用户名: 密码: 验证码:
镍基高温合金空心球多孔材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以INCO-617合金粉为原材料,聚乙烯醇为粘结剂,聚苯乙烯珠粒为造孔剂,采用粉末冶金法制备了Ni基高温合金空心球多孔材料及其夹芯结构。探讨了粉末类型、粘结剂浓度、液固比对合金粉浆涂覆性能的影响,并研究了空心球多孔材料的烧结工艺。利用扫描电子显微镜、X射线衍射等分析测试手段,对材料的烧结组织与相组成进行了分析,并对所制备的材料进行了压缩实验,研究空心球多孔材料压缩性能的变化规律。
     实验制备了孔隙率为78.1~90.7%的INCO-617合金空心球多孔材料,对其制备工艺的研究表明,在适合的粘结剂浓度下,小尺寸的雾化细粉或不规则形状的球磨粉末均具有良好的涂覆性;采用低粘结剂浓度,雾化细粉或高比表面能的球磨细粉,采用更高的烧结温度、更长的烧结时间均有利于空心球多孔材料孔壁的致密化。多孔材料的相组成为基体γ相、高Cr碳化物M23C6和高Mo碳化物M6C两种碳化物组成。对于雾化细粉制备的空心球多孔材料,随着烧结温度的提高以及时间的延长,碳化物的尺寸增大,数量先增多后减少。相同工艺下,球磨粉末制备的空心球多孔材料的碳化物尺寸更小、析出更弥散。
     空心球多孔材料的孔隙率主要受空心球的结构参数与排布方式的影响。显微硬度实验和压缩实验结果表明,粉末烧结情况和显微组织两类因素综合作用影响着高温合金空心球多孔材料的力学性能。雾化细粉制备的空心球多孔材料具有更优的压缩性能,随着孔壁致密化程度的提高,孔壁的硬度提高,空心球多孔材料的压缩强度以及弹性模量增加,应力-应变曲线开始出现明显的平台区,进一步提高烧结温度或延长烧结时间,由于碳化物的影响,平台区的应力波动有所增加。相同工艺以及密度条件下,薄壁小孔径空心球多孔材料的力学性能要优于厚壁大孔径空心球结构,BCC结构空心球多孔材料的力学性能要优于SC结构的空心球多孔材料。空心球结构与制备工艺相同时,空心球多孔材料的密度和压缩性能可以通过选用不同直径的造孔剂来控制。实测的σ*/σs值远高于开孔泡沫,烧结温度为1230℃时,其压缩强度甚至与闭孔泡沫理论值接近。高温合金空心球多孔材料的压缩断口主要为粉粒间烧结颈的断裂,随着粉末烧结程度的提高,断口处致密金属断面的面积越大,断裂前孔壁参与塑性变形的体积增多。当烧结温度高于1150℃时,空心球多孔材料压缩时呈现出逐层破坏的变形特征。空心球多孔材料具有良好的吸能能力以及高的吸收效率,致密化区前吸能效率大于70%。
     以实验制备的INCO-617合金空心球多孔材料为芯体,采用球磨细粉粉浆连接法,制备了具有足够强度的冶金结合界面的高熔点三明治夹芯结构。空心球多孔材料夹芯管改变了薄管的变形机制,相同应变下增加外表面薄管的塑性变形,在保持空心球多孔材料轻质、高吸能效率的同时,增大了结构的吸能能力,致密化区前能量吸收效率超过85%。三明治夹芯板制备与性能研究表明,轻质芯体的使用增大了结构的刚度,并且由于空心球多孔材料芯体与面板之间界面结合强度足够高,在性能实验与计算过程中可忽略界面的影响,夹芯板的加载刚度和极限载荷与理论值吻合较好,展现出良好的发展前景。
Ni-base superalloy hollow sphere cellular materials(HSC) were fabricated by powder metallurgy, using INCO-617 alloy powders as raw material, polyvinyl alcohol as binder, polystyrene sphere as pore-forming agent. The influence of powder’s properties, binder concentration and liquid-to-solid ratio on coating properties of alloy slurry was discussed, and then the sintering process of HSC was researched. The microstructure and phase constitution of HSC were analyzed by means of scanning electron microscope(SEM) and X-ray diffraction(XRD). The compression test was conducted to investigate the variety in compressive properties of HSC.
     INCO-617 alloy HSC with porosity ranging from 74.1% to 90.7% were prepared in the experiment. The research on preparation of HSC indicates that good coating properties can be achieved by choosing the atomized fine powders or irregular shape milling powders with appropriate concentration binder. The lower concentration binder, atomized fine powder/milling fine powder with high specific surface energy, higher sintering temperature and longer holding time are conducive to the densification of the cell wall of HSC. The microstructure of HSC comprisesγmatrix, M23C6 type carbides, having high chromium content, and M6C type carbides, having high molybdenum content. With sintering temperature increase and extension of holding time, the size of carbides increase, and the quantity of carbides increase firstly and then decrease. For HSC prepared at same process by using milling powder, the size of carbides become smaller, and precipitations distribute dispersedly.
     The porosity of HSC is determined by structure parameters and packing of hollow sphere. The results of micro-hardness test and compression test show that the powder sintering extent and microstructure effect mechanical properties of HSC. The HSC fabricated by atomized fine powder have better compression performance, with the densification of cell wall increasing, the compression strength and elastic modulus increase, the stress-strain curves began to appear obvious platform, but with the further increase of sintering temperature and holding time, the stress fluctuations of platform increase due to carbides. At the same density and preparation process, the mechanical properties of HSC with thin cell wall are higher than those of HSC with thick cell wall, and the BCC packing HSC’s mechanical properties are higner than those of SC packing. When the hollow sphere packing and preparation process are same, the compression properties of HSC are controlled by choosing different diameter pore-forming agent. The measured values ofσ*/σs are well above the strength of metallic open-cell foam, which is close to the theoretical values for closed-cell foams when sintering temperature is 1230℃. Most of the compressive fractures of superalloy HSC occure at the sintering necks between powders. With cell wall’s densification improved, the dense metal cross-section area in the fracture and the plastic deformation volume of cell wall increase. When the sintering temperature is higher than 1150℃, the compressive deformations of HSC are conduct by a layer-by-layer destruction mechanism. HSC have good energy absorption capacity and energy absorption efficiency which exceed 70% before densification stage.
     The high-melting sandwich structure with adequate strength of the metallurgical interface were fabricated by using milling fine slurry and INCO-617 alloy HSC as bonding layer and core respectively. The deformation mechanism of HSC core sandwich tube is different from tube. In the same compressive strain core make the plastic deformation of outer tube increase, which increase the energy absorption of sandwich structure, remaining the lightweight and high-energy absorption efficiency of HSC. The energy absorption efficiency is above 70% before densification stage. The investigation of fabrication and properties of sandwich panel indicates that lightweight core increase the stiffness of sandwich structure. Because of good interface bonding with enough strength between the HSC core and face, the influence of interface can be neglected in the property test and calculation. The calculated value of loading stiffness and limit load is in good agreement with the theoretical value, showing good prospects for development.
引文
1 Lorna J. Gibson, Michael F. Ashby著.刘培生译,田民波校.多孔固体结构与性能.北京:清华大学出版社, 2003:1-10
    2刘亚俊,赵生权,刘崴,等.泡沫金属制备方法及其概况.现代制造工程. 2004, (9):83-86
    3戎利建,范存淦.泡沫金属.百科知识. 1996, (04):28
    4陈文革,张强.泡沫金属的特点、应用、制备与发展.粉末冶金工业. 2005, 15(2):37-42
    5 H. P. Kriszt, B. Degischer,著.左孝青,周芸,译.多孔泡沫金属.化学工业出版社, 2005:1-58, 147-239
    6左孝青,孙加林.泡沫金属制备技术研究进展.材料科学与工程学报. 2004, 22(3):452-456
    7 W. S.Sanders, L. J. Gibson. Mechanics of Hollow Sphere Foams. Materials Science and Engineering A. 2003, 347:70-85
    8 H. H. Ruan, Z. Y. Gao, T. X. Yu. Crushing of Thin-walled Spheres and Sphere Arrays. International Journal of Mechanical Sciences. 2006, 48:117-133
    9 D. L. McDowell, T. -J Lim, B. Smith. Behavior of a Random Hollow Sphere Metal Foam. Acta Materialia. 2002, 50:2867-2879
    10 S. Gasser, F. Paun, A. Cayzeele, Y. Bréchet. Uniaxial Tensile Elastic Properties of a Regular Stacking of Brazed Hollow Spheres. Scripta Materialia. 2003, 48:1617-1623
    11 D. Karagiozova, T. X. Yu, Z. Y. Gao. Modeling of MHS Cellular Solid in Large Strains. International Journal of Mechanical Sciences. 2006, 48:1273-1286
    12 S. Gasser, Y. Brechet, F. Paun. Materials Design for Acoustic Liners:an Example of Tailored Multifunctional Materials. Advanced Engineering Materials. 2004, 6(1):97-102
    13 S. Gasser, F. Paun, L. Riffard, Y. Bréchet. Microplastic Yield Condition for Periodic Stacking of Hollow Spheres. Scripta Materialia. 2004, 50:401-405
    14赵增典,张勇,李杰.泡沫金属的研究及其应用进展.轻合金加工技术.1998, 26(11):1-4
    15 O’Neill Adrian Thomas. Development of Closed Cell Metallic Foam Using Casting Techniques. Dissertation for the Degree of Master of Science of North Carolina State University. 2005:1-46
    16 M. F. Ashby, A. G. Evans, N. A. Fleck, et al. Metal Foams: A Design Guide. Boston: Butterworh-Heinemann. 2000:43
    17左孝青,孙加林.泡沫金属的性能及应用研究进展.昆明理工大学(理工版). 2005, 30(1):13-17
    18 W. E. Warren, A. M. Kraynik. Foam Mechanics: the Linear Elastic Response of Two-Dimensional Spatially Periodic Cellular Materials. Mechanics of Materials. 1988, 55(1):341-346.
    19 T. G. Nieh, K. Higashi, J. Wadsworth. Effect of Cell Morphology on the Compressive Properties of Open-cell Aluminum Foams. Materials Science and Engineering A. 1999, 283:105-110
    20 U. Ramamurty, A. Paul. Variability in Mechanical Properties of a Metal Foam. Acta Materialia. 2004, 52:869-876
    21王斌,何德坪,舒光冀.泡沫Al合金的压缩性能及其能量吸收.金属学报. 2000, 36(10):1037-1040
    22卢子兴,郭宇.金属泡沫材料力学行为的研究概述.北京航空航天大学学报. 2003, 29(11):979-983
    23李海涛,朱锡,石勇,等.多孔性吸声材料的研究进展.材料科学与工程. 2004, 22(6):934-938
    24刘培生.多孔材料引论.北京:清华大学出版社. 2003:1-49, 98-208
    25王月.舰船舱室减震降噪用泡沫铝的室温内耗性能研究.船舶力学. 2005, 9(1):111-114
    26 I. S. Golovin, H. R. Sinning, J. G?ken, et al. Fatigue-related Damping in Some Cellular Metallic Materials. Materials Science and Engineering A. 2004, 370:537-541
    27 A. E. Simone, L. J. Gibson. Aluminum Foams Produced by Liquid State Processes. Acta Mater. 1998, 46(9):3109-3123
    28 V. Gergely, H. P. Degischer, T. W. Clyne. Recycling of MMCs and Production of Metallic Foams. Comprehensive Composite Materials. 2000, (3):797-820
    29 P. Chanman. Development of Steel Foam Processing Methods and Characterization of Metal Foam. The dissertation of University of Southern California for degree of doctor. 2000:9-29
    30 Roberto Montanini. Measurement of Strain Rate Sensitivity of Aluminum Foams for Energy Dissipation. International Journal of Mechanical Sciences. 2005, 47:26-42
    31 N. G. Haydn. Wadley. Cellular Metal Manufacturing. Advanced Engineering Materials. 2002, 4(10):726-733
    32 S. Esmaeelzadeh, A. Simchi. Formability and Compressive Properties of AlSi7–3 vol.% SiC–0.5 wt.% TiH2 Powder Compact. Materials Letters. 2008, 62(10-11):1561-1564
    33 T. Yoshi, M. Itch, S. Akiyama, et al. Alporas Aluminum Foam: Production Process, Properties and Applications. Advanced Engineering Materials. 2000, 2(4):179-183
    34杨东辉,何德坪.氢化钛热分解特性与小孔径低孔隙率泡沫铝合金.中国有色金属学报. 2004, 14(12):2021-2027
    35罗洪杰,姚广春,张晓明,等.闭孔泡沫铝材料的制备过程中气泡的形成与演化.中国有色金属学报. 2004, 14(8):1377-1381
    36肖华兴,陈光,崔鹏.定向凝固多孔材料制造人工骨的前景展望.特种铸造及有色合金. 2001, (2):88-89
    37刘源,李言祥,张华伟.金属-气体共晶定向凝固制备藕状多孔材料的研究.特种铸造及有色合金. 2005, 25(1):1-4
    38 J. Banhart. Manufacture, Characterization and Application of Cellular Metals and Metal Foams. Progress in Material Science. 2001,46:559-632
    39李言祥,刘源,张华伟. GASAR和Gasarite研究进展.特种铸造及有色合金. 2004, 1:9-13
    40许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状.铸造设备研究. 1997, (1):18-24
    41魏莉,姚广春,张晓明,等.粉末烧结法制备多孔金属材料技术.材料导报. 2004, 18(7):15-17
    42许庆彦,熊守美.多孔金属的制备工艺方法综述.铸造. 2005, 54(9):840-843
    43 D. K. Balch, D. C. Dunand. Load Partitioning in Aluminum Syntactic FoamsContaining Ceramic Microspheres. Acta Materialia. 2006, 54:1501-1511
    44 K. B. Dorian, G. O. John, R. D. Graham, et al. Plasticity and Damage in Aluminum Syntactic Foams Deformed under Dynamic and Quasi-static Conditions. Materials Science and Engineering A. 2005, 391:408–417
    45 E. Koza, M. Leonowicz, S. Wojciechowski, F. Simancik. Compressive Strength of Aluminum Foams. Materials Letters. 2003, 58:132-135
    46 C. J. Yu, H. H. Eifert, J. B. Banhart, J. Baumeister. Metal Foaming by a Powder Metallurgy Method: Production, Properties and Applications. Materials Research Innovations. 1998, 2:181-188
    47于欢,方立高,严青松.多孔泡沫铝的制备及其吸声性能测定.热加工技术. 2001, (1):36-39
    48 C. Gailard, J. F. Despois, A. Mortensen. Processing of NaCl Powders of Controlled Size and Shape for the Microstructural Tailoring of Aluminum Foams. Materials Science and Engineering A. 2004, 374:250-262
    49 Y. Yamada, K. Shimojima, Y. Sakaguchi, et al. Effects of Heat Treatment on Compressive Properties of AZ91 Mg and SG91A Al Foams with Open-cell Structure. Materials Science and Engineering A. 2008, 280:225-228
    50王录才,陈新,柴跃生,张琰.熔模铸造法通孔泡沫铝制备工艺研究.铸造. 1999, (1):8-10
    51刘培生,黄林国.多孔金属材料制备方法.功能材料. 2002, 33(1):5-8
    52 I. Oh, N. Nomura, N. Masahashi, S. Hanada. Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering. Scripta Materialia. 2003, 49:1197-1202
    53邸小波,奚正平,汤慧萍,等.不锈钢纤维烧结多孔材料孔结构分形分析.稀有金属材料与工程. 2007, 36(增刊3):571-573
    54 J. P. Li, S. H. Li, K. D. Groot, et al. Preparation and Characterization of Porous Titanium. Key Engineering Materials. 2002, 218-220:51-54
    55姜斌,赵乃勤,师春生,等.粉末烧结法制备开孔泡沫铝压缩性能的研究.粉末冶金技术. 2006, 24(5):364-368
    56 B. Jiang, N. Q. Zhao, C. S. Shi, et al. A Novel Method for Making Open Cell Aluminum Foams by Powder Sintering Process. Materials Letters. 2005, 59:3333-3336
    57陈祥,李言祥.金属泡沫材料研究进展.材料导报. 2003, 17(5):5-8
    58 R. Oriňáková, A. Oriňák, H. F. Arlinghaus, et al. Study of Coating Distribution onto Metallic Hollow Particles. Applied Surface Science. 2006, 252:7030-7033
    59 D. J. Sypeck, P. A. Parrish, H. N. G. Wadley in Porous and Cellular Materials for Structural Application, D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley (eds). Material Research Society Proceeding, Vol. 521, Warrendale, Pennsylvania, USA, 1998, p.205-210
    60 D. T. Queheillalt, D. J. Sypeck, H. N. G. wadley. Ultrasonic Charaterzation of Cellular Metal Structures. Materials Science and Engineering A. 2002, 323:138-147
    61 L. B. Torobin. US Patent 4671909,1987
    62 K. M. Hurysz, J. L. Clark, A. R. Nagel, C. U. Hardwike, K. J. Lee, J. K. Cochran, T. H. Sanders. in Porous and Cellular Material for Structural Application, D. S. Schwartz, D. S. Shih, A. G. Evans, H. N. G. Wadley (eds), Material Research Society Proceeding. Vol. 521, Warrendale, Pennsylvania, USA, 1998, p.191-203
    63 H. Danninger, S. Strobl, R. Gürtenhofer in Pro. PM’98: Powder Metall. World Congress Exhib Grenad, V. Arnhold, A. Romero (eds), EMPA, Shrewsbury, Vol.1, 1998, P185-191
    64 S. Kishimoto, N. Shinya. New Fabrication Method for Metallic Closed Cellular Materials Containing Polymers. Materials and Design. 2001, 22:535-539
    65 M. J?ckel. German Patent 3210770, 1982
    66 U. Waag, L. Schneider, P. Lothman, et al. Metallic Hollow Spheres—Materials for the Future. Metal Powder Report, 2000, 55( 1):29-33
    67 O. Andersen, U. Waag, L. Schneider, et al. Novel Metallic Hollow Sphere Structures. Advanced Engineering Materials. 2000, 4:192-195
    68 M. J?ckel,H. Smigilski. German Patent 3724156, 1987
    69 D. C. Dunand. Processing of Titanium Foams. Advanced Engineering Materials. 2004, 6:369-376
    70 Z. L. Song, S. Kishimoto. The Cell Effect of Closed Cellular Materials Fabricated by Pulse Current Assisted Hot Isostatic Pressing on the Compressive Behavior. Scripta Materialia. 2006, 54:1531-1535
    71 Z. L. Song, S. Kishimoto, N. Shinya. A novel Pulse-current-assisted Sintering Method for Fabrication of Metallic Cellular Structures. Advanced Engineering Materials. 2004, 4:211-214
    72 S. Kishimoto, Z. L. Song, N. Shinya. Development of Metallic Closed Cellular Materials Containing Organic Materials. Journal of Alloys and Compounds. 2003, 355:161-165
    73 S. A. El-Badry, A. A. El-Geassy, S. F. Moustafa. Fabrication and Properties of Hollow Powder Porous Structure. Materials Letters. 2003, 58:115-117
    74 Joe K. Cochran. Ceramic Hollow Spheres and Their Applications. Current Opinion in Solid State & Materials Science. 1998, 3:474-479
    75 B. P. Neville, A. Rabiei, Composite Metal Foams Processed Through Powder Metallurgy. Materials and Design. 2008, 29(2):388-396
    76 A. Daoud. Synthesis and Characterization of Novel ZnAl22 Syntactic Foam Composites via Casting. Materials Science and Engineering A. 2008 488(1-2):281-295
    77 Lakshmi J. Vendra, Afsaneh Rabiei. A Study on Aluminum–steel Composite Metal Foam Processed by Casting. Materials Science and Engineering A. 2007, 465(1-2):59-67
    78 A. Rabiei, A. T. O’Neill. A Study on Pressing of a Composite Metal Foam via Casting. Materials Science and Engineering A. 2005, 404:159-164
    79 W. S. Sanders, L. J. Gibson. Mechanics of BCC and FCC Hollow-sphere Foam. Materials. Science and Engineering A. 2003, 352:150-161
    80 C. Heeman, C. D. David. Synthesis, Structure, and Mechanical Properties of Ni-Al and Ni-Cr-Al Superalloy Foams. Acta Materialia. 2004, 52:1283-1295
    81 Canan Uslu Hardwicke. Processing and Properties of Ti-6Al-4V Hollow Sphere Foams from Hydride Powder. Dissertation for the Degree of Doctor of Georgia Institute of Technology. 1997:1
    82 T. C. Totemeier, H. B. Tian. Creep-fatigue-environment Interactions in INCONEL 617. Materials Science and Engineering A. 2007, 468-470:81-87
    83 L. Tan, K. Sridharan, T. R. Allen. Effect of Thermomechanical Processing on Grain Boundary Character Distribution of a Ni-based Superalloy. Journal of Nuclear Materials. 2007, 371(1-3):171-175
    84 M. Kewther Ali, M. S. J. Hashmi, B. S. Yilbas. Fatigue Properties of theRefurbished INCO-617 Alloy. Journal of Materials Processing Technology. 2001, 118(1-3):45-49
    85 F. Jalilian, M. Jahazi, R. A. L. Drew. Microstructural Evolution During Transient Liquid Phase Bonding of Inconel 617 Using Ni–Si–B Filler Metal. Materials Science and Engineering A, 2006, 423(1-2):269-281
    86曹义,程海峰,肖加余,等.美国金属热防护系统研究进展.宇航材料工艺. 2003, 3:9-12
    87冶军.美国镍基高温合金.北京:科学出版社, 1978:222-227
    88朱正吼,马军.消失模铸造用EPMMA-EPS共聚树脂发泡工艺及性能研究.铸造技术. 1998,3:7-9
    89杨明波,代兵,陈健,等. EPS和EPMMA消失模铸造用模样材料的特点及选用.造型材料. 2005, 1:5-8
    90杨家宽,黄乃瑜,李焰.负压消失模工艺中EPS热解产物的研究.特种铸造及有色合金. 2000, 4:22-25
    91毛高波,程诗桢,饶群章.消失模铸造模样材料发气特性的研究.特种铸造及有色合金. 1998, 2:10-12
    92董选普,樊自田,黄乃瑜,等.镁合金消失模铸造模样的热解特性.铸造. 2005, 54(2):134-137
    93瑞瑄.水溶性高分子.化学工业出版社, 1998:53
    94阳开新.聚乙烯醇(PVA)的特性及其在铁氧体生产中的应用.磁性材料及器件. 2002, 34(4):40-43
    95庄银凤,朱仲祺,朱耀伟,等.聚乙烯醇水溶液的粘度行为研究.高分子材料科学与工程. 1999, 15(4):145-147
    96唐龙贵,翁志学,潘祖仁.聚乙烯醇的使用及改性.棉纺织技术. 1994, 22(7):408-411
    97宝鸡有色金属研究所.粉末冶金多孔材料.冶金工业出版社, 1978:105-120
    98耿完桢,金恩培,钱守仁,赵海法.大学物理实验.哈尔滨:哈尔滨工业大学出版社, 2003:87-90
    99果世驹.粉末烧结理论.冶金工业出版社, 1998:30-36
    100施剑林.固相烧结——Ⅰ气孔显微结构模型及其热力学稳定性,致密化方程.硅酸盐学报. 1997, 25(5):499-513
    101施剑林.固相烧结——Ⅱ粗化及致密化关系及物质传输途径.硅酸盐学报. 1997, 25(6):657-668
    102施剑林.固相烧结——Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报. 1998, 26(1):1-13
    103黄培云.粉末冶金原理.北京:冶金工业出版社, 1982:50-55
    104程远方,果世驹,赖和怡.烧结理论进展——1.烧结单元模型建立方法之比较.粉末冶金技术. 1999, 17(3):216-221
    105程远方,果世驹,赖和怡.烧结理论进展——2.烧结初期各种扩散机制耦合作用的烧结模型.粉末冶金技术. 1999, 17(4):257-263
    106徐洲,赵连城.金属固态相变原理.科学出版社, 2003:11-25
    107 K. A Khor, L. G. Yu, O. Andersen, G. Stephani. Effect of Spark Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of Randomly Hollow Sphere (RHS) Cell Wall. Materials Science and Engineering A, 2003, 356:130-135
    108王斌,何德坪,舒光冀.泡沫Al合金的压缩性能及其能量吸收.金属学报. 2000, 36(10):1037-1040
    109 J. B. Sha, T. H. Yip. In Situ Surface Displacement Analysis on Sandwich and Multilayer Beams Composed of Aluminum Foam Core and Metallic Face Sheets under Bending Loading. Materials Science and Engineering A. 2004, 386:91-103
    110席国胜,何德坪,李鲲鹏.高比强泡沫铝合金中空层合圆管的性能.材料研究学报. 2003, 17(2):162-168
    111李鲲鹏,何德坪.高比强多孔铝合金中空层合圆管的压缩性能.中国有色金属学报. 2004, 14(3):385-390
    112朱琪琪,凤仪,查海波,等.泡沫铝层合圆管压缩和吸能性能的研究.金属功能材料. 2007, 14(2):18-23
    113梁晓军,朱勇刚,陈锋,等.泡沫铝芯三明治板的粉末冶金制备及其板/芯界面研究.材料科学与工程学报. 2005, 23(1):77-80
    114张敏,祖国胤,姚广春.新型泡沫铝三明治板的弯曲性能.过程工程学报. 2007, 7(3):628-631
    115 V. Crupi, R. Montanini. Aluminum Foam Sandwiches Collapse Modes under Static and Dynamic Three-point Bending. International Journal of Impact Engineering, 2007, 34 (3):509-521
    116 M. Seitzherger, F. G. Rammerstorfer, H. P. Degischer, et al. Crushing ofAxial Compressed Steel Tubes Filled with Aluminum Foam. Acta Materialia. 1997, 125:93-105
    117 A. K. Toksoy. Effect of Adhesive on the Strengthening of Aluminum Foam-filled Circular Tubes. Journal of Materials Science. 2004, 39:1503-1506
    118 A. K. Toksoy, M. Güden. The Strengthening Effect of Polystyrene Foam Filling in Aluminum Thin-walled Cylindrical Tubes. Thin-walled Structures. 2005,43:333-350
    119 H. W. Song, Z. J. Fan, G. Yu, et al. Partition Energy Absorption of Axially Crushed Aluminum Foam-filled Hat Sections. International Journal of Solids and Structures. 2005, 42:2575-2600
    120桂良进,范子杰,王青春.泡沫填充圆管的轴向压缩能量吸收特性.清华大学学报(自然科学版). 2003, 43(11):1526-1529
    121 A. G. Evans, J. W. Hutchinson, M. F. Ashby, Multi-functionality of cellular metal systems. Progress in Materials Science. 1999, 43:171-221.
    122 A. G. Evans, J. W. Hutchinson, N. A. Fleck et al. The Topological Design of Multifunctional Cellular Metals. Progress in Materials Science. 2001,46:309-327.
    123卢天健,何德坪,陈长青,等.超轻多孔金属材料的多功能特性及应用.力学进展. 2006, 36 (4):517-535.
    124范华林,杨卫.轻质高强点阵材料及其力学性能研究进展.力学进展.2007, 35 (1) :99-112.
    125张卫红,吴琼,高彤.周期性金属桁架夹芯板的力学性能研究进展.昆明理工大学学报(理工版). 2005,30(6):24-28.
    126 A. K. Noor, W. S. Burton, C. W. Bert. Computation Models for Sandwich Panels and Shells. Applied Mechanics Reviews. 1996, 49 (3):155-199
    127 T. J. Lu, Heat Transfer Efficiency of Metal Honeycombs. International Journal of Heat and Mass Transfer. 1999, 42: 2031-2040
    128王海忠,赵天宇.夹芯板结构设计与破坏模式分析.工业建筑. 2005, 35 (8): 97-100
    129张敏,陈长军,姚广春.泡沫铝夹芯板芯材发泡的研究.功能材料. 2008, 39 (4):596-599
    130 Hans Wolfgang Seelingwe. Manufacture of Aluminum Foam Sandwich (AFS) Components. Advanced Engineering Materials. 2002, 4 (10):753
    131 K Kitazono, A. Kitajima, E. Sato, et al. Solid-state Diffusion Bonding of Closed Cell Aluminum Foams. Material Science and Engineering A. 2002, 327(2): 128
    132 Koissin Vitaly, Skvortsov Vitaly, Shipsha Andrey. Stability of the Face Layer of Sandwich Beams with Sub-interface Damage in the Foam Core. Composite Structures. 2007, 78 (4):507-518
    133 T. M. McCormack, R. Miller, O. Kesler, et al. Failure of Sandwich Beams with Metallic Foam Cores. International Journal of Solids and Structures. 2001, 38:4901-4920
    134 O. Kesler, L. J. Gibson. Size Effects in Metallic Foam Core Sandwich Beams. Materials Science and Engineering A. 2002, 326:228-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700