用户名: 密码: 验证码:
电力系统过程状态估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
状态估计所提供信息的准确性和及时性,对于电力系统的安全、经济运行具有十分重要的意义。现有的时间周期触发方式的状态估计,在网络状态监测和电网运行控制两方面用途之中,都存在一定的局限性。首先,由于状态估计触发和SCADA扫描在周期上差距很大,调度中心难以细致地掌握到系统运行过程中运行状态变化情况。其次,调度中心只能通过状态估计提供的单一时间断面状态来制定控制策略,然而单一时间断面状态无法全面地反映系统在一个过程中的运行情况,因而控制策略的制定难以做到安全性与经济性兼顾。
     随着系统状态的不断变化,状态估计也需要不断地进行计算,从时间过程角度研究它,符合物理现象的本质。本文以改善状态估计在网络状态监测和电网运行控制两方面效用为目的,提出了面向过程的状态估计方法。
     借助过程函数的概念,对基于过程的状态估计模型进行了描述。提出了由量测量的变化情况来引导状态估计触发,即每当状态估计器收到的一定比例的发生了较为明显变化的遥测量,或者出现遥信变位,就触发状态估计计算。变化量测触发方式(changed measurement triggering mode , CMTM)是一种智能的触发方式,能够根据网络状态变化的快慢,动态地选取状态估计的触发时刻。polling方式的追踪状态估计是应答式远动支持下的一种非完全处理状态估计,采用能够灵活处理量测量的方法,仅处理被更新量测,追踪求解状态量,属于以少许估计精度损失换取计算速度提升的方法。提出了两种polling方式的追踪状态估计算法——最小二乘递推法逐次追踪状态估计和灵敏度分析法逐次追踪状态估计。最小二乘递推法逐次追踪状态估计,即基于最小二乘递推估计,在每一计算时刻仅处理被更新量测,完成对状态向量的估计。灵敏度分析法逐次追踪状态估计则是在每一计算时刻,利用状态量估值、量测量以及功率估计值之间的灵敏度关系处理被更新量测。
     根据状态量与量测量之间的灵敏度关系,提出了状态影响系数的概念,以表示量测量对系统状态量估值影响能力的大小。在网络拓扑和线路参数一定的条件下,影响状态影响系数的因素包括系统负荷水平、量测冗余度、量测类型等。基于状态影响系数,提出了触发阈值的个体选取方法。
     提出了过程特征断面状态估计,即借助传统状态估计算法估计出能够表征系统在一个时段上典型运行特征的一组时间断面状态量,可作为全局控制的有效依据。过程特征断面至少包括极端过程特征断面和期望过程特征断面。
     设计了过程状态估计模式。过程状态估计的动态周期是由变化量测触发方式状态估计环节提供,同时也作为polling方式追踪估计环节的追踪时段以及过程特征断面估计环节的运行控制分析时段。通过对触发阈值等参数的调整,使动态周期为一个分钟级的时间,以动态周期为纽带,便将三个环节有机的联系起来。
     仿真算例表明了本文方法的可行性和优越性。首先,变化量测触发方式的状态估计能够根据网络状态变化的快慢,动态地选取过程状态估计的动态周期,并能够为polling方式的追踪状态估计提供高精度的追踪初值。其次,polling方式的追踪状态估计,处理量测量具有极快的速度,并且在精度上能够保证与WLS算法非常高的一致性,能够紧密追踪量测量的更新。最后,过程特征断面状态估计,能够为调度中心提供全面而关键的电网运行状态信息。三个环节各司其职,使得过程状态估计一方面能够实现高密度高精度的电网状态监测,另一方面能够作为评价系统稳态运行工况和运行控制决策的有力依据。
Accuracy and timeliness of Information provided by state estimation (SE) is very important to safe and economical operation of power grid. The existing period triggering mode state estimation (SE) has its limitations in the two purposes of power grid state monitoring and operating control. On one hand, there is big difference between SE triggering period and supervisory control and data acquisition (SCADA) scanning period. Therefore it is hard for dispatch control center to grasp the intensively operating state varying in power grid operating process. On the other hand, dispatch control center can make control strategies only by the single time section state provided by SE. However, the single time section state cannot reflect the power grid operating status in its entirety in the process. Therefore it is difficult for the control strategies to take account of security and economy.
     With the ceaseless change of power grid state, it ought to be triggered ceaselessly for state estimation. Therefore, research based on time process meets the essence of physical phenomenon. Time process oriented state estimation is presented to improve the utility of state estimation in power grid state monitoring and operating control.
     With the concept of process function, state estimation model based on time process is described. The mode is put forward in which state estimation is triggered by the variation of measured quantities. That is, state estimation is triggered when the state estimator receives certain proportion of telemetry measurements that changed comparatively obviously, or there is a remote signaling transposed. Changed measurement triggering mode (CMTM) is an intelligent triggering mode.
     Tracking SE of polling type is an incomplete-processing SE with polling type telemechanics, which needs algorithms that can handle measurements flexibly. It handles the renewed measurements only and solve state variable by tracking method. It is a method that exchanges a little estimation precision for greater calculation speed. Then two tracking SE algorithms of polling type are put forward, which are recursive least squares method sequential tracking SE algorithm and sensitivity analysis method sequential tracking state estimation algorithm. The former algorithm only handles renewed measurements one by one at every calculation moment based on recursive least squares estimate to renew the state vector. And the latter algorithm handles only the renewed measurements one by one using the relations of sensitivity among state variable, measurements and estimate of power.
     Based on the relations of sensitivity between state variable estimate and measurements, the concept of state affectois is presented representing the influence capacity of measurements to state variable estimate. With certain topology and line parameter, factors having effect on state affectois includes power grid load level, measurement redundancy, measurement type, and so on. Individual selective method of triggering threshold is put forward based on state affectois.
     Characteristic time section SE is presented, which is based on conventional SE and provides state vectors of characteristic time sections within a period of time. At least, characteristic time sections include extreme time sections and expected time section.
     Time process oriented state estimation mode is designed in this dissertation. Dynamic period of time process oriented SE is provided by SE link of CMTM, and it is also the tracking period of tracking SE link of polling type and operating control analysis period of characteristic time section SE link. Through adjustment of parameters, such as triggering threshold, the dynamic period can be a period of a few minutes. Three links are organically connected through the bond of dynamic period.
     Test results prove the method presented in this dissertation predominant and feasible. Firstly, SE of CMTM can select dynamic period, according to the changing speed of power grid state. And it can provide accurate initial value for tracking SE of polling type. Secondly, Tracking SE of polling type not only has a great calculation speed in handling a measurement, but also guarantees a good estimation precision, which is very close to that of WLS algorithm. Tracking SE of polling type can track the measurement updating closely. Lastly, Characteristic time section SE can provide the key state information within a time process for dispatch control center, and help to make overall control decision. The three links assume their respective roles and cooperate perfectly. Therefore time process oriented state estimation cannot only achieve intensive monitoring power grid state, but also be the forceful basis of stable-state operating status assessment and decision-making.
引文
1 于尔铿, 王世缨, 相年德, 王心丰. 电力系统状态估计. 水利电力出版社, 北京, 1985
    2 F. C. Schweppe, J. Wildes. Power System Static State Estimation, Part I-III. IEEE Transaction on PAS. 1970, 89: 120~135
    3 何桦, 柴京慧, 卫志农, 顾全. 基于量测残差的改进参数估计方法. 2007, 31(4): 37~40, 100
    4 于尔铿, 刘广一, 周京阳等. 能量管理系统. 科学出版社, 北京, 1998
    5 李强. 基于 PMU 量测的电力系统状态估计研究. 中国电力科学研究院博士学位论文. 2006
    6 方兴. 面向过程配电网优化研究. 哈尔滨工业大学博士学位论文. 2005
    7 陈得治.配电网时间过程分析与控制研究. 哈尔滨工业大学博士学位论文. 2006
    8 毛安家. 面向过程测量数据的暂态稳定算法研究. 哈尔滨工业大学博士学位论文. 2006
    9 A. S. Debs, R. E. Larson. Dynamic Estimation of Tracking the State of a Power System. IEEE Transaction on PAS. 1970, 89: 1670~1678
    10 A. S. Debs, R. E. Larson, L. P. Hajdu. On-line Sequential State Estimation for Power Systems. Proc. 4th PSCC 1972, 3. 3~7
    11 H. P. Horisberger, J. C. Richard, C. Rossier. A Fast Decoupled State Estimation for Electric Power Systems. IEEE Transaction on PAS. 1976, 95: 208~216
    12 J. F. Dopazo, O. A. Klitin, L. S. Van Slyck. The AEP State Estimation Monitoring and Security System. IEEE Transaction on PAS. 1976, 95: 1618~162
    13 电力系统快速分解法状态估计程序. 电力科学计算技术研究所. 1978, 3
    14 马志强. 系统的可观测性与不良数据的再估计识别, 广东省电力局中调所. 1979, 2
    15 吴伟贤. 电力系统状态估计中错误数据的一次估计识别法. 武汉水利电力学院学报, 1980, 4
    16 李响, 刘玲群, 郭志忠. 抗差最小二乘法状态估计. 继电器. 2003, 31(7): 50~53
    17 李碧君. 电力系统状态估计中数据处理的新方法研究.浙江大学博士学位论文. 2000
    18 R. A. Jabr, B. C. Pal. Iteratively Reweighted Least-squares Implementation of the WLAV State-estimation Method. IEE Proc.-Gener. Transm. Distrib., 2004, 151(1): 103~108
    19 钱峰, 龚庆武. 基于IGG法的电力系统状态估计. 电力系统自动化学报. 2005, 29(3): 40~43, 60
    20 汪杨凯, 周良松, 李艳. 基于Fair函数的电力系统抗差估计. 电力系统及其自动化学报. 2006, 30(3): 90~92
    21 S. Gastoni, G. Granelli. Robust State-Estimation Procedure Based on the Maximum Agreement between Measurements. IEEE Transaction on Power Systems, 2004, 19(4): 2038~2043
    22 张俊龙, 陈阳舟, 高俊侠, 秦世引, 孙静, 李兵. 基于 SHGM 估计方法的电力系统状态估计. 电力系统自动化. 2003, 27(1): 37~39, 82
    23 Hua Wei, H. Sasaki, J. Kubokawa, R. Yokoyama. An Interior Point Method for Power System Weighted Nonlinear L1 Norm Static State Estimation. IEEE Transaction on Power Systems, 1998, 13(2): 617~623
    24 郭伟, 单渊达. 基于原-对偶内点算法的 WLAV 状态估计. 电力系统自动化. 1999, 23(4): 32~35
    25 H. Singh, F. L. Alvarado, et al. Constrained LAV State Estimation Using Penalty Functions. IEEE Transaction on Power Systems, 1997, 12(1): 781~788
    26 L. Mili, M. G. Cheniae, N. S. Vichare, P. J. Rousseeuw. Robustification of the Least Absolute Value Estimation by Means of Projection Statistics. IEEE Transaction on Power System, 1996, 11(1): 216~225
    27 L. Mili, M. G. Cheniae, N. S. Vichare, P. J. Rousseeuw. Robust State Estimation of Electric Power Systems. IEEE Transaction on Circuit and Systems, 1994, 41(5): 349~385
    28 李碧君, 薛禹胜, 顾锦汶, 韩祯祥. 抗差估计理论及其在电力系统中的应用.电力系统自动化. 1998, 23(1): 57~60
    29 R. Baldick, K. A. CClements, et al. Implementing Non-quadratic ObjectiveFunctions for State Estimation and Bad Data Rejection. IEEE Transaction on Circuit and Systems, 1997, 12(1): 376~382
    30 E. Kyriakides, S. Suryanarayanan, G T. Heydt. State Estimation in Power Engineering Using the Huber Robust Regression Technique. IEEE Transactions on Power Systems. 2005, 20(2): 1183~1184
    31 刘浩, 戴居丰. 基于系统分割的保留非线性快速P-Q分解状态估计法. 电网技术. 2005, 29(12): 75~79
    32 于尔铿, 崔智. 湖北电力系统实时状态估计中的实践. 中国电机工程学报. 1987. 7(1): 20~27
    33 L. Roy, T. A. Mohammed. Fast Super Decoupled State Estimator for Power Systems.PWRS, 1997, 12(4): 1597~1603
    34 李可文, 张步涵, 曲伟军. 一种基于量测变换的快速解耦状态估计方法.华中理工大学学报. 2000, 28(2): 61~63
    35 卫志农, 汪方中, 何桦等. 一种新的快速解耦配电网状态估计方法. 电力系统及其自动化学报. 2002, 14(4): 6~9
    36 刘仲尧, 苏桂平. 豪斯荷德尔正交变换法在状态估计中的应用. 电力系统及其自动化学报. 1999, 11(5~6): 72~75
    37 N. Vempati, I. W. Slutsker, W. F. Tinney. Enhancement to Givens Rotations for Power System State Estimation. IEEE Transactions on Power Systems. 1991, 6(2): 842~849
    38 胡锡龙. 电力系统正交变换状态估计研究. 哈尔滨工业大学硕士学位论文. 1989
    39 J. W. Wang, V. H. Quintana. A Decoupled Orthogonal Row Processing Algorithm for Power System State Estimation. IEEE Transaction on Power Apparatus and Systems, 1984, 103(8): 2337~2344
    40 E. Kliokys, N. Singh. Minimum Correction Methods for Enhancing Limits and Equality Constraints in State Estimation Based on Orthogonal Transformations. IEEE Transaction on Power Systems, 2000, 15(4): 1281~1286
    41 N. Vempati, R. R. Shoults. Sequential Bad Data Analysis in State Estimation Using Orthogonal Transformations. IEEE Transactions on Power Systems, 1991, 6(1): 157~166
    42 郭瑞鹏, 邵学俭, 韩祯祥. 基于分块吉文斯旋转的电力系统状态估计.电力系统自动化. 2006, 26(12): 26~31
    43 A. SimOES-Costa, V. H. Quintana. An Orthogonal Row Processing Algorithm for Power System Sequential Stae Estimation. IEEE Transaction on Power Apparatus and Systems, 1981, 100: 3794~3800
    44 A. Pandian, K. Parthasarathy, S.A. Soman. Towards Faster Givens Rotations Based Power System State Estimator. IEEE Transactions on Power Systems. 1999, 14(3): 837~843
    45 Robson C.Pires, A. S. Costa, L. Mili. Iteratively Reweighted Least-Squares State Estimation Through Givens Rotations. IEEE Transactions on Power Systems. 1999, 14(4): 1499~1505
    46 A. Monticelli, C. A. F. Murari, F. F. Wu. A Hybrid State Estimator: Solving Normal Equations by Orthogonal Transformations. IEEE Transactions on PAS, 1985, 104(12): 3460~3468
    47 F. C. Aschmoneit, N. M. Peterson, E. C. Adrian. State Estimation with Equality Constraint. Tenth PICA Conference Proceedings. Toronto, 1977: 427~430
    48 倪小平, 张步涵. 一种带有等式约束的状态估计新算法. 电力系统自动化. 2001, 25(21): 42~44, 50
    49 张丽, 韩富春. 带有等式约束的状态估计快速算法. 太原理工大学学报. 2003, 34(5): 547~549
    50 A. Gjelsvik, S. Aam, L. Holten. Hachel’s Augmented Matrix Method – a Rapid Method Improving Numerical Stability in Power System Static State Estimation. IEEE Transactions on PAS, 1985, 104(11): 2337~2344
    51 周良松, 赵卫东. 一种改进的Hachtel状态估计方法. 电力系统及其自动化学报. 2006, 30(5): 46~49
    52 L. Holton, A. Gjelsvik, A. Sverre, et al. Comparison of Different Methods for State Estimation. IEEE Transactions on Power Systems, 1988, 3(4): 1798~1806
    53 P. Rousseaux, Th. Van. Custsen, et al. Whither Dynamic State Estimation. International Journal of Electrical Power and Energy System. 1990, 12: 104~116
    54 白宏, 周苏荃. 基于相量测量单元的新息图法状态估计. 电网技术. 2005, 29(22): 60~64
    55 刘辉乐, 刘天琪, 彭锦新. 基于 PMU 的分布式电力系统动态状态估计新算法. 电力系统自动化. 2005, 29(4): 72~77
    56 刘辉乐, 刘天琪. 电力系统动态状态估计的研究现状和展望. 电力系统自动化. 2004, 24(12): 74~78
    57 刘辉乐, 刘天琪, 黄志华. 基于Kalman滤波原理的电力系统动态状态估计的研究综述. 2004, 32(20): 65~69
    58 周苏荃. 电力系统新息图法状态估计. 哈尔滨工业大学博士学位论文. 2000
    59 张伯明, 王世樱, 相年德. 电力系统动态状态估计. 全国高校电力系统及其自动化专业第五届年会论文集. 1989: D1~D10
    60 A. M. Leite da Silva, M. B. Do Coutto Filho, J. M. C. Cantera. An Efficient Dynamic State Estimation Including Bad Data Processing. IEEE Transactions on Power Systems. 1987, 2(4): 1050~1058
    61 M. B. Do Coutto Filho, A. M. Leite da Silva, J. M. C. Cantera, R. A. da Silva. Information Debugging for Real-time Power System Monitoring. IEE Proceeding. C. 1989, 136(5): 145~152
    62 K. Srinivasan, Y. Robichaud. A Dynamic State Estimator for Complex Bus Determination. IEEE Transactions on PAS, 1974, 93: 1581~1588
    63 B. A. Grey, G. Radman. Decentralized Power System State Estimation Using Hybrid Kalman Bucy Filter Incorporating Fuzzy Logic. Proceedings of the 38th Southeastern Symposium on System Theory. USA, 2006: 377~381
    64 D. Mallieu, Th. Van Cutsem, P. Houseeeaux, M. Pavella. Dynamic Multilevel Filtering for Real-time Estimation of Electric Power Systems. Control Theory & Adv. Tech. 1986, 2(2): 255~272
    65 P. Houseeeaux, Th. Van Cutsem, M. Pavella. Dynamic Estimator for Large Electric Power System. IFAC World Congr. Budapest. 1984, 65~65
    66 A. P. Alves da Silva, A. M. Leita da Silva, et al. State Forecasting Based on Artificial Neural Networks. 1993, Proceeding 11th PSCC, 461~467
    67 P. Houseeeaux, Th. Van Cutsem, M. Pavella. Dynamic Estimator for Large Electric Power System. IFAC World Congr. Budapest. 1984, 65~65
    68 Jayanta Kumar Mandal. Dynamic Estimation of Electric Power system – Incorporating ANN Based Bus Load Prediction. Thesis for the degree ofDoctor of Philosophy, Indian Institute of Technology, 1995
    69 赵红嘎. 电力系统状态估计中相量量测应用及直流模型处理问题. 山东大学博士学位论文. 2004
    70 黄彦全, 肖建, 李云飞, 邵明, 黄庆. 基于量测数据相关性的电力系统不良数据检测和辨识新方法. 电网技术. 2006, 30(2): 74~78
    71 吴军基, 杨伟, 葛成, 赵彤. 基于 GSA 的肘形判据用于电力系统不良数据辨识. 中国电机工程学报. 2006, 30(22): 25~30
    72 E. N. Asada, A. V. Garcia, R. Romero. Identifying Multiple Interacting Bad Data in Power System State Estimation. Power Engineering Society General Meeting, 2005. IEEE. 1: 571~577
    73 孙国强, 卫志农, 周封伟. 改进迭代自组织数据分析法的不良数据辨识. 中国电机工程学报. 2006, 26(11): 164~168
    74 L. Mili, Th. Van. Cutsen, M. Pavella. Bad Date Identification Methods in Power System State Estimation. IEEE Transactions on PSA. 1985, 101(11): 3037~3049
    75 H. J. Koglin, Th Neisius, G. Beibler. Bad Data Detection and Identification. Elecreical Power & Energy Systems, 1990, 12(2): 94~103
    76 相年德, 王世缨, 于尔铿. 电力系统状态估计中的不良数据估计识别方法 第一部分: 理论与方法. 清华大学学报. 1979, 19(4): 1~19
    77 相年德, 王世缨, 于尔铿. 电力系统状态估计中的不良数据估计识别方法 第二部分: 检测系统. 清华大学学报. 1980, 20(1): 1~15
    78 张伯明, 王世缨, 相年德. 递归量测误差估计辨识法及其应用. 全国高校电力系统及自动化专业第七届年会论文集. 1991: B30~B36
    79 B. M. Zhang, K. L. Lo. A Recursive Measurement Error Estimation Identification Method for Bad Data Analysis in Power System State Estimation. IEEE Transaction on Power System, 1991, 6(1): 191~198
    80 B. M. Zhang, S. Y. Wang, N. D. Xiang. A Linear Recursive Bad Data Identification Method with Real-time Application to Power System State Estimation. IEEE Transaction on Power System, 1992, 7(3): 1378~1385
    81 李碧君, 薛禹胜, 顾锦汶, 韩祯祥. 基于快速分解正交变换状态估计算法的坏数据检测与辨识. 电力系统自动化. 1999, 23(20): 1~4, 26
    82 刘广一, 于尔铿, 夏祖治. 量测系统误差方差的估计与修正. 中国电机工程学报. 1990, 10(6): 31~39
    83 刘广一, 于尔铿, 夏祖治. 量测偏差的检测与辨识. 中国电机工程学报. 1991, 11(3): 1~7
    84 刘广一, 于尔铿. 基于预报残差概念的多不良数据快速辨识方法. 中国电机工程学会电力系统分析与控制学术年会论文集. 1992, 97~103
    85 黄彦全, 肖建, 李云飞等. 基于量测数据相关性的电力系统不良数据检测和辨识新方法. 电网技术. 2006,30(2): 70~74
    86 Yang Chunling, Shinta Fukui. Parameter Estimation with Interacting Bad Data in State Estimation. IFAC/CIGRE Symposium on Control of Power Systems and Power Plants. 1997, 427~432
    87 王兴, 刘广一, 于尔铿. 基于变比变化检测的变压器抽头位置跟踪估计算法. 中国电机工程学报. 1997,17(3): 162~165
    88 孙宏斌, 高峰, 张伯明, 杨滢. 最小信息损失状态估计中潮流和拓扑统一估计的通用理论. 中国电机工程学报. 2005, 25(17): 4~7
    89 孙宏斌, 高峰, 张伯明, 杨滢. 最小信息损失状态估计在拓扑错误辨识中的应用. 中国电机工程学报. 2005, 25(18): 4~8
    90 N. Singh, H. Glavitsch. Detection and Identification of Topology Errors in On-line Power System Analysis. IEEE Transactions on Power Systems. 1991, 6(1): 324~331
    91 Liu Guang-yi, Wang Xing, Yu Er-keng. Fuzzy Expert System for On-line Topology Error Detection. ICEE’96, Beijing, 1996, 951~955
    92 A. P. Alves da Silva, V. H. Quintana. Pattern Analysis in Power System State Estimation. Electrical Power & Energy System, 1995, 17(1): 51~60
    93 N. Singh, F. L. Alvarado. Network Topology Determination Using Least Absolute Value State Estimation. IEEE Transactions on Power Systems. 1995, 10(3): 1159~1165
    94 L. Mili, G. Steeno, F. Dobraca, D. French. A Robust Estimation Method for Topology Error Identification. IEEE Transaction on Power Systems. 1999, 14(4): 1469~1476
    95 周苏荃, 柳焯. 新息图法拓扑错误辨识. 电力系统自动化. 2000, 24(4): 23~27
    96 周苏荃, 柳焯. 新息图法识别多重网络结构动态变化. 中国电机工程学报. 2001, 21(10): 67~72
    97 周苏荃, 李昌, 柳焯. 加权新息图法识别小潮流支路拓扑错误. 电力系统自动化. 2001, 25(5): 27~30
    98 陈旭卯, 杨海波, 王颖. 应用广义状态估计简化模型进行电力系统可观测性分析. 河北电力技术. 2006, 25(6): 8~10
    99 K. A. Krumpholz, K. A. Clements, P. W. Davis. Power System Observability: A Practical Algorithm Using Network Topology. IEEE Transactions on PAS. 1980, 99(4): 1534~1542
    100 Bei Gou, Ali Abur. An Improved Measurement Placement Algorithm for Network Observability. IEEE Transactions on Power Systems. 2001, 16(4): 819~824
    101 Bei Gou, Ali Abur. A Direct Numerical Method for Observability. IEEE Transactions on Power Systems. 2000, 15(2): 625~630
    102 G. C. Contaxis, G. N. Korres. A Reduced Model for Power System Observability Analysis and Restoration. IEEE Transactions on Power Systems. 1988, 3(4): 1411~1417
    103 郑健, 王承民, 张强, 刘志强. 自适应抗差理论在配网状态估计中的应用. 继电器. 2006, 34(10): 73~77
    104 卫志农, 顾杵, 鞠平, 龚冰. 三相辐射配网状态估计方法. 中国电机工程学报. 2000, 20(3): 85~87
    105 吴建中, 余贻鑫. 配电网集成负荷估计和状态估计. 天津大学学报. 2006, 39(S1): 95~101
    106 M. E. Baran, A. W. Kelly. A Branch-current-based State Estimation for Distribution Systems. IEEE Transaction on Power System, 1995, 10(1): 483~491
    107 程浩忠, 袁青山, 汪一华, 龚劲松. 基于等效电流量测变换的电力系统状态估计方法. 电力系统自动化. 2000, 24(14): 25~29
    108 孙宏斌, 张伯明, 相年德. 发输配全局电力系统分析. 电力系统自动化. 2000, 24(1): 17~20
    109 徐志向, 侯世英, 周林, 吕厚余. 基于奇异值分解的电力系统谐波状态估计. 电力自动化设备. 2006, 26(11): 32~35
    110 A. G. Phadke. Synchronized phasor measurements in power systems. IEEE Computer Applications in Power Systems, 1993: 10~15
    111 卢志刚, 续世范, 史增洪等. 部分电压和电流相量可测量时电压相量的状态估计. 电力系统自动化. 2000, 24(1): 42~44
    112 王克英, 穆钢, 陈学允. 计及 PMU 的状态估计精度分析及配置研究. 中国电机工程学报, 2001, 21(8): 29~33
    113 李强, 周京阳, 于尔铿等. 基于相量量测的电力系统线性状态估计. 电力系统自动化, 2005, 29(18): 24~28
    114 李强, 周京阳, 于尔铿等. 基于相量量测的电力系统状态估计混合算法.电力系统自动化, 2005, 29(19): 31~35
    115 丁军策, 蔡泽祥, 王克英. 基于广域测量系统的混合量测状态估计算法.中国电机工程学报, 2006, 26(2): 58~63
    116 秦晓辉, 毕天姝, 杨奇逊. 计及 PMU 的混合非线性状态估计新方法. 电力系统自动化, 2007, 31(4): 32~36
    117 郭志忠. 电网自愈控制方案. 电力系统自动化, 2005, 29(10): 85~91
    118 盛寿麟. 电力系统远动原理. 水利电力出版社, 北京, 1993
    119 贾沛璋. 最优估计及其应用. 科学出版社, 北京, 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700