用户名: 密码: 验证码:
Th细胞在IBS和IBD中的表型改变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:溃疡性结肠炎患者肠粘膜和外周血中Th细胞表型的改变
     目的:探讨Th细胞各亚群比例在溃疡性结肠炎发病中的变化及意义。
     方法:按照2007年济南标准收集UC患者20例,对照组16例。利用细胞内细胞因子染色和四色荧光抗体流式细胞术对UC组患者及对照组中肠粘膜和外周血淋巴细胞作表型分析,比较各组肠粘膜和外周血中Th1、Th2、Th17比例改变,Western blot检测各组肠粘膜IL-4、IL-12、IL-17表达,ELISA检测各组外周血IL-4、IL-12、IL-17水平。
     结果:(1)UC组患者肠粘膜中Th17比例和IL-17表达较对照组明显增加:Th17比例在UC组和对照组分别为3.75(6.93)vs.1.25(3.70),P<0.05;IL-17表达在UC组和对照组分别为0.20(0.15)vs.0.10(0.03),P<0.05。UC组患者肠粘膜中IL-17表达与疾病评分呈正相关(r=0.503,P=0.024)。UC中、重度患者外周血中Th17比例和IL-17表达增加:外周血中Th17比例在UC中、重度患者和对照组中分别为1.40(2.15)vs.0.70(0.33),P<0.05;外周血中IL-17含量在UC中、重度患者和对照组中分别为1.58(3.37)pg·ml~(-1)vs.0.19(0.64)pg·ml~(-1),P<0.05。(2)肠粘膜中Th1的比例在UC和对照组中分别为13.6(16.88)vs.9.10(17.53);外周血中Th1的比例在UC和对照组中分别为12.85(9.28)vs.10.15(7.48),UC组与对照组相比肠粘膜和外周血中Th1比例差异均无统计学意义,且不同活动度患者间无明显差异。肠粘膜中IL-12的表达在UC组和对照组中分别是0.22(0.16)vs.0.16(0.13),表达无明显改变。外周血中IL-12水平在UC组与对照组中分别是1.59(2.26)pg·ml~(-1)vs.1.66(5.79)pg·ml~(-1),两组之间差异无统计学意义。(3)肠粘膜中Th2的比例在UC和对照组中分别为1.10(1.53)vs.1.15(1.50);外周血中Th2的比例在UC和对照组中分别为1.20(0.55)vs.1.10(0.45),肠粘膜和外周血中差异均无统计学意义,不同活动度患者间差异无显著性。肠粘膜IL-4在UC组和对照组中分别是0.29(0.14)vs.0.23(0.11),表达无明显改变。外周血IL-4水平在UC组与对照组分别是1.27(2.48)pg·ml~(-1)vs.0(2.5)pg·ml~(-1),两组之间差异无统计学意义。
     结论:在Th细胞各亚群中Th17细胞是介导UC肠道局部和外周免疫应答的优势细胞,它可能成为UC治疗的有效靶点。
     第二部分:腹泻型IBS患者肠粘膜和外周血中Th细胞表型的改变
     目的:探讨Th细胞各亚群在腹泻型IBS患者中的变化,揭示IBS粘膜免疫激活具体免疫学机制。
     方法:按照罗马Ⅲ标准收集腹泻型IBS患者27例,另设对照组16例。采用细胞内细胞因子染色和四色荧光抗体流式细胞术检测各组肠粘膜和外周血中Th1/Th2/Th17比例,Western blot检测肠粘膜IL-4、IL-12、IL-17表达,ELISA检测外周血IL-4、IL-12、IL-17水平。
     结果:(1)腹泻型IBS患者部分肠粘膜病理学表现为非特异性炎症,归为IBS-A组,肠粘膜无非特异性炎症者归为IBS组。(2)IBS-A组患者肠粘膜Th17比例较对照组明显增加,为3.60(4.05)vs.1.25(3.70),P=0.045,而Th1、Th2比例无明显改变;肠粘膜中相关细胞因子IL-4、IL-12、IL-17表达与对照组比较差异无统计学意义。IBS-A组外周血中Th1、Th2、Th17比例和对照组比较差异无统计学意义。外周血中相关细胞因子IL-4、IL-12、IL-17水平与对照组比较也无明显改变。(3)IBS组患者肠粘膜及外周血Th细胞比例和相关细胞因子表达均无明显改变。
     结论:腹泻型IBS患者部分存在肠粘膜非特性炎症,提示肠粘膜存在免疫激活,该免疫状态表现为Th细胞向Th17偏移。
     第三部分:Th17细胞在旋毛虫感染小鼠内脏高敏感性中的作用
     目的:研究发现旋毛虫感染小鼠在急性感染期会出现肠道功能紊乱,在肠道炎症消退后肠道功能紊乱症状仍可持续存在。本实验旨在阐明Th17细胞及相关细胞因子在旋毛虫感染小鼠急性和慢性感染期期出现的内脏高敏感性中的作用。
     方法:实验分为对照组、感染后2周组、8周组和12周组。用含有旋毛虫的混悬液灌胃方法感染NIH小鼠,剂量为300条/只;结直肠扩张诱导的腹部回撤反射(AWR)评估内脏敏感性;HE染色观察空肠和结肠粘膜炎症状态;细胞内细胞因子染色检测空肠和结肠粘膜固有层Th17细胞比例;Wentern blot检测空肠和结肠粘膜IL-17、IL-23和TGF-β1蛋白表达。
     结果:旋毛虫感染造成的空肠和结肠一过性炎症在感染后2周时最明显,感染后8周时肠粘膜破坏和炎症反应基本消失,感染后12w时空肠和结肠粘膜无明显炎症改变。AWR评分在感染后2周时最高,感染后8周和12周时仍高于对照组水平(P<0.05)。空肠和结肠粘膜固有层Th17细胞比例和IL-17表达在感染后2周时增高(P<0.05),感染后8周和12周降至正常水平。感染后2周,感染组和对照组小鼠空肠粘膜Th17细胞比例分别是9.13±2.73 vs.3.78±1.97,P<0.01;结肠粘膜中Th17细胞比例分别是8.00±2.43 vs.3.6±1.80,P<0.01。感染后2周,感染组和对照组空肠中IL-17含量分别是1.70±0.47和0.68±0.26,P<0.01;结肠中IL-17含量分别是0.59±0.12和0.44±0.09,P=0.041。2周时空肠和结肠粘膜IL-17表达与AWR评分呈正相关,相关系数分别是r=0.658,P=0.032和r=0.532,P=0.04。空肠和结肠粘膜TGF-β1表达在感染后2周时增加,8周和12周降至正常水平。感染后2周,空肠中TGF-β1含量在感染组和对照组分别是0.31±0.03和0.17±0.05,P<0.01;结肠中TGF-β1含量在感染组和对照组分别是0.11±0.03和0.08±0.02,P=0.035。急、慢性感染期间空肠和结肠粘膜IL-23表达无明显改变。
     结论:旋毛虫感染NIH小鼠造成肠道一过性炎症,炎症急性期和慢性期小鼠内脏敏感性增加。Th17细胞的主要效应因子IL-17可能影响了急性期感染期小鼠内脏敏感性,TGF-β1可能诱导了Th17细胞的改变。
PartⅠPhenotypic analysis of Th cells in the colon and peripheralblood in patients with ulcerative colitis
     Objective To analyse the proportion of Th1/Th2/Th17 in colonic mucosa and peripheralblood in ulcerative colitis in relation to healthy controls.
     Methods Colonic biopsy specimens and peripheral blood were obtained from controls(n=16) and patients with UC (n=20) .We used flow cytometric detection of intracellularIFN-γ/IL-4/ IL-17 cytokine production to investigate Th1,Th2 and Th17 cells in thecolonic lamina propria and peripheral blood.The levels of IL-12,IL-4 and IL-17 inintestinal mucosa and peripheral blood were explored by Western blot and ELISA,respectively.
     Results In colonic mucosa,the proportion of Th17 and the expression of IL-17increased in UC compared with controls (P<0.05).The expression of IL-17 in the colonwas correlated with the disease related clinical parameters in UC patients (r=0.503,P=0.024).The frequency of Th17 in severely active UC was higher than in slightly activeUC in colonic mucosa (P<0.05).In peripheral blood,the proportion of Th17 and the expression of IL-17 was upregulated in moderately and severely active UC (P<0.05) Nodifferences were found in the proportions of Th1 or Th2 in colonic mucosa or peripheralblood between UC and controls.The contents of IL-4 and IL-12 in colonic mucosa orperipheral blood showed no differences between UC and controls.
     Conclusions In UC patients,Th17 is predominant of three Helper T-Cells both in colonicmucosa and peripheral blood.Th17 would be an effective target for treatment.
     PartⅡPhenotypic analysis of Th cells in the colon and peripheralblood in patients with diarrhea-predominant IBS
     Objective We analyse the change of Th1/Th2/Th17 in colonic mucosa and peripheralblood in diarrhea-predominant IBS (D-IBS) to uncover the mechanism underlying theactivation of mucosal immune system.
     Methods Colonic biopsy specimens and peripheral blood were obtained from controls(n=16) and patients with D-IBS (n = 27) .We used flow cytometric detection of intracellularIFN-γ/IL-4/ IL-17 cytokine production to investigate Th1,Th2 and Th17 cells in thecolonic lamina propria and peripheral blood.Western blot was used to determine theexpression of IL-12,IL-4 and IL-17 in colonic mucosa.The level of IL-12,IL-4 and IL-17in peripheral blood was detected by ELISA.
     Results Histological assessment of biopsy specimens from D-IBS patients indicated 2 different groups.One group (14 of 27) had normal conventional histology (IBS).Anothergroup (13 of 27) had nonspecific microscopic inflammation (IBS-A).In colonic mucosa,the proportion of Th17 increased in IBS-A compared with controls (P<0.05),but not in IBS.In peripheral blood,a similar tendency was found although differences were not significant.No differences could be observed in the frequencies of Th1 and Th2 in colon mucosa andperipheral blood.The level of IL-12,IL-4 and IL-17 in IBS and IBS-A showed nodifferences both in colonic mucosa and in peripheral blood.
     Conclusions Subgroup of D-IBS showed abnormal conventional histology,implicating theactivation of mucosal immune system in pathogenesis.The shift of Th1/ Th2 / Th17balance in colon mucosa showed enhanced Th17 activity.
     PartⅢThe role of Th17 in visceral hypersensitivity in mice infectedwith Trichinella spiralis
     Objective Trichinella spiralis infection in rodents is a well-known model of intestinalinflammation associated with hypermotility.Our aim was to use this experimental model toelucidate if Th17 cells were involved in the development of gastrointestinal hypermotility.
     Methods Mice were divided into four groups;control,2 weeks post infection,8 weekspost infection and 12 weeks post infection.Inflammation in jejunum and colon was judgedby hematoxylin-eosin (H&E) staining.Visceral hypersensitivity was measured byabdominal withdraw reflex (AWR).The levels of IL- 17,IL-23 and TGF-β1 in jejunum and colon were detected by Western blot.Flow cytometric detection of intracellular IL-17cytokine production was used to analysis the proportions of Th17 cells subset in jejunumand colon.
     Results Our results showed that visceral hypersensitivity was increased at 2 weeks postinfection (PI) and kept higher at 8 and 12 weeks PI when no discernible inflammationpresented in the gut.The proportion of Th17 cells and the expression of IL-17 wereupregulated in jejunum and colon at 2 weeks PI and normalized at 8 weeks PI.The contentof IL-17 in jejunum and colon was correlated with the AWR at 2 weeks PI.Meanwhile,injejunum and colon TGF-β1 was increased at 2 weeks PI in jejunum and colon,while IL-23was in the normal condition.
     Conclusions Our data suggest that Th17 cells affected the visceral hypersensitivity inmice infected with Trichinella spiralis at intestine stage in support of TGF-β1,but not atmuscle stage when other cytokines might involved in the visceral hypersensitivity.
引文
1 Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis, 2006,12 Suppl 1:S3-9.
    2 Cho JH. Advances in the genetics of inflammatory bowel disease. Curr Gastroenterol Rep, 2004,6:467-73.
    3 Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet,2007,369:1627-40.
    4 Mawdsley JE, Rampton DS. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut, 2005,54:1481-91.
    5 Packey CD, Sartor RB. Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects in the pathogenesis of inflammatory bowel diseases. J Intern Med, 2008,263:597-606.
    6 Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol, 2007,13:5571-6.
    7 Bamias G, Cominelli F. Immunopathogenesis of inflammatory bowel disease: current concepts. Curr Opin Gastroenterol, 2007,23:365-9.
    8 Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease.Nature, 2007,448:427-34.
    9 Lowenberg M, Peppelenbosch M, Hommes D. Biological therapy in the management of recent-onset Crohn's disease: why, when and how. Drugs, 2006,66:1431-9.
    10 Wynn TA. T(H)-17: a giant step from T(H)1 and T(H)2. Nat Immunol, 2005,6:1069-70.
    11 Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005,6:1123-32.
    12 McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway.Trends Immunol, 2006,27:17-23.
    13 Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003,52:65-70.
    14 Hart AL, Al-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology, 2005,129:50-65.
    15 Kucharzik T, Maaser C, Lugering A, et al. Recent understanding of IBD pathogenesis:implications for future therapies. Inflamm Bowel Dis, 2006,12:1068-83.
    16 Park H, Li Z, Yang X0, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 2005,6:1133-41.
    17 Bamias G, Cominelli F. Immunopathogenesis of inflammatory bowel disease: current concepts. Curr Opin Gastroenterol, 2007,23:365-9.
    18 Madsen KL, Malfair D, Gray D, et al. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis, 1999, 5:262-70.
    19 Onderdonk AB, Hermos JA, Bartlett JG. The role of the intestinal microflora in experimental colitis. Am J Clin Nutr, 1977,30:1819-25.
    20 Elson CO, Cong Y, McCracken VJ, et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev, 2005,206:260-76.
    21 Guarner F, Casellas F, Borruel N, et al. Role of microecology in chronic inflammatory bowel diseases. Eur J Clin Nutr, 2002,56 Suppl 4:S34-8.
    22 Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol, 2006,3:390-407.
    23 Schmitz H, Barmeyer C, Fromm M, et al. Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology,1999,116:301-9.
    24 Berkes J, Viswanathan VK, Savkovic SD, et al. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut, 2003,52:439-51.
    25 Cario E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and N0D2. Gut, 2005,54:1182-93.
    26 Cario E, Rosenberg IM, Brandwein SL, et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol, 2000,164:966-72.
    27 Becker C, Wirtz S, Blessing M, et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest,2003,112:693-706.
    28 Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest,2006,116:1218-22.
    29 Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol, 2007,19:281-6.
    1 Thompson DG. IBS--the irritation of inflammation. Gastroenterology,2005,129:378-80.
    2 Adam B, Liebregts T, Gschossmann JM, et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain,2006, 123:179-86.
    3 Haag S, Holtmann G. [Change in paradigmas? From functional disorder to inflammation- associated disorder of the funktion activation of the mucosal immune system in irritable bowel syndrome]. Z Gastroenterol, 2003,41:354-5.
    4 Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology, 2007,132:913-20.
    5 Cremon C, Gargano L, Morselli-Labate AM, et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am J Gastroenterol, 2009,104:392-400.
    6 Kirsch R, Riddell RH. Histopathological alterations in irritable bowel syndrome. Mod Pathol, 2006,19:1638-45.
    7 Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol,2003,98:1578-83.
    8 Dunlop SP, Jenkins D, Spiller RC. Age-related decline in rectal mucosal lymphocytes and mast cells. Eur J Gastroenterol Hepatol, 2004,16:1011-5.
    9 Drossman DA. The functional gastrointestinal disorders and the Rome ? process.Gastroenterology, 2006,130:1377-90.
    10 FalodiaS, MakhariaGK, Sateesh J, et al. Spectrum of microscopic colitis in a tertiary care centre in India. Trop Gastroenterol, 2007,28:121-5.
    11 Barbara G, De Giorgio R, Stanghellini V, et al. A role for inflammation in irritable bowel syndrome. Gut, 2002,51 Suppl 1:i41-4.
    12 Chadwick VS, Chen W, Shu D, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology, 2002,122:1778-83.
    13 Wynn TA. T(H)-17: a giant step from T(H)1 and T(H)2. Nat Immunol, 2005,6:1069-70.
    14 Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 2005,6:1133?1.
    15 Bi Y, Liu G, Yang R. Thl7 cell induction and immune regulatory effects. J Cell Physiol,2007,211:273-8.
    16 Stockinger B, Veldhoen M. Differentiation and function of Thl7 T cells. Curr Opin Immunol, 2007,19:281-6.
    17 Spiller RC. Irritable bowel syndrome: bacteria and inflammation--clinical relevance now. Curr Treat Options Gastroenterol, 2007,10:312-21.
    1 Barbara G, Vallance BA, Collins SM. Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology, 1997,113:1224-32.
    2 Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology,2004,127:179-87.
    3 Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology, 2002,122:2032-48.
    4 Garside P, Grencis RK, Mowat AM. T lymphocyte dependent enteropathy in murine Trichinella spiralis infection. Parasite Immunol, 1992,14:217-25.
    5 Park H, Li Z, Yang X0, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 2005,6:1133-41.
    6 Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity,2006,24:179-89.
    7 Hart AL, A1-Hassi HO, Rigby RJ, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology, 2005,129:50-65.
    8 Reiner SL. Development in motion: helper T cells at work. Cell, 2007,129:33-6.
    9 Stockinger B, Veldhoen M. Differentiation and function of Thl7 T cells. Curr Opin Immunol, 2007,19:281-6.
    10 Yen D, Cheung J, Scheerens H, et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest, 2006,116:1310-6.
    11 Bell RG, Wang CH. The Trichinella spiralis newborn larvae: production, migration and immunity in vivo. Wiad Parazytol, 1987,33:453-78.
    12 Grencis RK, Hultner L, Else KJ. Host protective immunity to Trichinella spiralis in mice: activation of Th cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology, 1991,74:329-32.
    13 Bueno L, Fioramonti J. Visceral perception: inflammatory and non-inflammatory mediators. Gut, 2002,51 Suppl 1:i19-23.
    14 Grundy D. What activates visceral afferents. Gut, 2004,53 Suppl 2:ii5-8.
    15 Vallance BA, Galeazzi F, Collins SM, et al. CD4 T cells and major histocompatibility complex class ? expression influence worm expulsion and increased intestinal muscle contraction during Trichinella spiralis infection. Infect Immun, 1999,67:6090-7.
    16 Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology,2004, 127:179-87.
    17 Grencis RK, Hultner L, Else KJ. Host protective immunity to Trichinella spiralis in mice: activation of Th cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology, 1991, 74:329-32.
    18 Ramaswamy K, Negrao-Correa D, Bell R. Local intestinal immune responses to infections with Trichinella spiralis. Real-time, continuous assay of cytokines in the intestinalm (afferent) and efferent thoracic duct 1ymph of ras. J Immunol, 1996,156:4328-37.
    19 Rodriguez-Sosa M, Saavedra R, Tenorio EP, et al. A STAT4-dependent Th1 response is required for resistance to the helminth parasite Taenia crassiceps. Infect Immun,2004,72:4552-60.
    20 Dehlawi MS, Goyal PK. Responses of inbred mouse strains to infection with intestinal nematodes. J Helminthol, 2003,77:119-24.
    21 Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005,6:1123-32.
    22 McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway.Trends Immunol, 2006,27:17-23.
    23 Happel KI, Dubin PJ, Zheng M, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med, 2005,202:761-9.
    24 Chung DR, Kasper DL, Panzo RJ, et al. CD4+ T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. J Immunol, 2003,170:1958-63.
    25 Huang W, Na L, Fidel PL, et al. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis, 2004,190:624-31.
    26 Akiho H, Deng Y, Blennerhassett P, et al. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction.Gastroenterology, 2005,129:131-41.
    27 Zemlan FP, Murphy AZ, Behbehani MM. 5-HT1A receptors mediate the effect of the bulbospinal serotonin system on spinal dorsal horn nociceptive neurons. Pharmacology,1994,48:1-10.
    28 Murphy AZ, Murphy RM, Zemlan FP. Role of spinal serotoninl receptor subtypes in thermally and mechanically elicited nociceptive reflexes. Psychopharmacology (Berl),1992,108:123-30.
    29 Kennedy C, Leff P. Painful connection for ATP. Nature, 1995,377:385-6.
    30 Grundy D. What activates visceral afferents. Gut, 2004,53 Suppl 2:ii5-8.
    1. Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol.1986,136:2348-2357.
    2. Rutgeerts P, Sandborn WJ, Feagan BG, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med.2005,353:2462-2476.
    3. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol.2005,6:l123-1132.
    4. Fujino S, Andoh A, Bamba S, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut.2003,52:65-70.
    5. Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man.JExpMed.1987,166:1471-1483.
    6. Mudter J, Neurath MF. Mucosal T cells: Mediators or guardians of inflammatory bowel disease? Curr Opin Gastroenterol.2003,19:343-349.
    7. Laroux SF, Norris HH, Houghton J, et al. Regulation of chronic colitis in athymic nu/nu (nude) mice. Int Immunol.2004,16:77-89.
    8. Steinle A, Groh V, Spies T. Diversification, expression,and γ δ T cell recognition of evolutionarily distant members of the MIC family, of major histocompatibility complex class I-related molecules. Proc Nat Acad Sci U S A.1998,95: 12510-12515.
    9. Saubermann LJ, Beck P, De Jong YP, et al. Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology.2000.11:119-128.
    10. Fuss IJ, Heller F, Boirivant M, et al. Nonclassical CD1 drestricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest.2004,113:1490-1497.
    11. Allez M, Brimnes J, Shao L, et al. Activation of a unique population of CD8+ T cells by intestinal epithelial cells. Ann N Y Acad Sci.2004,1029:22-35.
    12. Mayer L, Eisenhardt D. Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J Clin Invest.l990,86:1255-1260.
    13. Fuss IJ, Boirivant M, Lacy B, et al. The interrelated roles of TGF-P and IL-10 in the regulation of experimental colitis. J Immunol. 2002,168:900-908.
    14. Read S, Malmstr om V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med.2000,192: 295-302.
    15. Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells.Immunol Rev.2001,182:207-214.
    16. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol.2003,4:330-336.
    17. Satsangi J, Morecroft J, Shah NB, et al. Genetics of inflammatory bowel disease:Scientific and clinical implications. Best Pract Res Clin Gastroenterol.2003, 17:3-18.
    18. Ogura Y, Inohara N, Benito A, et al. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem.2001,276: 4812-4818.
    19. Hugot J-P, Chamaillard M, Zouall H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature.2001,411:599-603.
    20. Maeda S, Hsu L-C, Liu H, et al. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science.2005,307:734-738
    21.Duerr RH, Taylor KD, Brandt SR, et al.Agenome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science.2006,314: 461-1463.
    22. Madsen KL, Malfair D, Gray D, et al. Interleukin-10 genedeficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm BowelDis.1999,5:262-270.
    23. Sandborn WJ. Strategies for targeting tumor necrosis factor in IBD. Best Pract Res Clin Gastroenterol.2003,17:105-117.
    24. Sinha A, Nightingale J, West KP, et al. Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. N Engl J Med.2003,349:350-357.
    25. Kraus TA, Toy L, Chan L, et al. Failure to induce oral tolerance to a soluble protein in patients with inflammatory bowel disease. Gastroenterology.2004, 126:1771-1778.
    26. Masseret E, Boudeau J, Colombel JF, et al. Genetically related Escherichia coli strains associated with Crohn's disease.Gut.2001,48:320-325.
    27. Kishi D, Takahashi I, Kai Y, et al. Alteration of V beta usage and cytokine production of CD4+ TCR beta beta homodimer T cells by elimination of Bacteroides vulgatus prevents colitis in TCR alpha-chain-deficient mice. J Immunol.2000,165:5891-5899.
    28. Waidmann M, Bechtold O, Frick JS, et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice.Gastroenterology.2003,125:162-177.
    29. Kim SC, Tonkonogy SL, Albright CA, et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria.Gastroenterology.2005,128:891-906.
    30. Lodes MJ, Cong Y, Elson CO, et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest.2004,113:1296-1306.
    31. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229-241.
    32. Fukata M, Michelsen KS, Eri R, et al. Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol.2005,288:G1055-1065.
    33. Mizoguchi A, Mizoguchi E, Takedatsu H, et al. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation.Immunity.2002,16:219-230.
    34. Kawamura T, Kanai T, Dohi T, et al. Ectopic CD40 ligand expression on B cells triggers intestinal inflammation. J Immunol.2004,172:6388-6397.
    35. Lee JCW, Cevallos AM, Naeem A, et al. Detection of anti-colon antibodies in inflammatory bowel disease using human cultured colonic cells. Gut.1999,44:196-202.
    36. Cohavy O, Bruskner D, Gordon LK, et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun.2000,68:1542-1548.
    37. Landers CJ, Cohavy O, Misra R, et al. Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens.Gastroenterology.2002,123:689-699.
    38. Mow WS, Vasiliauskas EA, Lin Y-C, et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease.Gastroenterology.2004,126:414-424.
    39. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol.2003,3:521-533.
    40. Sturm A, Leite AZ, Danese S, et al. Divergent cell cycle kinetics underlie the distinct functional capacity of mucosal T cells in Crohn's disease and ulcerative colitis.Gut.2004,53:1556-1558.
    41. Boirivant M, Marini M, Di Felice G, et al. Lamina propria T cells in Crohn's disease and other gastrointestinal inflammation show defective CD2 pathway- induced apoptosis.Gastroenterology. 1999,116:557-565.
    42. Monteleone G, Kumberova A, Croft NM, et al. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001,108: 601-609.
    43. Strober W, Fuss IJ, Ehrhardt RO, et al. Mucosal immunoregulation and inflammatory bowel disease: New insights from murine models of inflammation. Scand J Immunol.l998,48:453-458.
    44. Bamias G, Nyce MR, De La Rue SA, et al. Newconcepts in the pathophysiology of inflammatory bowel disease. Ann Intern Med.2005,143:895-904.
    45. Kosiewicz MM, Nast CC, Krishnan A, et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn's disease. J Clin Invest.2001, 107: 695-702.
    46. Hahm K-B, Im Y-H, Parks TW, et al. Loss of transforming growth factor β signalling in the intestine contributes to tissue injury in inflammatory bowel disease.Gut.2001,49:190-198.
    47. Dieleman LA, Ridwan BU, Tennyson GS, et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology.1994,107:1643-1652.
    48. Hollander GA, Simpson SJ, Mizoguchi E, et al. Severe colitis in mice with aberrant thymic selection. Immunity. 1995,3:27-36.
    49. Mombaerts P, Mizoguchi E, Grusby MJ, et al. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell.1993,75: 275- 282.
    50. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 [brief communication]. Nat Genet.2001,27:20-22.
    51. Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology.2005,128:1868-1878.
    52. Park O, Grishina I, Leung PS, et al. Analysis of the Foxp3/scurfin gene in Crohn's disease.AnnN YAcad Sci.2005,1051:218-228.
    53. Brannigan AE, O'Connell PR, Hurley H, et al. Neutrophil apoptosis is delayed in patients with inflammatory bowel disease. Shock.2000,13:361-366.
    54. Song M, Xia B, Li J. Effects of topical treatment of sodium butyrate and 5-aminosalicylic acid on expression of trefoil factor 3,interleukin 1?, and nuclear factor κB in trinitrobenzene sulphonic acid induced colitis in rats. Postgrad Med J.2006,82:130-135.
    55. Rousseaux C, Lefebvre B, Dubuquoy L, et al. Intestinal anti-inflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-y.J ExpMed.2004,201:1205-15.15.
    56. Present DH. Crohn's fistula: Current concepts in management. Gastroenterology.2003,124:1629-1635.
    57. Gionchetti P, Rizzello F, Lammers KM, et al. Antimicrobials in the management of inflammatory bowel disease. Digestion.2006;73(Suppl1):77-85.
    58. Steinhart AH, Feagan BG, Wong CJ, et al, for the Crohn's and Colitis Foundation of Canada Inflammatory Bowel Disease Network Investigators. Combined budesonide and antibiotic therapy for active Crohn's disease: A randomized controlled trial.Gastroenterology.2002,123:33-40.
    59. Mow WS, Landers CJ, Steinhart AH, et al. High-level serum antibodies to bacterial antigens are associated with antibiotic-induced clinical remission in Crohn's disease: A pilot study. Dig Dis Sci.2004,49:1280-1286.
    60. Gionchetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial.Gastroenterology.2000,119:305-309.
    61. Faubion WA Jr, Loftus EV Jr, Harmsen WS, et al. The natural history of corticosteroid therapy for inflammatory bowel disease: A population-based study.Gastroenterology.2001,121:255-260.
    62. Rutgeerts P, Lofberg R, MalchowH, et al.Acomparison of budesonide with prednisolone for active Crohn's disease.N Engl J Med. 1994,331:842-845.
    63. Schoon EJ, Bollani S, Mills PR, et al, on behalf of the Matrix Study Group. Bone mineral density in relation to efficacy and side effects of budesonide and predisolone in Crohn's disease. Clin Gastrenterol Hepatol. 2005,3:113-121.
    64. Tiede I, Fritz G, Strand S, et al. CD28-dependent Racl activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest.2003,111:1133-1145.
    65. Colombel J-F, Loftus EV Jr, Tremaine WJ, et al. The safety profile of infliximab in patients with Crohn's disease: The Mayo Clinic experience in 500 patients.Gastroenterology.2004,126:19-31.
    66. Rutgeerts P, Van Assche G, Vermeire S. Optimizing anti-TNF treatment in inflammatory bowel disease. Gastroenterology.2004,126:1593-1610.
    67. Jarnerot G, Hertervig E, Friis-Liby I, et al. Infliximab as rescue therapy in severe to moderately severe ulcerative colitis:Arandomized, placebo-controlled study.Gastroenterology.2005,128:1805-1811.
    68. Ghosh S, Goldin E, Gordon FH, et al, for the Natalizumab Pan-European Study Group.Natalizumab for active Crohn's disease. N Engl J Med. 2003,348:24-32.
    69. Sandborn W, Targan S. A safety evaluation for progressive multifocal leukoencephalopathy (PML) in greater than 3,500 patients with Crohn's disease,multiple sclerosis, and rheumatoid arthritis previously treated with natalizumab in clinical trials. Gastroenterology.2006,130:A-72.
    70. Feagan BG, GreenbergG,Wild G, et al. Efficacy and safety of a humanized a4b7 antibody in active crohn's disease (CD). Gastroenterology. 2003,124(Suppl1): A25-26.
    71. Sawada K. Leukocytapheresis as an adjunct to conventional medication for inflammatory bowel disease. Dis Colon Rectum.2003,46(Suppl):S66-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700