survival longer than C3H allograft. Similar results were not observed from BALB/c with transfusion of CD8~+T lymphocytes from PVI mice orCD_4~+ T cells from normal Balb/c mice.
     Conclusion: This finding indicates that portal vein injection of alloantigen can induceantigen-specific tolerance. CD_4~+T lymphocytes, rather than CD_8~+T lymphocytes, play animportant role in transferring tolerance induced by portal vein injection and this tolerance isantigen-specific.
     PartⅡIncreased CD_4~+CD_(25)~+Foxp_3~+ regulatory T cells in toleranceinduced by portal vein injection
     Objective: To assess the proportion and function CD_4~+CD_(25)~+Foxp_3~+ regulatory T cells inportal vein injection induced tolerance.
     Methods: Mitomycin-treated C57BL/6 (B6) splenocytes were injected into Balb/c mice viathe portal vein. The proportions of CD_4~+CD_(25)~+Foxp_3~+ Treg cells were determined in the blood,liver, and spleen in the 7, 14 or 21 days after injection. CD_4~+CD_(25)~+ Treg cells were isolatedfrom PVI mice and added into B6 stimulated Balb/c mixed lymphocytes culture at differentconcentrations. The proliferations of Balb/c lymphocytes were tested by Alamar Blue.Anti-CD_(25) mAb were used to delete CD_4~+CD_(25)~+Foxp_3~+ Treg in mice. B6 or C3H heartallografts were implanted into anti-CD25 mAb-treated PVI and isotype antibody PVI mice,and graft survivals were compared. The percentages of CD_4~+CD_(25)~+Foxp_3~+ Treg, cytokineprofiles, and ratios of apoptosis were determined in anti-CD25 mAb-treated PVI anduntreated PVI mice.
     Results: Portal vein injection of allogeneic cells induced antigen-specific tolerance andincreased the percentage of CD_4~+CD_(25)~+Foxp_3~+ Treg. The CD_4~+CD_(25)~+ Treg isolated from PVImice can inhibit the lymphocytes proliferation in a dose-dependent manner. Depletion ofCD_4~+CD_(25)~+ T cells prevented the induction of tolerance and decreased the percentage ofCD_4~+CD_(25)~+Foxp_3~+ Treg in the CD_3~+ T cell pool, and thus was associated with decreasedproduction of IL-4 and apoptosis of T cells.
     Conclusion: Increased CD_4~+CD_(25)~+Foxp_3~+ Treg play an important role in portal vein toleranceinduction, at least partly via increasing the production of IL-4 and promoting apoptosis of Tcells.
     PartⅢTh17 cells were involved in acute allograft rejection
     Objective: To analyze the role of Th17 cells in acute allograft rejection.
     Methods: B6 skin allografts were implanted into Balb/c mice. Seven days postoperation, skinallografts were collected to assess the expression of IL-17 by immunohistochemistry. CD_4~+Tcells were isolated from normal Balb/c, and were induced by IL-6 and TGF-β. Then IL-1β,TNF-αand IL-23 were added to the culture to analysis their roles in differentiation of Th17.In order to test Th17 cells in rejection induction, B6 skin allografts were transplanted toBalb/c nude mice, and in vitro induced Th17 cells were injection into recipients at differentconcentrations. Skin allograft survival was conducted.
     Results: There were a lot of Th17 cells infiltrated into rejected skin allograft, whereas nearlyno Th17 cell was infiltrated into sygeneous grafts. IL-6 and TGF-βcan induce CD_4~+Tdifferentiation into Th17 cells and IL-1βand TNF-αcan enhanced the differentiation. IL-23can augment the differentiation in second stimulation. Balb/c nude mouse is thymus deficient.It can not induce acute rejection of allograft. When Th17 cells were adoptively transfused intoBalb/c nude, the C57 allografts were rejected immediately.
     Conclusions: IL-6 and TGF-βare responsible for differentiation of Th17 cells, while IL-11β,TNF-αand IL-23 can enhanced the differentiation. Th17 cells are, at least partly, involved inacute rejection.
     PartⅣThe interaction of CD_4~+CD_(25)~+Foxp_3~+ regulatory T cellsand Th17 cells in portal vein tolerance
     Objective: To explore the interaction of CD_4~+CD_(25)~+Foxp_3~+T and Th17 cells in portal veininjection induced tolerance.
     Methods: Seven days after portal vein injection of B6 splenocytes, Balb/c mice received B6skin allograft transplantation. The allografts were collected for detection of IL-17 and Foxp3expression 7 days after transplantation, and sygeneous portal vein injection was used ascontrol. IL-2 and TGF-βwere added to culture of CD_4~+CD_(25)~- T cells, and induced CD_4~+CD_(25)~+T cells were isolated from the culture. Then IL-6 was added into na(i|¨)ve CD_4~+CD_(25)~+T orinduced CD_4~+CD_(25)~+T culture to evaluate the differentiation bias of CD_4~+CD_(25)~+T cells. IL-2,with or without TGF-β, was added into Th17 culture to evaluate the differentiation bias ofTh17 cells. IL-6 and in vitro induced Th17 cells were transfused into PVI mice. And the skinallografts survival was conduced.
     Results: Compared to sygeneous antigen, portal vein injection of alloantigen induced highexpression of Foxp3 and low level of IL-17 in subsequently transplanted skin allografts. IL-6can cause trans-differentiation of Treg into Th17 cells. And IL-2 together with TGF-βcancause trans-differentiation of Th17 into Treg cells. The injection of IL-6, Th17 can cause therejection of B6 heart allograft transplanted into PVI mice.
     Conclusions: Portal vein injection of alloantigen can increase the accumulation of Treg cellsand reduced the infiltration of Th17 cells. In vitro, Treg and Th17 cells can differentiated intoeach other depending on the cytokine in the microenviroment. Adoptive transfused of IL-6and Th17 can reverse the tolerance induced by portal vein injection of alloantigen.
引文
1. Neumann-Haefelin C, Blum HE, Chisari FV, et al. T cell response in hepatitis C virus infection. J Clin Virol 2005; 32(2):75-85.
    2. Yang R, Liu Q, Grosfeld JL, et al. Intestinal venous drainage through the liver is a prerequisite for oral tolerance induction. J Pediatr Surg 1994; 29(8):1145-1148.
    3. Ikebukuro K, Adachi Y, Yamada Y,et al. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats.Transplantation 2002; 73(4):512-518.
    4. Nakafusa Y, Goss JA, Roland CR, et al.The effect of portal venous tolerance on the survival of small bowel allografts in the rat. Transplantation 1993; 56(5):1279-1282.
    5. Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts. Nature 1969; 223(5205):472-476.
    6. Qian S, Demetris AJ, Murase N, et al. Murine liver allograft transplantation: tolerance and donor cell chimerism. Hepatology 1994; 19(4):916-924.
    7. Houssin D, Gigou M, Franco D, et al. Specific transplantation tolerance induced by spontaneously tolerated liver allograft in inbred strains of rats. Transplantation 1980;29(5):418-419.
    8. Calne RY. Mechanisms in the acceptance of organ grafts. Br Med Bull 1976; 32(2):107-112.
    9. Crispe IN, Giannandrea M, Klein I, et al. Cellular and molecular mechanisms of liver tolerance. Immunological reviews 2006; 213:101-118.
    10. Watanabe T, Katsukura H, Shirai Y et al. A liver tolerates a portal antigen by generating CD11c cells, which select Fas Ligand Th2 cells via apoptosis. Hepatology, 2003, 38:403-412.
    11. Lu L, Bonham CA, Liang X, et al. Liver-derived DEC205+B220+CD19- dendritic cells regulate T cell responses. J Immunol, 2001, 166:7042-7052.
    12. You Q, Cheng L, Kedl RM, et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology, 2008, 48:978-990.
    13. Knolle PA, Schmitt E, Jin S et al. Induction of cytokine production in naive CD4 (+) T cells by antigen-presenting murine LSECs but failure to induce differentiation toward Th1 cells. Gastroenterology, 1999, 116:1428-1440.
    14. Karrar A, Broome U, Uzunel M, et al. Human liver sinusoidal endothelial cells induce apoptosis in activated T cells: a role in tolerance induction. Gut, 2007, 56(2):243-252.
    15. Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol, 2003, 3(1):51-62.
    16. Chen W, Jin W, Hardegen N, Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003 Dec 15;198(12):1875-86.
    17. Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000, 101:455-458.
    18. Morse MA, Clay TM, Mosca P,et al. Immunoregulatory T cells in cancer immunotherapy.Expert Opin Biol Ther, 2002, 2:827-834.
    19. Shevach EM, McHugh RS, Piccirillo CA, et al. Control of T-cell activation by CD4+CD25+ suppressor T cells. Immunol Rev, 2001, 182:58-67.
    20. Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001, 167:1137-1140.
    21. Woo EY, Yeh H, Chu CS, et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002,168:4272-4276.
    22. Li W, Zheng XX, Kuhr CS, Perkins JD. CTLA4 engagement is required for induction of murine liver transplant spontaneous tolerance. Am J Transplant 2005, 5: 978-986.
    23. Lan RY, Cheng C, Lian ZX et al. Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology 2006, 43: 729-737.
    24. Longhi MS, Ma Y, Bogdanos DP et al. Impairment of CD4(+) CD25 (+) regulatory T-cells in autoimmune liver disease. J Hepatol 2004, 41: 31-37.
    25. Demirkiran A, Bosma BM, Kok A et al. Allosuppressive donor CD4+CD25+ regulatory T cells detach from the graft and circulate in recipients after liver transplantation. J Immunol 2007,178:6066-6072.
    26. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6(11):1123-1132.
    27. Miossec P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 2003; 48(3):594-601.
    28. Garrett-Sinha LA, John S, Gaffen SL. IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 2008; 20(5):519-525.
    29. Xiao M, Wang C, Zhang J, et al. IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 2009; 69(5): 2010-2017.
    30. Leveque L, Deknuydt F, Bioley G, et al. Interleukin 2-mediated conversion of ovarian cancer-associated CD4+ regulatory T cells into proinflammatory interleukin 17-producing helper T cells. J Immunother 2009; 32(2):101-108.
    31. Sfanos KS, Bruno TC, Mans CH, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 2008; 14(11):3254-3261.
    32. Happel KI, Zheng M, Young E, et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003;170(9):4432-4436.
    33. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM,Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.Immunity 2006;24(2): 179-189;
    34. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441(7090):235-238;
    35. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006;441(7090):231-234.
    1. Margenthaler JA, Landeros K, Kataoka M, et al. Mechanism of portal venous tolerant long-term MHC Class I L(d)-specific skin graft survival in transgenic 2CF1 mice. Transplant Immunol, 2003, 11(1): 23-29.
    2. Wong W, Morris PJ, Wood KJ. Pretransplant administration of a single donor class I major histocompatibility complex molecule is sufficient for the indefinite survival of fully allogeneic cardiac allografts: evidence for linked epitope suppression. Transplantation, 1997,63(10): 1490-1494.
    3. Tseng CT, Miskovsky E, Houghton M, et al. Characterization of liver T-cell receptor gammadelta T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology, 2001, 33(5):1312-1320.
    4. Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol, 2003, 3(1):51-62.
    5. Bertolino P, Trescol-Biemont MC, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol, 1998 Jan;28(l):221-236.
    6. Bertolino P, Trescol-Biemont MC, Thomas J, et al. Death by neglect as a deletional mechanism of peripheral tolerance. Int Immunol. 1999, 11(8):1225-1238.
    7. Tokita D, Shishida M, Ohdan H et al. Liver sinusoidal endothelial cells that endocytose allogeneic cells suppress T cells with indirect allospecificity. J Immunol, 2006,177(6):3615-3624
    8. Corry RJ, Winn HJ, Russell PS. Heart transplantation in congenic strains of mice. Transplant Proc, 1973, 5(1): 733-735.
    9. Celli S, Matzinger P. Liver transplants induce deletion of liver-specific T cells. Transplant Proc, 2001, 33(l-2):102-103.
    10. Otto C, Kauczok J, Martens N, et al. Mechanisms of tolerance induction after rat liver transplantation: intrahepatic CD4(+) T cells produce different cytokines during rejection and tolerance in response to stimulation. J Gastrointest Surg, 2002, 6(3):455-463.
    11. Sun Z, Wada T, Maemura K, et al. Hepatic allograft derived Kupffer cells regulate T cell response in rats. Liver Transpl, 2003, 9(5):489-497.
    12. Starzl TE, Murase N, Thomson A, et al. Liver transplants contribute to their own success. Nat Med, 1996, 2(2): 163-165.
    13. Callery MP, Kamei T, Flye MW. Kupffer cell blockade inhibits induction of tolerance by the portal venous route. Transplantation, 1989, 47(6): 1092-1094.
    14. Diaz-Peromingo J A,Gonzalez-Quintela A. Influence of gadolinium-induced kupffer cell blockade on portal venous tolerance in rat skin allograft transplantation. Eur Surg Res, 2005,37(1):45-49.
    15. Khanna A, Morelli AE, Zhong C, et al. Effects of liver-derived dendritic cell progenitors on Th1- and Th2-like cytokine responses in vitro and in vivo. Immunol, 2000,164(3) :1346-1354.
    16. Onoe T, Ohdan H, Tokita D, et al. Liver sinusoidal endothelial cells have a capacity for inducing nonresponsiveness of T cells across major histocompatibility complex barriers.Transpl Int, 2005, 18(2):206-214.
    17. Arnold B. Parenchymal cells in immune and tolerance induction. Immunol Lett, 2003,89(2-3) :225-228.
    18. Tokita D, Ohdan H, Onoe T, et al. Liver sinusoidal endothelial cells contribute to alloreactive T-cell tolerance induced by portal venous injection of donor splenocytes. Transpl Int, 2005,18(2): 237-245.
    19. Knolle PA, Schmitt E, Jin S, et al. Induction of cytokine production in naive CD4+T cells by antigen presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Thl cells. Gastroenterology, 1999,116(6):1428-1440.
    20. Sumpter TL, Abe M, Tokita D, et al. Dendritic cells, the liver, and transplantation. Hepatology, 2007,46(6): 2021-2031.
    21. Hsu W, Shu SA, Gershwin E, et al. The current immune function of hepatic dendritic cells.Cell Mol Immunol, 2007, 4(5):321-328.
    22. Schildberg FA, Hegenbarth SI, Schumak B, et al. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol, 2008,38(4):957-967
    23. Karrar A, Broome U, Uzunel M, et al. Human liver sinusoidal endothelial cells induce apoptosis in activated T cells: a role in tolerance induction. Gut, 2007, 56(2):243-252.
    24. Onoe T, Ohdan H, Tokita D, et al. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. J Immunol, 2005, 175(1): 139-146.
    1. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol 2006 ; 126(1):15-24.
    2. Watanabe T, Katsukura H, Shirai Y et al. A liver tolerates a portal antigen by generating CD11c cells, which select Fas Ligand Th2 cells via apoptosis. Hepatology, 2003, 38:403-412.
    3. Lu L, Bonham CA, Liang X, et al. Liver-derived DEC205+B220+CD19- dendritic cells regulate T cell responses. J Immunol, 2001,166:7042-7052.
    4. You Q, Cheng L, Kedl RM,et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology, 2008, 48:978-990.
    5. Knolle PA, Schmitt E, Jin S et al. Induction of cytokine production in naive CD4 (+) T cells by antigen-presenting murine LSECs but failure to induce differentiation toward Th1 cells.Gastroenterology, 1999, 116:1428-1440.
    6. Karrar A, Broome U, Uzunel M, et al. Human liver sinusoidal endothelial cells induce apoptosis in activated T cells: a role in tolerance induction. Gut, 2007, 56(2):243-252.
    7. Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol, 2003, 3(1):51-62.
    8. Chen W, Jin W, Hardegen N, Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003 Dec 15;198(12): 1875-86.
    9. Tokita D, Shishida M, Ohdan H, et al. LSECs that endocytose allogeneic cells suppress T cells with indirect allospecificity. J Immunol, 2006, 177:3615-3624.
    10. Morita H, Sugiura K, Inaba M, et al. A strategy for organ allografts without using immunosuppression or irradiation. Proc Natrl Acad Sci USA, 1998, 95: 6947-6952.
    11. Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol, 2004, 16:1643-1656.
    12. Hong J, Li N, Zhang X, et al. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci USA, 2005,102:6449-6454.
    13. Kohm AP, McMahon JS, Podojil JR, et al. Cutting Edge: Anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol, 2006, 176:3301-3305
    14. Jiang X, Morita M, Sugioka A, et al. The importance of CD25+ CD4+ regulatory T cells in mouse hepatic allograft tolerance. Liver Transpl, 2006, 12: 1112-1118.
    15. Li W, Kuhr CS, Zheng XX, et al. New Insights into Mechanisms of Spontaneous Liver Transplant Tolerance: The Role of Foxp3-Expressing CD25+CD4+ Regulatory T Cells. American Journal of Transplantation, 2008, 8:1639-1651.
    16. Li W, Carper K, Liang Y, Anti-CD25 mAb administration prevents spontaneous liver transplant tolerance. Transplant Proc, 2006, 38:3207-3208.
    17. Vlad G, Ho EK, Vasilescu ER, et al Anti-CD25 treatment and FOXP3-positive regulatory T cells in heart transplantation. Transpl Immunol, 2007, 18:13-21.
    18. Pan H, Lu HM, Hu WM, et al. Anti-CD25 mAb, anti-IL2 mAb, and IL2 block tolerance induction through anti-CD 154 mAb and rapamycin in xenogeneic islet transplantation.Transplant Proc, 2007, 39:3452-3454.
    19. Morelli AE, O'Connell PJ, Khanna A, et al. Preferential induction of Thl responses by functionally mature hepatic (CD8alpha- and CD8alpha+) dendritic cells: association with conversion from liver transplant tolerance to acute rejection. Transplantation, 2000, 69:2647-2657.
    20. Winstead CJ, Fraser JM, Khoruts A. Regulatory CD_4~+CD_(25)5~+Foxp_3~+T cells selectively inhibit the spontaneous form of lymphopenia-induced proliferation of naive T cells. J Immunol, 2008, 180:7305-7317.
    21. Wiegard C, Frenzel C, Herkel J, et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology, 2005, 42:193-199.
    22. Trzonkowski P, Szmit E, Mysliwska J, et al. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol. 2004, 112:258-267.
    23. McKee AS, Pearce EJ. CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Thl response development. J Immunol, 2004, 173:1224-1231.
    24. Pace L, Pioli C, Doria G. IL-4 modulation of CD4+CD25+ T regulatory cell-mediated suppression. J Immunol, 2005, 174:7645-7653.
    25. Pace L, Rizzo S, Palombi C, et al. Cutting edge: IL-4-induced protection of CD4+ CD25- Th cells from CD4+CD25+ regulatory T cell-mediated suppression. J Immunol, 2006,176:3900-3904.
    26. Ke B, Ritter T, Kato H, et al. Regulatory cells potentiate the efficacy of IL-4 gene transfer by up-regulating Th2-dependent expression of protective molecules in the infectious tolerance pathway in transplant recipients. J Immunol, 2000, 164: 5739-5745.
    27. MacDonald KP, Rowe V, Clouston AD, et al. Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J Immunol, 2005, 174:1841-1850.
    28. Pandiyan P, Zheng L, Ishihara S, et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 2007; 8:1353-1362.
    29. Dai Z, Li Q,Wang Y et al. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 2004;113:310-317.
    1. Mosmann TR, Coffman RL. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7: 145-173.
    2. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFP in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006.24(2):179-189.
    3.Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090):235-238.
    4. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441 (7090):231-234.
    5. Miossec P. Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy. Arthritis Rheum 2003; 48(3):594-601.
    6. Garrett-Sinha LA, John S, Gaffen SL.IL-17 and the Th17 lineage in systemic lupus erythematosus. Curr Opin Rheumatol 2008; 20(5):519-525.
    7. Xiao M, Wang C, Zhang J, et al. IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 2009; 69(5): 2010-2017.
    8. Leveque L, Deknuydt F, Bioley G, et al. Interleukin 2-mediated conversion of ovarian cancer-associated CD4+ regulatory T cells into proinflammatory interleukin 17-producing helper T cells. J Immunother 2009; 32(2): 101-108.
    9. Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 2008; 14(11):3254-3261.
    10. Happel KI, Zheng M, Young E, et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003;170(9):4432-4436.
    11. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6(11):1123-1132.
    12. Loong CC, Hsieh HG, Lui WY, et al. Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 2002; 197(3):322-332.
    13. Tang JL, Subbotin VM, Antonysamy MA, et al. Interleukin-17 antagonism inhibits acute but not chronic vascular rejection. Transplantation 2001; 72(2):348-350.
    14. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol 1999; 162(1):577-584.
    15. Antonysamy MA, Fanslow WC, Fu F, et al. Evidence for a role of IL-17 in alloimmunity: Anovel IL-17 antagonist promotes heart graft survival. Transplant Proc 1999; 31(1-2):93.
    16. Merville P, Pouteil-Noble C, Wijdenes J, et al. Detection of single cells secreting IFN-gamma, IL-6, and IL-10 in irreversibly rejected human kidney allografts, and their modulation by IL-2 and IL-4. Transplantation 1993; 55(3):639-646.
    17. van KC, Boonstra JG, Paape ME et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998;9(8):1526-1534.
    18. Vanaudenaerde BM, Dupont LJ, Wuyts WA, et al. The role of interleukin-17 during acute rejection after lung transplantation, Eur Respir J 2006; 27(4):779-787.
    19. Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induce CD4~+CD25~-Foxp3~- T cells or are self-induced to become Thl7 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178(11):6725-6729.
    20. Matsuki T, Nakae S, Sudo K, et al. Abnormal T cell activation caused by the imbalance of the IL-1/IL-1R antagonist system is responsible for the development of experimental autoimmune encephalomyelitis. Int Immunol 2006; 18(2):399-407.
    21. Sutton C, Brereton C, Keogh B, et al. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006;203(7): 1685-91.
    22. Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278(3):1910-1914.
    23. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201(2):233-240.
    24. Vanden Eijnden S, Goriely S, De Wit D, et al. IL-23 up-regulates IL-10 and induces IL-17 synthesis by polyclonally activated naive T cells in human. Eur J Immunol 2005;35(2):469-475
    25. Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003; 198(12):1951-1957.
    1. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090):235-238.
    2. Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441(7090):231-234.
    3. Oida T, Xu L, Weiner HL, et al. TGF-beta-mediated suppression by CD4+CD25+ T cells is facilitated by CTLA-4 signaling. J Immunol 2006; 177(4):2331-2339.
    4. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001; 194(5):629-644.
    5. Beissert S, Schwarz A, Schwarz T. Regulatory T cells. J Invest Dermatol 2006 ;126(1):15-24.
    6. Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induce CD4~+CD25~-Foxp3~- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178(11):6725-6729.
    7. Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006.24(2):179-189.
    8. Thornton AM, Donovan EE, Piccirillo CA, et al. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J Immumol 2004;172(11):6519-6523.
    9.何凡,陈知水,蔡明,等.雷帕霉素和环孢素A对Th17和调节性T细胞分化的影响.中华器官移植杂志,2009,30(2):100-102.
    1. Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts. Nature 1969; 223(5205):472-476.
    2. Qian S, Demetris AJ, Murase N, et al. Murine liver allograft transplantation: tolerance and donor cell chimerism. Hepatology 1994; 19(4):916-924.
    3. Houssin D, Gigou M, Franco D, et al. Specific transplantation tolerance induced by spontaneously tolerated liver allograft in inbred strains of rats. Transplantation 1980;29(5):418-419.
    4. Calne RY. Mechanisms in the acceptance of organ grafts. Br Med Bull 1976; 32(2):107-112.
    5. Opelz G, Wujciak T, Dohler B, et al. HLA compatibility and organ transplant survival. Collaborative Transplant Study. Rev Immunogenet 1999; l(3):334-342..
    6. Neumann-Haefelin C, Blum HE, Chisari FV, et al. T cell response in hepatitis C virus infection. J Clin Virol 2005; 32(2):75-85.
    7. Crispe IN, Mehal WZ. Strange brew: T cells in the liver. Immunol Today 1996; 17(11):522-525.
    8. Pruvot FR, Navarro F, Janin A, et al. Characterization, quantification, and localization of passenger T lymphocytes and NK cells in human liver before transplantation. Transpl Int 1995; 8(4):273-279..
    9. Bouwens L, Remels L, Baekeland M, et al. Large granular lymphocytes or "pit cells" from rat liver: isolation, ultrastructural characterization and natural killer activity. Eur J Immunol 1987; 17(1):37-42..
    10. Hata K, Zhang XR, Iwatsuki S, et al. Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 1990; 56(3):401-419.
    11. MacDonald HR. Development and selection of NKT cells. Curr Opin Immunol 2002; 14(2):250-254.
    12. Kronenberg M, Gapin L. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002; 2(8):557-568.
    13. Norris S, Collins C, Doherty DG, et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 1998; 28(1):84-90.
    14. Huang L, Sye K,Crispe IN. Proliferation and apoptosis of B220+CD4-CD8-TCR alpha beta intermediate T cells in the liver of normal adult mice: implication for lpr pathogenesis.Int Immunol 1994; 6(4):533-540
    15. Crispe IN. Isolation of mouse intrahepatic lymphocytes. Curr Protoc Immunol 2001;3:22-28.
    16. John B, Crispe IN. Passive and active mechanisms trap activated CD8+ T cells in the liver. J Immunol 2004; 172(9):5222-5229.
    17. Mandal M, Chen XR, Alegre ML, et al. Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol Immunol 1998; 35(9):525-536
    18. Agrati C, Martini F, Nisii C, et al. CD1d expression by hepatocytes is a main restriction element for intrahepatic T-cell recognition. J Biol Regul Homeost Agents 2005;19(1-2):41-48.
    19. Geissmann F, Cameron TO, Sidobre S, et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3(4): e113.
    20. Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev 2000; 174:21-34.
    21. Mehal WZ, Juedes AE, Crispe IN. Selective retention of activated CD8+ T cells by the normal liver. J Immunol 1999; 163(6):3202-3210.
    22. Masopust D, Vezys V, Marzo AL, et al. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291(5512):2413-2417..
    23. Ray SJ, Franki SN, Pierce RH, et al. The collagen binding alphalbetal integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection.Immunity 2004; 20(2): 167-179.
    24. Verma S, King A, Loke YW. Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur J Immunol 1997; 27(4):979-983.
    25. Boyson JE, Rybalov B, Koopman LA, et al. CD1d and invariant NKT cells at the human maternal-fetal interface. Proc Natl Acad Sci U S A.2002; 99(21):13741-13746.
    26. Salazar-Mather TP, Orange JS, Biron CA. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) ceil inflammation and protection through macrophage inflammatory protein 1 alpha (MlP-lalpha)-dependent pathways. J Exp Med1998; 187(1):1-14.
    27. Salazar-Mather TP, Hamilton TA, Biron CA. A chemokine-to-cytokine-to-chemokine cascade critical in antiviral defense. J Clin Invest 2000; 105(7):985-993
    28. Shin T, Nakayama T, Akutsu Y, et al. Inhibition of tumor metastasis by adoptive transfer of IL-12-activated Valphal4 NKT cells. Int J Cancer 2001; 91(4):523-528.
    29. Fuji N, Ueda Y, Fujiwara H, et al. Antitumor effect of alpha-galactosylceramide (KRN7000) on spontaneous hepatic metastases requires endogenous interleukin 12 in the liver.Clin Cancer Res 2000; 6(8):3380-3387.
    30. Sonoda KH, Faunce DE, Taniguchi M, et al. NK T cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J Immunol. 2001;166(1):42-50.
    31. Chen H, Paul WE. Cultured NK1.1+ CD4+ T cells produce large amounts of IL-4 and IFN-gamma upon activation by anti-CD3 or CD1. J Immunol 1997; 159(5):2240-2249.
    32. Matsuno K, Nomiyama H, Yoneyama H, et al. Kupffer cell-mediated recruitment of dendritic cells to the liver crucial for a host defense. Dev Immunol 2002; 9(3): 143-149.
    33. Yoneyama H, Matsuno K, Zhang Y, et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J Exp Med 2001; 193(1):35-49.
    34. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001; 106(3):255-258.
    35. Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 200; 15(2):138-147.
    36. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711.
    37. Steinman RM, Inaba K, Turley S, et al. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies. Hum Immunol 1999; 60(7):562-567.
    38. Lutz M, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? rends Immunol 2002; 23(9):445-449.
    39. Steinman RM, Inaba K. Myeloid dendritic cells. J Leukoc Biol 1999; 66(2):205-208.
    40. Bosma BM, Metselaar HJ, Mancham S, et al. Characterization of human liver dendritic cells in liver grafts and perfusates. Liver Transpl 2006; 12(3):384-393.
    41. Cabillic F, Rougier N, Basset C, et al. Hepatic environment elicits monocyte differentiation into a dendritic cell subset directing Th2 response. J Hepatol 2006;44(3):552-559.
    42. Wu W, Zheng N, Wang Y, et al. Immune regulatory activity of liver-derived dendritic cells generated in vivo. Microsurgery 2006; 26(1): 17-20
    43. Liang X, Chen Z, Fung JJ, et al. Regulatory dendritic cells modulate immune responses via induction of T-cell apoptotic death. Microsurgery.2006 ;26(1):21-4.
    44. Jomantaite I, Dikopoulos N, Kroger A, et al. Hepatic dendritic cell subsets in the mouse.Eur J Immunol 2004; 34(2):355-365.
    45. De Creus A, Abe M, Lau AH, et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin. J Immunol 2005; 174(4):2037-2045.
    46. Pillarisetty VG, Shah AB, Miller G, et al. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 2004; 172(2):1009-1017.
    47. Limmer A, Ohl J, Kurts C, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 2000 Dec;6(12):1348-1354
    48. Knolle PA, Schmitt E, Jin S, et al. Induction of cytokine production in naive CD4(+) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Thl cells. Gastroenterology 1999; 116(6): 1428-1440
    49. Knolle PA, Limmer A. Neighborhood politics: the immunoregulatory function of organ-resident liver endothelial cells. Trends Immunol 2001; 22(8):432-437.
    50. Knolle P, Schlaak J, Uhrig A, et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22(2):226-229.
    51. Knolle PA, Uhrig A, Hegenbarth S, et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 1998; 114(3):427-433.
    52. Katz SC, Pillarisetty VG, Bleier JI,et al. Conventional liver CD4 T cells are functionally distinct and suppressed by environmental factors. Hepatology. 2005; 42(2):293-300.
    53. Leifeld L, Trautwein C, Dumoulin FL, Enhanced expression of CD80 (B7-1), CD86 (B7-2), and CD40 and their ligands CD28 and CD 154 in fulminant hepatic failure. Am J Pathol 1999; 154(6):1711-1720.
    54. Vowinkel T, Wood KC, Stokes KY, et al. Differential expression and regulation of murine CD40 in regional vascular beds. Am J Physiol Heart Circ Physiol 2006; 290(2):H631-639.
    55. Zhou F, Ajuebor MN, Beck PL, et al. CD154-CD40 interactions drive hepatocyte apoptosis in murine fulminant hepatitis. Hepatology 2005; 42(2):372-380.
    56. Schwabe RF, Schnabl B, Kweon YO, et al. CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J Immunol 2001; 166(11):6812-6819.
    57. Inaba K,Inaba M, Witmer-Pack M, et al. Expression of B7 costimulator molecules on mouse dendritic cells. Adv Exp Med Biol 1995; 378:65-70.
    58. Lohse AW, Knolle PA, Bilo K, et al. Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 1996;110(4):1175-1181.
    59. Mochizuki K, Hayashi N, Katayama K, et al. B7/BB-1 expression and hepatitis activity in liver tissues of patients with chronic hepatitis C. Hepatology 1997; 25(3):713-718
    60. Vifias 0, Bataller R, Sancho-Bru P, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 2003;38(4):919-929
    61. Burgio VL, Ballardini G, Artini M, et al. Expression of co-stimulatory molecules by Kupffer cells in chronic hepatitis of hepatitis C virus etiology. Hepatology 1998;27(6):1600-1606.
    62. Bartlett AS, McCall JL, Ameratunga R, et al. Analysis of intragraft gene and protein expression of the costimulatory molecules, CD80, CD86 and CD 154, in orthotopic liver transplant recipients. Am J Transplant 2003; 3(11):1363-1368.
    63. Kojima N, Sato M, Suzuki A, et al. Enhanced expression of B7-1, B7-2, and intercellular adhesion molecule 1 in sinusoidal endothelial cells by warm ischemia/reperfusion injury in rat liver. Hepatology 2001; 34(4 Pt 1):751-757.
    64. Li W, Lu L, Wang Z, Wang L, et al. Costimulation blockade promotes the apoptotic death of graft-infiltrating T cells and prolongs survival of hepatic allografts from FLT3L-treated donors. Transplantation 2001; 72(8): 1423-1432.
    65. Isogawa M,Furuichi Y, Chisari FV. Oscillating CD8(+) T cell effector functions after antigen recognition in the liver. Immunity 2005 ; 23(1):53-63.
    66. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439(7077):682-687.
    67. Iwai Y, Terawaki S, Ikegawa M,et al. PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 2003; 198(1):39-50.
    68. Yu MC, Chen CH, Liang X, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 2004; 40(6):1312-1321.
    69. Dong H, Zhu G, Tamada K, et al. B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 2004; 20(3):327-36.
    70. He YF, Zhang GM, Wang XH, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 2004; 173(8):4919-4928.
    71. Shin T, Yoshimura K, Shin T, et al. In vivo costimulatory role of B7-DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses. J Exp Med 2005; 201(10):I531-1541.
    72. Liang SC, Greenwald RJ, Latchman YE, et al. PD-L1 and PD-L2 have distinct roles in regulating host immunity to cutaneous leishmaniasis. Eur J Immunol 2006; 36(1):58-64.
    73. del Rio ML, Penuelas-Rivas G, Dominguez-Perles R, et al.Antibody-mediated signaling through PD-1 costimulates T cells and enhances CD28-dependent proliferation. Eur J Immunol 200; 35(12):3545-3560.
    74. Calne RY, Sells RA, Pena JR, et al. Toleragenic effects of porcine liver allografts. Br J Surg 1969; 56(9):692-693.
    75. Donaldson P, Underhill J, Doherty D, et al. Influence of human leukocyte antigen matching on liver allograft survival and rejection: "the dualistic effect". Hepatology 1993;17(6):1008-1015.
    76. Sun J, McCaughan GW, Gallagher ND, et al. Deletion of spontaneous rat liver allograft acceptance by donor irradiation. Transplantation 1995; 60(3):233-236.
    77. Starzl TE, Demetris AJ, Trucco M, et al. Chimerism after liver transplantation for type Ⅳ glycogen storage disease and type 1 Gaucher's disease. N Engl J Med 1993; 328(11):745-759.
    78. Welsh KI, Batchelor JR, Maynard A, et al. Failure of long surviving, passively enhanced kidney allografts to provoke T-dependent alloimmunity. Ⅱ. Retransplantation of (AS X AUG)F1 kidneys from AS primary recipients into (AS X WF)F1 secondary hosts. J Exp Med 1979; 150(3):465-470.
    79. Lechler RI, Batchelor JR. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 1982;
    80. Savier E, Lemasters JJ, Thurman RG. Kupffer cells participate in rejection following liver transplantation in the rat. Transpl Int 1994;7 Suppl 1:S183-186.
    81. Kamei T, Callery MP, Flye MW. Kupffer cell blockade prevents induction of portal venous tolerance in rat cardiac allograft transplantation. J Surg Res 1990; 48(5):393-396.
    82. Lee YC, Lu L, Fu F, et al. Hepatocytes and liver nonparenchymal cells induce apoptosis in activated T cells. Transplant Proc 1999; 31(1-2):784.
    83. Bertolino P, Trescol-Biemont MC, Thomas J,et al. Death by neglect as a deletional mechanism of peripheral tolerance.Int Immunol 1999; 11(8): 1225-1238.
    84. Sandig V, Hofmann C, Steinert S, et al. Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther 1996; 7(16):1937-1945.
    85. Prytz H, Holst-Christensen J, Korner B, et al. Portal venous and systemic endotoxaemia in patients without liver disease and systemic endotoxaemia in patients with cirrhosis. Scand J Gastroenterol 1976;11(8):857-863.
    86. Iwasaki A, Medzhitov R.Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5(10):987-995.
    87. Yang R, Liu Q, Grosfeld JL, et al. Intestinal venous drainage through the liver is a prerequisite for oral tolerance induction. J Pediatr Surg 1994; 29(8): 1145-1148.
    88. Gorczynski RM, Holmes W. Specific manipulation in vivo of immunity to skin grafts bearing multiple minor histocompatibility differences. Immunol Lett 1991; 27(2): 163-171.
    89. Goss JA,Nakafusa Y, Flye MW. Intrathymic injection of donor alloantigens induces donor-specific vascularized allograft tolerance without immunosuppression. Ann Surg 1992;216(4):409-14; discussion 414-416.
    90. Nakafusa Y, Goss JA, Roland CR, et al.The effect of portal venous tolerance on the survival of small bowel allografts in the rat. Transplantation 1993; 56(5):1279-1282.
    91. Trimble ER, Karakash C, Malaisse-Lagae F, et al. Effects of intraportal islet transplantation on the transplanted tissue and the recipient pancreas. I. Functional studies. Diabetes 1980; 29(5):341-347.
    92. Morsiani E, Rozga J, Dellagiacoma G, et al.Repeated intraportal injections of subtherapeutic islet cell isografts restore normoglycemia in streptozotocin-diabetic rats. Cell Transplant 1997; 6(1): 17-22.
    93. Ikebukuro K, Adachi Y, Yamada Y,et al. Treatment of streptozotocin-induced diabetes mellitus by transplantation of islet cells plus bone marrow cells via portal vein in rats.Transplantation 2002; 73(4):512-518.
    94. Polakos NK, Cornejo JC, Murray DA, et al. Kupffer cell-dependent hepatitis occurs during influenza infection. Am J Pathol 2006; 168(4):1169-1178.
    95. John B, Crispe IN. TLR-4 regulates CD8+ T cell trapping in the liver. J Immunol 2005; 175(3):1643-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700