用户名: 密码: 验证码:
γ-射线辐照改性对芳纶纤维及其复合材料性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳纶纤维/环氧树脂复合材料是理想的火箭发动机壳体材料,然而芳纶纤维表面光滑和化学惰性的缺点使其与环氧树脂之间的界面粘结不良,限制了其在航空航天领域的应用。为此本文采用60Coγ-射线辐照技术,对芳纶(Armos)纤维进行辐照和辐照接枝改性研究,提高纤维与树脂基体的界面粘结性能。通过优化设计辐照工艺参数和辐照接枝单体,在不降低纤维本体强度的前提下实现纤维表面改性,从而全面提高芳纶纤维复合材料的综合性能。
     采用层间剪切强度(ILSS)测试、界面剪切强度(IFSS)测试、弯曲强度测试和纳米硬度测试等测试方法研究了辐照和辐照接枝对芳纶/环氧树脂复合材料界面性能的影响。确定了对Armos纤维改性效果好的辐照处理方式:即对Armos纤维在氮气中600kGy、空气中600kGy辐照;对Armos纤维分别在环氧氯丙烷中200kGy、5%环氧/丙酮中500kGy和1.5%酚醛/乙醇中500kGy共辐照接枝。Armos纤维单丝拉伸强度测试结果表明,辐照和辐照接枝对纤维的本体强度损伤程度很低。
     通过X射线衍射(XRD)和碳核磁共振谱(13C-NMR)研究辐照改性前后芳纶纤维结构的变化。XRD分析表明辐照可以使纤维的结晶结构发生微小变化,且在氮气介质中经600kGy辐照处理后纤维的晶面间距最小;13C-NMR研究表明纤维上C=O和C=N官能团的含量明显减少。辐照处理后纤维浓硫酸溶液的比浓粘度增加、复合材料纤维压痕直径变小、复合材料纤维纳米硬度提高和单丝拉伸断口形貌观察结果均表明辐照使得Armos纤维内部发生交联反应。纤维结构的变化导致纤维性能的改善。芳纶纤维钩接强力测试表明,辐照和辐照接枝均能提高芳纶纤维的压缩性能;热失重分析表明,辐照可以改善纤维的耐热性能。
     采用X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、傅立叶红外测试(FT-IR)和浸润性测试(Capillary method)等测试方法研究γ-射线辐照和辐照接枝对Armos纤维表面性能的影响。FT-IR分析表明在γ-射线辐照作用下环氧氯丙烷、环氧和酚醛树脂可以接枝到纤维表面,使得纤维表面接枝上活性官能团;XPS分析表明处理后纤维表面的O/C增加,活性官能团含量均有提高;采用SEM和AFM对纤维表面形貌观察分析发现改性使得纤维表面的粗糙度增加;浸润测试结果表明处理后纤维在环氧树脂中的浸润性能有不同程度的改善,且其表面能都得到了提高。纤维表面的粗糙度增加使得纤维与基体树脂之间的机械啮合作用增强,纤维表面活性官能团含量的提高增强了纤维和树脂间形成的化学键作用,这些改善了纤维在环氧树脂中的浸润性能,最终使得Armos纤维/环氧树脂复合材料的界面粘结性能得到提高。
     对辐照和辐照接枝处理后的Armos纤维在干燥器中放置6个月后,通过单丝拉伸强度和复合材料ILSS的变化研究芳纶纤维表面活化的退化效应。结果表明放置后的纤维单丝拉伸强度和复合材料的ILSS基本保持不变。
Aramid fibers/epoxy resin composite is a preferred candidate material for outer shell of rocket motor. Unfortunately, the adhesion between fibers and the resin matrix is poor because the surface of aramid fibers is chemically inert and smooth. This adhesion problem has to be solved so that the composites can be widely applied in aircraft, aerospace and missile fields. In this thesis, Co60γ-ray irradiation and irradiation grafting techniques were used to modify aramid (Armos) fibers in order to improve the adhesion between aramid fibers and epoxy resin. Irradiation parameters were studied and various grafting monomers were tested to achieve desired modifications of Armos fibers without lowering the strength of fibers. The overall properties including the interface adhesion of aramid fibers composites were significantly improved after modification.
     The interlaminar shear strength (ILSS) test, interfacial shear strength (IFSS) test, flexural strength test and nanohardness test were adopted to study the effects of irradiation and irradiation grafting on the properties of Aramid fibers/epoxy resin composites. The optimal irradiation doses in various mediums were determined as 600kGy in N2, 600kGy in air, 500kGy in 5% epoxy resin/acetone, 500kGy in 1.5% phenol-formaldehyde resin/acetone, 200kGy in epoxy chloropropane. The quasistatic tensile test of single Armos fiber showed thatγ-ray radiation and irradiation grafting didn’t significantly reduce tensile strength of Armos fibers.
     X-ray diffraction (XRD) and carbon nuclear magnetic resonance spectroscopy (13C-NMR) were adopted to study the structure change of Armos fibers after irradiation. The crystallinity of Armos fibers after irradiation varied only slightly and the interplanar distance was smallest at 600kGy in N2. 13C-NMR results showed the contents of C=O and C=N groups in Armos fibers were lowered after irradiation. It was found that the cross-linking reaction occurred in the bulk of Armos fibers during irradiation. The in-depth cross-linking reaction was evidenced by higher viscosity of fibers/concentrated H2SO4 solution, smaller indentation diameter and higher nanohardness together with modified fractography of fibers. Therefore, it was the structure change that accounts for the improvement of fiber properties. The loop force test with two single fibers showed that the compression resistance of fibers was increased. The thermogravimetic analyses indicated that the thermal stability of Armos fibers was improved by irradiation and irradiation grafting modification.
     The effects of irradiation and irradiation grating on the surface properties of fibers have been investigated by X-ray photoelectron spectroscopy (XPS), capillary method, scanning electron microscope (SEM), atomic force microscope (AFM), Fourier transform infrared (FT-IR) technique and viscosity test. FT-IR showed epoxy chloropropane, epoxy resin and phenol-formaldehyde resin all grafted to fibers via active functional groups on the surface of fibers helped by radiation. XPS indicated the atomic ratio of O/C and the contents of polar groups on the surface of fibers were enhanced after irradiation. After modification the surface of Armos fibers was rougher as examined by SEM and AFM. The surface energy increased and the wettability of fibers improved through modification. The higher roughness of fibers’surface led to mechanically stronger interfacial interlocking between the irradiated the fibers and the matrix. Large amount of active functional groups cause chemical binding between fibers and the matrix. Therefore, the improvement of the Armos fibers’wettability in the epoxy resin led to stronger interfacial binding between the fibers and the matrix.
     The aging test of Armos fibers afterγ-ray irradiation activation was carried out. The tensile strength of fibers and ILSS test of composite showed that the modified fibers were stored in the desiccator for 6 months, the strength of fibers and the ILSS of composites didn’t significantly change.
引文
1 J. W. Downing, J. A. Newell. Characterization of Structural Changes in Thermally Enhanced Kevlar-29 Fiber. Journal of Applied Polymer Science. 2004, 91(1):417~424
    2 K. G. N. C. Alwis, C. J. Burgoyne. Time-temperature Superposition to Determine the Stress-rupture of Aramid Fibres. Applied Composite Materials. 2006, 13(4):249~264
    3 R. Park, J. Jang. Effect of Laminate Thickness on Impact Behavior of Aramid Fiber/Vinylester Composites. Polymer Testing. 2003, 22(8):939~946
    4 M. A. Rashid, M. A. Mansur, P. Paramasivam. Behavior of Aramid Fiber-reinforced Polymer Reinforced High Strength Concrete Beams under Bending. Journal of Composites for Construction. 2005, 9(2):117~127
    5 M. Mukherjee, C. K. Das, A. P. Kharitonov, et al. Properties of Syndiotactic Polystyrene Composites with Surface Modified Short Kevlar Fiber. Materials Science and Engineering A. 2006, 441(1-2):206~214
    6 H. P?ht?l?, N. Tosun. Effect of Load and Speed on the Wear Behaviour of Woven Glass Fabrics and Aramid Fibre-reinforced Composites. Wear. 2002, 252(11-12):979~984
    7 A. B. Coffey, A. Brazier, M. Tierney, et al. Development of Thin-walled Fibre-reinforced Structures for Medical Applications. Composites Part A: Applied Science and Manufacturing. 2003, 34(6):535~542
    8 P. L. Sulivan, K. S. Chian, R. H. Mullarky. Effects of Bromination and Hydrolysis Treatments on the Morphology and the Tensile Properties of Kevlar-29 Fibres. Journal of Materials Science Letters. 1994, 13(3):305~309
    9 P. E. Lennon, E. H. Sautereau, D. Sage. Infuence of Microwave Plasma Treatment on the Wettability and the Adhesive Properties of Polyamides Films with an Epoxy Resin. International Journal of Adhesion and Adhesives. 1999, 19(1):273~279
    10潘鼎,曾凡龙,荣海琴.中国复合材料的发展与展望.玻璃钢. 2006,(3):16~26
    11黄丽.高分子材料.化学工业出版社, 2005:71
    12蔡永源.国内外环氧树脂的生产现状及应用进展.化工新型材料. 2000, 28(5):3~6
    13余训章.高性能树脂基体在航空航天复合材料上的应用.玻璃钢. 2006, (4):26~30
    14 P. Musto, E. Martusceli, G. Ragosta, et al. Cure Kinetics and Ultimate Properties of a Tetrafunctional Epoxy Resin Toughened by a Perfluoro-Ether Oligomer. Polymer. 2001, 42(12):5189~5198
    15赵鸿汉.环氧基纤维增强复合材料应用面面观.玻璃钢. 2006, (2):23~28
    16倪忠斌,陈明清,王玮.改性二氧化硅/环氧树脂体系的制备.中国塑料. 2005, 19(12):29~31
    17加腾成一,施祖培.芳香族聚酰胺纤维技术展望.产业用纺织品. 1995, 13(1):40~42
    18陈乐.世界芳酰胺纤维的需求情况.化工新型材料. 1989, (9):20~26
    19廖颖芳,申明霞,蒋林华.改善芳纶与橡胶粘合性能的处理方法.高科技纤维应用. 2005, 30(3):32~35
    20沙中瑛,于振环,宋威.芳纶纤维在轮胎工业中的应用.弹性体. 2004, 14(1):62~65
    21李同起,王成扬.影响芳纶纤维及其复合材料性能的因素和改善方法.高分子材料科学与工程. 2003, 19(5):5~9
    22 K. E. Perepelkin, N. N. Machalaba, G. A. Budnitski. Aroms-the Russian High-performance Fiber: Comparison with Other P-aramid Fiber Types. Chemical Fibers International. 1999, 49(3):211~214
    23彭涛,叶光斗.对位芳香族聚酞胺纤维及其增强复合材料的发展.合成纤维工业. 2004, 27(6):46~49
    24高建军,狄西岩.俄罗斯的增强纤维材料.化工新型材料. 2003, 31(3):34~36
    25陈刚,赵珂,肖志红.固体火箭发动机壳体复合材料发展研究.航天制造技术. 2004, (3):18~22
    26 H. Janssen.芳纶纤维与橡胶的新粘合体系.橡胶工业. 1998, 45(9):541~544
    27严志云,刘安华,贾德民.芳纶纤维的表面处理及其在橡胶工业中的应用.橡胶工业. 2004, 51(1):56~60
    28余艳娥,谭艳君.新型高性能纤维―芳纶.高科技纤维与应用. 2004, 29(5):37~39
    29周梦玲.芳族聚酞胺纤维在轮胎中的应用.轮胎工业. 1996, (6):335~337
    30王维相,翁亚栋.芳纶在橡胶制品中的应用概况.橡胶工业. 2004, 51(7):436~469
    31江镇海.芳纶将成为我国未来橡胶制品的主要骨架材料.合成材料老化与应用. 2001, (2):43~44
    32 R. Benrashid, C. G. Tesoro. Effect of Surface-Limited Reaction on the Properties of Kevlar Fibers. Textile Research Journal. 1990, 60(6):334~344
    33 T. K. Lin, B. H. Kuo, S. S. Shyu, et al. Improvement of the Adhesion of Kevlar Fiber to Bismaleimide Resin by Surface Chemical Modification. Journal of Adhesion Science and Technology. 1999, 13(5):545~560
    34 G. S. Sheu, T. K. Lin, S. S. Shyu, et al. Improvement of Adhesion of Kevlar Fiber to Epoxy by Chemical Modification. Journal of Adhesion Science and Technology. 1994, 8(5):511~530
    35 T. K. Lin, S. J. Wu, J. G. Lai, et al. The Effect of Chemical Treatment on Reinforcement/Matrix Interaction in Kevlar-fiber/Bismaleimide Composites. Composites Science and Technology. 2000, 60(9):1873~1878
    36 L. S. Penn, C. T. Chou. The Effect of Pendent Groups at the Fiber Surface on Interfacial Adhesion. Journal of Adhesion. 1989, 30:67~81
    37 C. T. Chou, L. S. Penn. Chemical Bonding and Physical Interaction by Attached Chains at the Fiber-Matrix Interface. Journal of Adhesion. 1991, 36:125~137
    38王斌,邱哲明,杨建奎. F-12芳纶纤维表面处理对复合材料剪切强度的影响.固体火箭技术. 1995, 18(1):64~67
    39 M. Takayanagi, T. Kajiyama, T. Katayose. Surface Modified Kevlar Fiber-reinforced Polyethylene and Ionomer. Journal of Applied Polymer Science. 1982, 27:3903~3917
    40 S. J. Park, M. K. Seo, T. J. Ma, et al. Effect of Chemical Treatment of Kevlar Fibers on Mechanical Interfacial Properties of Composites. Journal of Colloid and Interface Science. 2002, 252(1):249~255
    41王杨,李鹏,于运花等.芳纶纤维的磷酸表面处理及其树脂基复合材料界面性能.复合材料学报. 2007, 24(3):7~12
    42 A. Tarntili, A. G. Recopoules. Mechanical Properites of Epoxies Reinforced with Chlorudetreated Aramid Fibers. Journal of Applied Polymer Science. 1997, 65(2):267~275
    43 A. G. Andreopoules. A New Coupling Agent for Aramid Fibers. Journal of Applied Polymer Seienee. 1989, 38(6):1053~1064
    44 M. Breznick, J. Banbaji, Y. G. Baklagina, et al. Surface Treatment Technique for Aramid fibers. Polymer Communications. 1987, 28(l):55~60
    45 J. S. Lin. Effect of Surface Modification by Bromination and Metalation on Kevlar Fibre-epoxy Adhesion. European Polymer Journal. 2002, 38(1):79~86
    46 G. N. Fan, J. C. Zhao, Y. K. Zhang, et al. Grafting Modification of Kevlar Fiber Using Horseradish Peroxidase. Polymer Bulletin. 2006, 56(4-5):507~515
    47 J. C. Zhao, G. N. Fan, Z. A. Guo. Enzymatic Surface Modification of Kevlar Fibers. Science in China Series B-Chemistry Suppl. 2005, 48:37~40
    48 C. Y. Yue, K. Padmanabhan. Interfacial Studies on Surface Modified Kevlar Fiber/Epoxy Matrix Composites. Composites: Part B. 1999, 30(2):205~217
    49 G. M. Wu, C. H. Hung, J. H. You, et al. Surface Modification of Reinforcement Fibers for Composites by Acid Treatments. Journal of Polymer Research. 2004, 11(1):31~36
    50雷渭媛,高柳素夫. N-接枝环氧化合物的表面特性.宇航材料工艺. 1995, 25(5):37~40
    51雷渭媛,许亚洪,吴志文等.表面改性芳纶复合材料的界面粘结与界面断裂韧性.玻瑞钢/复合材料. 1996, (1):35~37
    52 Y. Y. Zheng, M. L. Fu, C. Y. Wang, et al. Surface Grafting Modification and Stabilization of Kevlar Fiber. Guang Pu Xue Yu Guang Pu Fen Xi. 2005, 25 (11):1810~1812
    53 Y. Y. Zheng, M. L. Fu, W. L. Cai, et al. The Research on the Surfacial Modification of Organic High-Performance Kevlar Fiber. Guang Pu Xue Yu Guang Pu Fen Xi. 2004, 24(4):418~420
    54 Y. Y. Zheng, C. Y. Wang, M. L. Fu, et al. Research on the Modification of Kevlar Fiber by Polypropylene Glycol and Cis-2-butene-1,4-diol. Spectroscopy and Spectral Analysis. 2005, 25(3):402~404
    55 M. Mukherjee, C. K. Das, A. P. Kharitonov. Fluorinated and Oxyfluorinated Short Kevlar Fiber-Reinforced Ethylene Propylene Polymer. PolymerComposites. 2006, 27(2):205~212
    56 M. Mukherjee, C. K. Das, A. P. Kharitonov, et al. Properties of Syndiotactic Polystyrene Composites with Surface Modified Short Kevlar Fiber. Materials Science and Engineering: A. 2006, 441(1-2):206~214
    57 J. Maity, C. Jacob, C. K. Das, et al. Fluorinated Aramid Fiber Reinforced Polypropylene Composites and Their Characterization. Polymer Composites. 2007, 28(4):462~469
    58艾涛,王汝敏,邓杰. Kevlar缝线表面处理对炭纤维/双马来酰亚胺树脂缝合复合材料界面性能的影响.复合材料学报. 2007, 24(1):34~39
    59 N. Menon, D. F. Blum, L. R. Dharani. Use of Titanate Coupling Agent in Kevlar-Phenolic Composites. Journal of Applied Polymer Science. 1994, 54(1):113~123
    60龙军,张志谦,魏月贞.接枝偶联剂对F-12纤维表面改性的影响.材料科学与工艺. 2000, 8(1):77~80
    61龙军,张志谦,魏月贞.接枝偶联剂对F-12纤维环氧复合材料界面改性的研究.复合材料学报. 2000, 17(3):15~19
    62 T. Ai, R. M. Wang, W. Y. Zhou. Effect of Grafting Alkoxysilane on the Surface Properties of Kevlar Fiber. Polymer Composites. 2007, 28(3):412~416
    63 J. Wu, X. H. Cheng. Study of Interiaminar Shear Strength of Rare Earths Treated Aramid Fiber Reinforced Epoxy Composites. Journal of Materials Science. 2005, 40(4):1043~1045
    64吴炬,程先华.稀土处理对F-12纤维环氧复合材料拉伸性能的影响.上海交通大学学报. 2005, 39(11):1795~1798
    65 X. H. Cheng, J. Wu, C. Y. Xie. Effect of Rare Earth Elements Surface Treatment on Tensile Properties of Aramid Fiber-reinforced Epoxy Composites. Journal of Applied Polymer Science. 2004, 92(2):1037~1041
    66吴炬,程先华.稀土改性剂处理对芳纶/环氧复合材料层间剪切强度的影响.稀有金属材料与工程. 2005, 34(12):1917~1920
    67 J. Wu, X.H. Cheng. Effect of Surface Treatment on the Mechanical and Tribological Performance of Kevlar Pulp Reinforced Epoxy Composites. Tribology Letters, 2006, 24(3):195~199
    68蒋向,邓剑如.等离子体处理对芳纶性能的影响.合成纤维. 2006, (12):26~29
    69严志云,刘安华,贾德民.低温等离子体技术在聚合物材料表面改性中的应用.高技术通讯. 2004, (4):107~110
    70林立中.非极性塑料制品的冷等离子体表面改性研究.中国塑料. 1999, 13(6):51~56
    71 L. Liu, Q. Jiang, T. Zhu, et al. Influence of Moisture Regain of Aramid Fibers on Effects of Atmospheric Pressure Plasma Treatment on Improving Adhesion with Epoxy. Journal of Applied Polymer Science. 2006, 102(1):242~247
    72春霞,邱夷平.常压等离子体改善合成纤维吸湿性的研究.合成纤维工业. 2007, 30(4):8~10
    73 G. M. Wu. Oxygen Plasma Treatment of High Performance Fibers for Composites. Materials Chemistry and Physics. 2004, 85(1):81~87
    74 J. M. Park, D. S. Kim, S. R. Kim. Improvement of Interfacial Adhesion and Nondestructive Damage Evaluation for Plasma-treated PBO and Kevlar fibers/Epoxy Composites Using Micromechanical Techniques and Surface Wettability. Journal of Colloid and Interface Science. 2003, 264(2):431~445
    75严志云,石虹桥,刘安华等.空气等离子体处理芳纶纤维及其与天然橡胶/乳聚丁苯橡胶的黏合性能.合成橡胶工业. 2007, 30(3):200~204
    76严志云,石虹桥,刘安华等.低温等离子体改性芳纶表面的XPS分析.纺织学报. 2007, 28(8):19~22
    77 J. R. Brown, Z. Mathys. Plasma Surface Modification of Advanced Organic Fibers. Journal of Materials Science. 1997, (32):2599~2604
    78 G. S. Sheu, S. S. Shyu. Surface Modification of Kevlar 149 Fibers by Gas Plasma Treatment. Part I. Morphology and Surface Characterization. Journal of Adhesion Science and Technology. 1994, 8(5):531~542
    79 G. S. Sheu, S. S. Shyu. Surface Modification of Kevlar 149 Fibers by Gas Plasma Treatment. Part II. Improved Interfacial Adhesion to Epoxy Resin. Journal of Adhesion Science and Technology. 1994, 8(9):1027~1042
    80王浩,薛忠民,徐志红.芳纶纤维复合材料的界面研究.玻璃钢学会第十全国玻璃钢/复合材料学术年会论文集. 1993, 1~4
    81 Y. J. Hwang, Y. Qiu, C. Zhang, et al. Effects of Atmospheric Pressure Helium/Air Plasma Treatment on Adhesion and Mechanical Properties of Aramid Fibers. Journal of Adhesion Science and Technology. 2003, 17(6):847~860
    82 Y. Ren, C. X. Wang, Y. P. Qiu. Influence of Aramid Fiber Moisture Regain during Atmospheric Plasma Treatment on Aging of Treatment Effects on Surface Wettability and Bonding Strength to Epoxy. Applied Surface Science. 2007, 253(23):9283~9289
    83赵晓,金宏彬,丁辛.低温等离子体处理对芳纶/环氧界面性能的影响.玻璃钢/复合材料. 2003, (6):13~15
    84郭士恒,杨建忠.辉光低温等离子体处理对芳纶力学性能的影响.第七届功能性纺织品及纳米技术研讨会论文集. 2007:132~135
    85 G. M. Wu, C. H .Huang, J. C. Lu. Effects of Plasma Treatment on High Performance Fibers for Composites. International SAMPE Symposium and Exhibition (Proceedings) Proceedings of the 1999 44th International SAMPE Symposium and Exhibition‘Envolving and Revolutionary Technologies for the New Millennium’. 1999, 44:1090~1097
    86 Y. Qiu, X. Shao, C. Jensen, et al. The Effects of Atmospheric Pressure Plasma Treatments on Adhesion and Mechanical Properties of High-performance Fibers for Composites. Polymer Surface Modification: Relevance to Adhesion. 2004, (3):3~24
    87 X. Wang, C. X. Zhang. Fracture of Aramid Fiber/Epoxy Resin Micro-Composites. Journal of Materials Science and Technology. 1995, 11(4):260~264
    88笪有仙,胡宝蓉,顾元等.芳纶纤维表面改性及对复合材料性能的影响.玻璃钢学会第十一届全国玻璃钢/复合材料学术年会论文集. 1995:24~28
    89 C. X. Zhang, S. J. Jin, C. X. Zhang, et al. Plasma Modified Polyaramid Fiber Surface and Fiber/Epoxy Interface. Journal of Adhesion. 1996, 59:251~263
    90 C. X. Zhang, S. J. Jin, Y. Z. Yu. Plasma Modified Polyaramid Fiber Surface and Fiber/Epoxy Interface. Journal of Materials Science and Technology. 1993, 9(6):423~426
    91 M. Shaker, I. Kamel, F. Ko, et al. Improvement of the Interfacial Adhesion between Kevlar Fiber and Resin by Using R-F Plasma. Journal of Composites Technology & Research. 1996, 18(4):249~255
    92 G. P. William, E. L. John, M. F. David, et al. Enhanced Interfacial Adhesion of Fibers to Thermoplastic:Comparison of Polyaramid and Glass. SAMPE Quarterly. 1991, 23(1):39~50
    93 W. Qi, K. Serge, A. K. Abdellatif. Catalytic Grafting: a New Technique for Polymer-Fiber Composites. III. Polyethylene-Plasma-Treated Kevlartm Fiber Composites: Analysis of the Fiber Surface. Journal of Applied Polymer Science. 1993, 48(1):121~136
    94 M. Masaru, U. Yoshikimi, I. Yoshito. Surface Modification of Aramid Fibre by Graft Polymerization. Polymer. 1994, 35(24):5336~5341
    95 W. J. V. Ooij, L. Shijian, S. Datt. Surface Modification of Textile Fibers and Cords by Plasma Polymerization. Plasmas and Polymers. 1999, 4(1):33~55
    96 L. Shijian, J. Wim, O. Van. Surface Modification of Textile Tire Cords by Plasma Polymerization for Improvement of Rubber Adhesion. Rubber Chemistry and Technology. 2000, 73(1):121~137
    97刘丽,张翔,黄玉东.超声作用对芳纶纤维表面性质的影.复合材料学报. 2003, 20(2):35~40
    98 L. Liu, Y. D. Huang, Z. Q. Zhang. Effect of Ultrasound on Wettability between Aramid Fibers and Epoxy Resin. Journal of Applied Polymer Science. 2005, 99(6):3172~3177
    99刘丽,张翔,黄玉东.芳纶纤维环氧复合材料界面超声连续改性处理.航空材料学报. 2003, 23(1):49~51
    100严志云,刘安华,贾德民.超声波处理对芳纶帘线表面形态及与胶料粘合性能的影响.橡胶工业. 2004, (6):325~329
    101邱军,张志谦,黄玉东等.γ-射线辐照APMOC纤维对AFRP层间剪切强度的影响.材料科学与工艺. 1999, 7(1):48~50
    102邱军,刘立洵,张志谦.辐照APMOC纤维对其复合材料拉伸强度的影响.宇航材料工艺. 2000 (3):34~37
    103邱军,张志谦. APMOC纤维辐照处理研究.玻璃钢/复合材料. 2000 (6):12~14邱军,张志谦.芳纶APMOC纤维辐照处理研究.合成纤维. 2001, 30(1):25~27
    104邱军,张志谦.辐照APMOC纤维对其复合材料力学性能的影响.纤维复合材料. 2000, (3):21~23
    105邱军,张志谦.辐照对APMOC纤维结构与性能的影响.高分子材料科学与工程. 2000, 17(1):150~152
    106邱军,张东,赵慧.γ-射线辐照对芳纶纤维结构的影响.沈阳化工学院学报. 2000, 14(4):263~265
    107张宗强,万怡灶,王玉林.γ-射线辐照对芳纶纤维复合材料力学性能的影响.玻璃钢/复合材料. 2003 (3):11~13
    108翟茂林,伊敏,哈鸿飞.高分子材料辐射加工技术及进展.化学工业出版社, 2004:1~26
    109 Y. S. Lee, B. K. Lee. Surface Properties of Oxyfluorinated PAN-based Carbon Fibers. Carbon. 2002, 40(13):2461~2468
    110丁富荣,班勇,夏宗璜.辐射物理.北京大学出版社, 2004:22
    111 C. Kozlowski, P. M. Sherwood. X-ray Photoelectron Spectroscopic Studies of Carbon Fiber SurfaceⅧ-A Comparison of Type I and II Type Fibers and Their Interaction with Thin Resin Fi1ms. Carbon. 1987, 25(6):751~760
    112哈鸿飞,吴季兰.高分子辐射化学—原理与应用.北京大学出版社, 2002:4~63
    113 L. H. Zhang, N. Du. Coupling Mechanism of Irradiation Polymer and its Structure and Movement. Journal of Radiation Research and Process. 2004, 22(3):129~137
    114 R. L. Clough. High Energy Radiation and Polymers: A Review of Commercial Processes and Emerging Applications. Nuclear Instruments and Methods in Physics Research B. 2001, 185(1-4):8~23
    115 A. J. Berejka. Irradiation Processing in the‘90’s: Energy Savings and Environmental Benefits. Radiation Physics and Chemical. 1995, 46(4-6):429~437
    116 A. Singh. Radiation Processing of Carbon Fibre-Reinforced Advanced Composites. Nuclear Instruments and Methods in Physics Research B. 2001, 185(1-4):50~54
    117 M. A. Sheikhly, W. L. Mclaughlin. On the Mechanisms of Radiation-Induced Curing of Epoxy/Fiber Composites. Radiation Physics and Chemical. 1996, 48(2):201~206
    118 F. Y. Zhang, Z. C. Hou, K. L. Sheng, et al. Crystallization of Calcium Carbonate on Polyethylene Gamma-radiation-grafted with Acrylic acid. Journal of Materials Chemistry. 2006, (16)13:1215~1221
    119 E. Bucio, P. Skewes, G. Burillo. Synthesis and Characterization of Azo acrylates Grafted onto Polyethylene Terephthalate by Gamma Irradiation. Nuclear Instruments & Methods in Physics Research, Section B (BeamInteractions with Materials and Atoms). 2005, 236(1-4):301~306
    120 E. Bucio, G. Burillo, M. del Pilar Carreon-Castro, et al. Functionalization of Polypropylene Film by Radiation Grafting of Acryloyl Chloride and Subsequent Esterification with Disperse Red 1. Journal of Applied Polymer Science. 2004, 93(1): 172~178
    121 A. Yamanaka, Y. Izumi, T. Kitagawa, et al. The Effect of Gamma-Irradiation on Thermal Strain of High Strength Polyethylene Fiber at Low Temperature. Journal of Applied Polymer Science. 2006, 102(1):204~209
    122 A. Yamanaka, Y. Izumi, T. Terada, et al. Radiation Effect on the Thermal Conductivity and Diffusivity of Ramie Fibers in a Range of Low Temperatures by Ggamma Rays. Journal of Applied Polymer Science. 2006, 100(6):5007~ 5018
    123 A. Alberti, S. Bertini, G. Gastaldi, et al. Electron Beam Irradiated Textile Cellulose Fibres: ESR Studies and Derivatisation with Glycidyl Methacrylate (GMA). European Polymer Journal. 2005, 41(8):1787~1797
    124 J. Q. Li, Y. D. Huang, Z. W. Xu, et al. High-energy Radiation Technique Treat on the Surface of Carbon Fiber. Materials Chemistry and Physics. 2005, 94(2-3): 315~321
    125 C. H. Zhang, Y.D. Huang, Y. D. Zhao. Surface Analysis ofγ-ray Irradiation Modified PBO Fiber. Materials Chemistry and Physics. 2005, 92 (1):245~250
    126 B. Brichard, A. L. Tomashuk, V. A. Bogatyrjov, et al. Reduction of the Radiation-induced Absorption in Hydrogenated Pure Silica Core Fibres Irradiated in Situ withγ-rays. Journal of Non-Crystalline Solids. 2007, 353(5-7):466~472
    127 M. V. Jose, B. W. Steinert, V. Thomas, et al. Morphology and Mechanical Properties of Nylon 6/MWNT Nanofibers. Polymer. 2007, 48(4):1096~1104
    128 H. Ishida, J. D. Miller. Substrate Effects on the Chemisorbed and Physisorbed Layers of Methacryl Silane Modified Particulated Minerals. Macromolecules. 1984, 17:1659~1666
    129 B. Pukánszky, E. Fekete. Adhesion and Surface Modification in Mineral Fillers in Thermoplastics. Raw Materials and Processing. Advance Polymer Science. 1999, 139:109~153
    130黄光林,冯雨丁,吴茂良.高分子辐射化学基础.四川大学出版社,1993:18~30
    131杜善义.复合材料细观力学.科学出版社, 1998:83~86
    132 Y. Wang, Y. M. Xia. Experimental and Theoretical Study on the Strain Rate and Temperature Dependence of Mechanical Behaviour of Kevlar Fibre. Composites: Part A 1999, 30(11):1251~1257
    133 G. H. Chen, X. Ding. Strength Distribution Analysis of Typical Staple Fiber. Journal of Donghua University. 2005, 20(4):9~12
    134 Y. P. Zhang, X. G. Wang, N. Pan, et al. Weibull Analysis of the Tensile Behavior of Fibers with Geometrical Irregularities. Journal of Materials Science. 2002, 37(7):1401~1406
    135 S. Bourbigot, X. Flambard, Franck Poutch. Study of the Thermal Degradation of High Performance Fibres-Application to Polybenzazole and P-aramid Fibres. Polymer Degradation and Stability. 2001,74(2):283~290
    136陈国华,曲丽君,孙永等.几种纤维强度的概率分布分析.青岛大学学报. 2003, 18(2):42~45
    137 X. D. Hu. Rigid-rod Polymer: Synthesis, Processing, Simulation Structure and Properties Mechanical Properties. Macromolecular Materials and Engineering. 2003, 288(11):823~843
    138 D. Tripathi, F. R. Jones. Single Fibre Fragmentation Test for Assessing Adhesion in Fibre Reinforced Composites. Journal of Material Science. 1998, 33(1):1~16
    139 Y. Termonia. Theoretical-study of the Stress Transfer in Single Fiber Composites. Journal of Material Science. 1987, 22(2): 504~508
    140 I. Prosy?evas, A. Guobiené, M. Andrulevi?ius. Polyethylene Terephthalate Film Surface Relaxation after Plasma Treatment. Materials Science. 2003, 9(4): 355~357
    141 S. A. Ben, G. Baud, M. Jacquet, et al. XPS Characterisation of Plasma-treated and Alumina-coated PMMA. Applied Surface Science. 2000, 153 (2): 172~183
    142 L. Ghosh, M. H. Fadhilah, H. Kinoshita, et al. Synergistic Effect of Hyperthermal Atomic Oxygen Beam and Vacuum Ultraviolet Radiation Exposures on the Mechanical Degradation of High-modulus Aramid Fibers. Polymer. 2006, 47(19):6836~6842
    143 Y. J. Xing, X. Ding. UV Photo-stabilization of Tetrabutyl Titanate for AramidFibers via Sol-gel Surface Modification. Journal of Applied Polymer Science. 2007, 103(5):3113~3119
    144 Q. Bénard, M. Fois, M. Grisel. Roughness and Fbre Reinforcement Effect onto Wettability of Composite Surfaces. Applied Surface Science. 2007, 253(10):4753~4758
    145 A. B. Coffey, C. M. O’Bradaigh, R. J. Young. Interfacial Stress Transfer in an Aramid Reinforced Thermoplastic Elastomer. Journal of Materials Science. 2007, 42(19):8053~8061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700