用户名: 密码: 验证码:
太平洋鲱和大头鳕的群体遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋鱼类通常展现三种遗传结构模式(群体间遗传差异较小并且是不显著的、群体间遗传差异较小但却是显著的、群体间遗传分化较大并伴有系统发育上的分支)和三种系统地理格局(系统发育上具有较大分化的类群在空间上异域分布或同域分布、系统发育上连续的类群在空间上也是连续的)。这些遗传差异模式的形成主要和更新世剧烈的气候波动、当前的海洋环境因子以及海洋鱼类自身的生态特性密切相关。太平洋鲱和大头鳕是北太平洋两个重要经济鱼种,二者都起源于大西洋,通过跨北冰洋扩散进入太平洋,更新世的冰期循环和北太平洋独特的海洋地理环境很可能在两个种种内形成具有代表性的遗传结构和系统地理格局。
     我们采用形态学、线粒体DNA和微卫星三种标记来检测太平洋鲱的群体结构和系统地理格局,并探讨了太平洋鲱与大西洋鲱的分化事件。主要研究结果如下:
     (1)对北太平洋沿岸8个地理群体424个个体的分节特征和量度特征开展了多变量分析,结果表明这些群体之间在这些特征变量上均存在显著差异,些特征变量在群体间存在纬度渐变趋势。
     (2)应用线粒体DNA控制区对9个地理群体开展了分子系统地理学研究,在太平洋鲱种内检测到了3个高度分化的系统发育分支,一个分支占据西北太平洋,和另外两个分支在东太平洋发生二次连接,3个分支可能形成于更新世冰期的隔离。3个分支的频率分布差异定义了两个地理组群,西北太平洋组群和东太平洋组群。
     (3)通过检测9个微卫星多态位点差异,在太平洋鲱两两群体间发现了小但极显著的遗传差异,9个群体被进一步细分成3个地理组群,在之前两个地理组群划分的基础上,黄海群体独立成群。地形的阻隔、海流和海水温度的限制很可能是组群间较大遗传差异产生的原因。
     (4)为检测黄海群体时间上的遗传结构,比较了3个不同时期黄海群体的控制区序列差异,结果表明黄海内的鲱鱼群体为一个独立的随机交配种群。我们推测黄海群体的特殊性可能与黑潮暖流及其支流的高温限制作用有关。
     (5)为探讨太平洋鲱的进化起源,以及与其姊妹种大西洋鲱之间在形态上和遗传上的关系。我们比较了太平洋鲱黄海群体和一个大西洋鲱群体的24个形态特征差异,基于11个形态特征参数建立了判别式,判别率达98.8%。分析了两个种的细胞色素b和控制区序列,基于8.1%的控制区净遗传距离推测两个种在线粒体上分化发生在距今约125万年前。基于分支间的净遗传距离估算太平洋鲱种内分支进化发生在更新世晚期。核苷酸不配对分布结果表明两个种都经历了群体扩张。
     为检测大头鳕的群体遗传结构和历史动态,我们采用线粒体DNA和微卫星两种分子标记对采自北太平洋的9个地理群体开展分析,主要研究结果如下:
     (1)基于线粒体DNA控制区的分子系统地理学研究结果,大头鳕种内无谱系结构发生,且具有相当低的遗传多样度水平,西北太平洋群体间存在小但显著遗传结构,东太平洋群体间存在中度的距离隔离趋势。
     (2)基于8个微卫星多态位点的差异,在西北太平洋4个地理群体间检测到微弱但显著的遗传结构,黄海群体和其他3个群体存在明显分化,黑潮暖流及其支流同样可能对大头鳕的黄海群体起到限制作用。我们的微卫星结果发现大头鳕具有相当高的遗传多样度水平。
     我们推测线粒体和微卫星结果的不一致主要来自于线粒体相比核基因四倍高的遗传漂变率以及微卫星相当高的突变速率。线粒体和微卫星结果都提示大头鳕群体经历了近期的瓶颈效应。
Marine fish usually exhibited three genetic structuring patterns (i. little genetic differentiations, ii. small but significant genetic differentiations, iii. large genetic divergence with phylogenetic lineages) and three phylogeographic patterns (i. deep phylogenetic break with lineages allopatric, ii. deep phylogenetic break with lineages sympatric, iii. shallow phylogenetic relationship or no genealogy structure). All these patterns of genetic variations involved historical climatical fluctuations, contemporary marine environment factors and life-history traits of marine fish. Pacific herring and Pacific cod are two commercially important fish species in North Pacific. They were considered derived from an Atlantic invader by trans-Arctic dispersal. Large glacial-interglacial circles in Pleistocene and unique oceanographic characters of North Pacific may have influenced heavily the population structuring and phylogeographic patterns in the two species.
     Morphological, mitochondrial DNA sequence and microsatellite DNA markers were used to estimate the population structure and phylogeographic pattern of Pacific herring in North Pacific, the divergence between Pacific herring and Atlantic herring was also discussed.
     (1) Meristic and morphometric characters were compared by multivariate analysis for eight populations of total 424 individuals, significant differences were found in means of all these characters among eight populations, and a latitudinal cline was observed in several morphological characters.
     (2) Three high distinct lineages were detected in 318 individuals from nine populations across the range of the species based on sequence variations of mtDNA control region, which might be isolated and diverged during glacial periods of Pleistocene. One lineage dominated the Northwestern Pacific, while the other two lineages occurred secondary contact in Eastern Pacific. The frequency difference of the three lineages in 9 populations defined two geographic groups, a Northwestern Pacific group and an Eastern Pacific Group.
     (3) High significant genetic differentiations were found among 9 populations by scanning 9 microsatellite loci variations, which subdivided populations into three groups. This grouping picked up the Yellow Sea population as an independent group. Sea water temperature barriers from Kuroshio Current and Tsushima Current might restrict the gene flows between populations in Yellow Sea and other locations.
     (4) MtDNA control region sequences were used to investigate temporal population structure of Pacific herring which were collected from three different periods in Yellow Sea. No significant genetic differentiations were detected among the three populations and the result suggested populations in Yellow Sea belong to a single panmictic stock.
     (5) An Atlantic herring population was also analyzed as an outgroup to discuss the origin and evolution of Pacific herring. Meristic and morphometric characters were compared between the Atlantic herring population and a Pacific herring population from Yellow Sea. A discriminant formula was created with 11 character parameters, and the accuracy was 98.8%. MtDNA variations were analyzed using sequence data from cytochrome b and control region. Based on 8.1% net genetic distance in control region, we postulated the divergence in mtDNA between the two species occurred at about 1.25 million years ago. Three lineages of Pacific herring were considered to diverge during late Pleistocene. Mismatch distribution analyses indicated population expansion in both species. MtDNA sequence and microsatellite DNA markers were used to estimate the population structure and demographic history of Pacific cod in North Pacific.
     (1) MtDNA control region were analyzed for 259 individuals from nine localities over the species'range. The result showed lack of genealogical structure and remarkably low control region diversity. Small but significant genetic differentiations were detected among Northwestern Pacific populations. Four populations from coastal North America exhibited a trend of isolation by distance.
     (2) Small but significant genetic structure was also found in four populations of Northwestern Pacific based on microsatellite analyses. Like Pacific herring, large genetic differentiations between the Yellow Sea population and other populations might be also attributed to sea water temperature barriers. Contrary to mtDNA result, microsatellite analyses revealed relative high genetic diversity for Pacific cod.
     We interpreted such discordance between mitochondrial and microsatellites might be caused by the four-fold higher rate of drift for mtDNA than nuclear genes and fairly high mutation rate for microsatellite DNA. Both mtDNA and microsatellite results suggested a recent bottleneck in Pacific cod.
引文
陈大刚。黄渤海渔业生态学。北京:海洋出版社,1991。
    窦硕增。鱼类的耳石信息分析及生活史重建-理论、方法与应用。海洋科学集刊,2007,48:93-113。
    高天翔,任桂静,刘进贤,等。海洋鱼类分子系统地理学研究进展。中国海洋大学学报,2009,39:897-902。
    韩志强.三种海洋鱼类分子系统地理学研究:[博士学位论文].青岛:中国海洋大学,2006。
    贾继增。分子标记种质资源鉴定和分子标记育种。中国农业科学,1996,29:1-10。
    刘进贤。西北太平洋四种海洋鱼类的分子系统地理学研究:[博士学位论文]。青岛:中国海洋大学,2006。
    唐启升。黄海鲱(邓景耀等,海洋渔业生物学)。北京:农业出版社,1991,296-356。
    唐启升。黄海鲱的性成熟、生殖力和生长特性的研究。海洋水产研究,1980,1:59-76。
    唐启升。应用VPA方法概算黄海鲱鱼的渔捞死亡和资源量。海洋学报,1986,8:476-486。
    王志勇,王艺磊,林利民,等。福建官井洋大黄鱼AFLP指纹多态性的研究。中国水产科学,2002,9:198-202。
    王志勇,王艺磊,林利民,等。利用AFLP指纹技术研究中国沿海真鲷群体的遗传变异和趋异。水产学报,2001,25:289-294。
    阎淑珍。黄海北部青鱼资源考证。海洋科学,2006,30:88-92。
    叶昌臣,唐启升,秦裕江。黄海鲱鱼和黄海鲱鱼渔业。水产学报,1980,4:339-352。
    叶振江,孟晓梦,高天翔,等。两种花鲈耳石形态的地理变异。海洋与湖沼,2007,38:356-360。
    张国华,但胜国,苗志国,等。六种鲤科鱼类耳石形态以及在种类和群体识别中的应用。水生生物学报,1999,3:683-688。
    张世义。中国动物志(硬骨鱼纲鲱形目)。北京:科学出版社,1997。
    张岩,肖永双,高天翔,于函,两种黄盖鲽线粒体DNA部分片段比较分析。水产学报,2009,33:201-207。
    张玉玺。黄海鲱鱼亲体量与补充量之间的关系。山东省海洋水产研究所报告,1984。
    Alderdice D.F., Velsen F.P.J. Some effects of salinity and temperature on early development of Pacific herring(Clupea pallasi). J. Fish. Res. Board Can.,1971,28:1545-1562
    Allen M.J., Smith G.B. Atlas and zoogeography of common fishes in the Bering Sea and Northeastern Pacific. NOAA Tech. Rep. NMFS-1988,66:51
    Avise J.C. Phylogeography:the history and formation of species. Cambridge, MA, USA:Harvard University Press,2000
    Avise J.C. The history and preview of phylogeography:a personal reflection. Mol. Ecol.,1998, 7:371-379
    Avise J.C., Arnold J., Ball, R.M., et al. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Evol. Syst.,1987, 18:489-522
    Avise J.C., Helfman G.S., Saunders, N.C., et al. Mitochondrial DNA differentiation in North Atlantic eels:Population genetic consequences of an unusual life history pattern. Proc. Natl. Acad. Sci. USA,1986,83:4350-4354
    Avise J.C., Walker D., Johns G.C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B Biol. Sci.,1998,265:1707-1712
    Bandelt H.J., Forster P., Sykes B.C., et al. Mitochondrial portraits of human populations using median networks. Genetics,1995,141:743-753
    Bandelt H.J., Macaulay V.A., Richards M.B. Median networks:speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Mol. Phylogenet. Evol., 2000,16:8-28
    Bassam B.J., Caetano-Anolles G., Gresshoff P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem.,1991,19:680-683
    Bazin E., Glemin S., Galtier N. Population size does not influence mitochondrial genetic diversity in animals. Science,2006,312:570-572
    Beacham T.D., Battey J., Miller K.M., et al. Multiple stock structure of Atlantic cod(Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES J. Mar. Sci.,2002,59:650-665
    Begg G.A., Overholtz W.J., Munroe N.J. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fish. Bull., 2001,99:1-14
    Bentzen P., Taggart C.T., Ruzzante D.E., et al. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci., 1996,53:2706-2721
    Bermingham E., McCafferty S.S., Martin A.P. Fish biogeography and molecular colocks: perspectives from the Panamanian Isthmus. In:Kocher T.D., Stepien C.A. (eds.), Molecular systematics of fishes. New York, Academic Press,1997.113-126
    Bermingham E., Moritz C. Comparative phylogeography:concepts and applications. Mol. Ecol., 1998,7:367-369
    Bernardi G. Phylogeography and demography of sympatric sister surfperch species, Embiotoca jacksoni and E. lateralis along the California coast:historical versus ecological factors. Evolution,2005,59:386-394
    Birky C.W., Fuerst P., Maruyama T. Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells and comparison to nuclear genes. Genetics,1989,121:613-627
    Bohonak A.J. IBD (Isolation By Distance):a program for analyses of isolation by distance. J. Hered.,2002,93:153-154
    Botstein D., White R.L., Skolnick M., et al. Construct ion of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J Hum. Genet.,1980,32:314-331
    Bowen B.W., Avise J.C. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon:Influence of zoogeographic factors and life-history patterns. Mar. Biol.,1990,107:371-381
    Bowen B.W., Bass A.L., Rocha L.A., et al. Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution,2001,55:1029-1039
    Bowen B.W., Bass A.L., Rocha L.A., et al. Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution,2001,55:1029-1039
    Brooker A.L., Cook D., Bentzen P., et al. Organization of microsatellites differs between mammals and cold-water teleost fishes. Can. J. Fish. Aquat. Sci.,1994,51:1959-1966
    Brunner P.C., Douglas M.R., Osinov A., et al. Holarctic phylogeography of arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution,2001, 55:573-586
    Buonaccorsi V.P., Kimbrell C.A., Lynn E.A., et al. Population structure of copper rockfish (Sebastes caurinus) reflects postglacial colonization and contemporary patterns of larval dispersal. Can. J. Fish. Aquat. Sci.,2002,59:1374-1384
    Campana S.E., Casselman J.M. Stock discrimination using otolith shape analysis. Fish. Aquat. Sci.,1993,50:1062-1083
    Canino M.F., Spies I.B., Hauser L. Development and characterization of novel di-and tetranucleotide microsatellite markers in Pacific cod(Gadus macrocephalus). Mol. Ecol. Notes, 2005,5:908-910
    Cann R.L., Brown W.M., Wilson A.C. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics,1984,106:479-499
    Carr S.M., Marshall H.D. Intraspecific phylogeographic genomics from multiple complete mtDNA Genomes in Atlantic cod (Gadus morhua):Origins of the "Codmother," transatlantic vicariance and midglacial population expansion. Genetics,2008,180:381-389
    Castonguay M., Simard P., Gagnon P. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel(Scomber scombrus) stock discrimination. Fish. Res.,1991,48:296-302
    Chapman R.W., Sedberry G.R., Koenig C.C., et al. Stock identification of gag, mycteroperca microlepis, along the Southeast Coast of the United States. Mar. Biotechnol.,1999,1:137-146
    Chapman W.M., Katz M., Erickson D.W. The races of herring in the State of Washington. State of Wash. Div. Sci. Res., Dept. Fisheries, Biol. Rept.1941,38A:36
    Charrier G., Chenel T., Durand J.D., et al. Discrepancies in phylogeographical patterns of two European anglerfishes (Lophius budegassa and Lophius piscatorius). Mol. Phylogenet. Evol., 2006,38:742-754
    Cheng Q.Q., Lu D.R. Phylogenetic analysis and relative-rate test of nine Clupeidae fishes (Osteichthyes:Clupeiformes) inferred om cytochrome b gene sequence of mitochondrial DNA. Mar. Fish.,2006,28:5-12
    Chenoweth S.F., Hughes J.M., Keenan C.P., et al. When oceans meet:a teleost shows secondary intergradation at an Indian-Pacific interface. Proc. R. Soc. London Ser. B.,1998,265:415-420
    Clement M., Posada D., Crandall K. TCS:a computer program to estimate gene genealogies. Mol. Ecol.,2000,9:1657-1660
    Cook R.M., Sinclair A., Stefansson G. Potential collapse of North Sea cod stocks. Nature,1997, 385:521-522
    Coope G.R. Late Cenozoic fossil Coleoptera:evolution, biogeography and ecology. Annu. Rev. Ecol. Syst.,1979,10:247-267
    Cornuet J. M., Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics,1996,144:2001-2014
    Coulson M.W., Marshall H.D., Pepin P., et al. Mitochondrial genomics of gadine fishes:implications for taxonomy and biogeographic origins from whole-genome data sets. Genome,2006,49:1115-1130
    Crosetti D., Nelso W.S., Avise J.C. Pronounced genetic structure of mitochondrial DNA among populations of the circumglobally distributed grey mullet (Muril cephalus). J. Fish. Biol.,1993, 44:47-58
    Cunningham K.M., Canino M.F., Spies I.B., et al. Genetic isolation by distance and localized fjord population structure in Pacific cod (Gadus macrocephalus):limited effective dispersal in the northeastern Pacific Ocean. Can. J. Fish, Aquat. Sci.,2009,66:153-166
    Dawson M., Louie K. D., Barlow M., et al. Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (Teleostei, Gobiidae), across the California Transition Zone. Mol. Ecol.,2002,11:1065-1075
    De Innocentiis S., Sola L., Cataudella S., et al. Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephel usmarginatus) within the Mediterranean Sea. Mol. Ecol.,2001,10:2163-2175
    DeWoody J.A., Avise J.C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biol.,2000,56:461-473
    Dodson J.J., Tremblay S., Colombani F., et al. Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol. Ecol.,2007, 16:5030-5043
    Domanico M.J., Phillips R.B., Schweigert J.F. Sequence variation in ribosomal DNA of Pacific (Clupea pallasi) and Atlantic herring (Clupea harengus). Can J Fish Aquat Sci,1996, 53:418-2423
    Dorenbosch M., Pollux B.J.A., Pustjensa Z., et al. Population structure of the Dory snapper, Lutjanus fulviflamma, in thewestern Indian Ocean revealed by means of AFLP fingerprinting. Hydrobiologia,2006,568:43-53
    Dupanloup I., Schneider S., Langaney A., et al. A simulated annealing approach to define the genetic structure of populations. Mol. Ecol.,2002,11:2571-2581
    Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol. Ecol.,2004,13:853-864
    Excoffier L., Laval G., Schneider S. Arlequin ver 3.1:An integrated software package for population genetics data analysis. University of Berne, Bern, Swizerland.2006.
    Excoffier L., Smouse P.E., Quattro J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics,1992,131:479-491
    Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap. Evolution, 1985,39:783-791
    Foltz D.W. Invertebrate species with nonpelagic larvae have elevated levels of nonsynonymous substitutions and reduced nucleotide diversities. J. Mol. Evol.,2003,57:607-612
    Fu Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics,1997,147:915-925
    Gaemers P.A.M. Taxonomic position of the Cichlidae (Pisces, Perciforms) as demonstrated by the morphology of their otoliths. Neth. J. Zool.,1984,34:566-595
    Garber A.F., Tringali M.D., Franks J.S. Population genetic and phylogeographic structure of wahoo, Acanthocybium solandri, from the western central Atlantic and central Pacific Oceans. Mar. Biol.,2005,147:205-214
    Garrison K. J., Miller B.S. Review of the early life history of Puget Sound fishes. University of Washington, Seattle, WA:Fish. Res. Inst.,1982.729
    Gillespie J. H. Population Genetics:A Concise Guide. Baltimore & London, The Johns Hopkins University Press,1997.
    Goff R.A. The effects of increased atmospheric pressure on the developing embryo of the zebra fish, Brachydanio rerio (Hamilton). Trans. Kansas Acad. Sci.,1940,43:401-410
    Goldstein D.B., Ruiz Linares A., Cavalli-Sforza L.L., et al. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA,1995, 92:6723-6727
    Gong Y., Park Y.C., Kim S.S. Study of the management unit of fisheries resources by genetic method.1. Genetic similarity of Pacific cod in the North Pacific. Bulletin of National Fisheries Research and Development Agency,1991,45:47-61
    Goudet J. F-STAT (v1.2):a computer program to calculate F-statistics. J. Hered.,1995, 6:485-486.
    Grant W.S, Stahl G. Evolution of Atlantic and Pacific cod:loss of genetic variation and gene expression in Pacific cod. Evolution,1988,42:138-146
    Grant W.S, Utter F.M. Biochemical genetic variation in walleye Pollock, Theragra chalcogramma: Population structure in the southeastern Bering Sea and the Gulf of Alaska. Can. J. Fish. Aquat. Sci.,1980,37:1093-1100
    Grant W.S. Biochemical genetic divergence between Atlantic, Clupea harengus, and Pacific, C. pallasi, herring. Copeia,1986,3:714-719
    Grant W.S., Bakkala R., Utter F., et al. Biochemical genetic population structure of yellowfin sole (Limanda aspera) of the North Pacific Ocean and Bering Sea. Fish. Bull.,81:667-677
    Grant W.S., Bowen B.W. Living in a tilted world:climate change and geography limit speciation in old world anchovies(Genus Engraulis). Biol. J Linn. Soc.,2006,88:673-689
    Grant W.S., Bowen B.W. Shallow population histories in deep evolutionary lineages of marine fishes:insights from sardines and anchovies and lessons for conservation. J. Hered.,1998, 89:415-426
    Grant W.S., Chang I.Z., Kobayashi T., et al. Lack of genetic stock discretion in Pacific cod (Gadus macrocephalus). Can. J. Fish. Aquat. Sci.,1987(a),44:490-498
    Grant W.S., Leslie R.W. Inter-ocean dispersal is an important mechanism in the zoogeography of hakes (Pisces:Merluccius spp.). J. Biogeogr.,2001,28:699-721
    Grant W.S., Leslie R.W., Becker I.I. Genetic stock structure of the southern African hakes Merluccius capensis and M. paradoxus. Mar. Ecol. Prog. Ser.,1987(b),41:9-20
    Grant W.S., Milner G.B., Krasnowski P., et al. Use of biochemical genetic variants for identification of sockeye salmon (Oncorhynchus nerka) stocks in Cook Inlet, Alaska. Can. J. Fish. Aquat. Sci.,1980,37:1236-1247
    Grant W.S., Utter F.M. Biochemical population genetics of Pacific herring(Clupea pallasi). Can. J. Fish. Aquat. Sci.,1984,41:856-864
    Grant W.S., Zhang C.I. Electrophoretic Examination of Korean Herring, Clupea harengus pallasii. Bull. Fish. Res. Dev. Agency,1983,31:49-60
    Haegele C.W., Schweigert J.F. Distribution and characteristics of herring spawning grounds and description of spawning behavior. Can. J. Fish. Aquat. Sci.,1985,42:39-55
    Haist V., Stocker M. Growth and maturation of Pacific herring (Clupea harengus pallasi) in the Strait of Georgia. Can. J. Fish. Aquat. Sci.,1985,42:138-146
    Han Z., Gao T., Yanagimoto T., et al. Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fish. Sci.,.2008 (b),74:544-552
    Han Z.Q., Gao T.X., Yanagimoto T., et al. Deep phylogeographic break among white croaker Pennahia argentata (Sciaenidae, Perciformes) populations in North-western Pacific. Fish. Sci., 2008a,74:770-780
    Hardy O.J., Vekemans X. SPAGeDi:a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes,2002,2:618-620
    Harlin-Cognato A., Bickham J.W., Loughlin T.R., et al. Glacial refugia and the phylogeography of Steller's sea lion (Eumatopias jubatus) in the North Pacific. J Evol. Biol.,2006,19:955-969
    Harpending H.C., Sherry S.T., Rogers A.R., et al. The genetic substructure of ancient human populations. Current Anthropology,1993,34:483-496
    Hart J.L. Pacific Fishes of Canada. Bull. Fish. Res. Board Canada 1973,180-730
    Hay D.E. Reproductive biology of Pacific herring(Clupea harengus pallasi). Can. J. Fish. Aquat. Sci.,1985,42:111-126
    Hay D.E., Fulton J. Potential secondary production from herring spawning in the Strait of Georgia. Can. J. Fish. Aquat. Sci.,1983,109-113.
    Hein J., Schierup M.H., Wiuf C. Gene genealogies, variation and evolution- a primer in coalescent theory. Oxford:Oxford University Press,2005.
    Heist E.J., Musick J.A., Graves J.E. Genetic population structure of the shortfin mako (Isurus oxyrinchus) inferred from restriction fragment length polymorphism analysis of mitochondrial DNA. Can. J. Fish. Aquat. Sci.,1996,53:583-588
    Hemmer-Hansen J., Nielsen E.E.G., Gr(?)nkj(?)r P., et al. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.). Mol. Ecol.,2007,16:3104-3118
    Hewitt G.M. Some genetic consequences of ice ages and their role in divergence and speciation. Biol. J. Linn. Soc.,1996,58:247-276
    Hewitt G.M. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907-913
    Hsu K.C., Shih N.T., Ni I.H., et al. Genetic variation in Trichiurus lepturus (perciformes: Trichiuridae) in waters off taiwan:several species or cohort contribution. Raffles Bull. Zool., 2007,14:215-220
    Hubbs, C.L. Racial and seasonal variation in the Pacific herring, California sardine and California anchovy. Calif. Fish and Game Comm., Fish bull.,1925,8:1-23
    Hutchings J. A. Collapse and recovery of marine fishes. Nature,2000,406:882-885
    Imbrie J., Boyle E.A., Clemens S.C., et al. On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography,1992,7:701-738
    Jensen J.L., Bohonak A.J., Kelley S.T. Isolation by distance, web service. BMC Genetics,2005, 6:13
    Johansen S., Bakke I. The complete mitochondrial DNA sequence of Atlantic cod(Gadus morhua):relevance to taxonomic studies among codfishes. Mol. Ma. Biol. Biotechnol.,1996, 5:203-214
    Johansen S., Johansen T. Sequence analysis of 12 structural genes and a novel non-coding region from mitochondrial DNA of Atlantic cod, Gadus morhua. Biochim. Biophy. Acta,1994, 1218:213-217
    J(?)rgensen H.B.H., Hansen M.M., Bekkevold D., et al. Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol. Ecol.,2005,14:3219-3234
    Karp W.A. Biology and management of Pacific cod (Gadus macrocephalus Tilesius) in Port Townsend, Washington:Ph. D. Thesis. Seattle, WA:University of Washington,1982
    Kijima A., Nakajima M., Fujio Y. Genetic differention among localities in the natural Pacific herring around Japan and genetic characterization of the artificial seeds compared with the natural population. Tohoku J. Agr. Res.,1992,42:83-93
    Kim J. K., Kai Y., Nakado T. Genetic diversity of Salanx ariakensis (Salangidae) from Korea and Japan inferred from AFLP. Ichthyol. Res.,2007,54:416-419
    Kitamura A., Takano O., Takata H., et al. Late Pliocene-early Pleistocene paleoceanographic evolution of the Japan Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol.,2001,172:81-98
    Klovach N.V., Rovnina O.A., Kol'stov D.V. Biology and exploitation of Pacific cod, Gadus macrocephalus, in the Anadyr-Navarin region of the Bering Sea. J. Ichthyol,1995,35:9-17
    Kornfield I., Bogdanowicz S.M. Differentiation of mitochondrial DNA in Atlantic herring, Clupea harengus. Proceedings of the Stock Identification Workshop, Panama City Beach, Fla.1985, 187-188
    Kuhner M.K. LAMARC 2.0:maximum likelihood and Bayesian estimation of population parameters. Bioinformatics,2006,22:768-770
    Kumagai K., Barinova A.A., Nakajima M., et al. Genetic diversity between Japanese and Chinese three line grunt (Parapristipoma trilineatum) examined by microsatellite DNA markers. Mar. Biotech.,2004,6:221-228
    Lai Y., Sun F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol. Biol. Evol.,2003,20:2123-2131
    Lambeck K., Esat T.M., Potter E.K. Links between climate and sea levels for the past three million years. Nature,2002,419:199-206
    Lassuy D.R. Species profiles:life histories and environmental requirements of coastal fishes and invertebrates (Pacific Northwest)-Pacific herring. United States Fish and Wildlife Service, Biology Report,1989,82 (11.126). United States Army Corps of Engineers, TR-EL-82-4.1-18.
    Lavoue S., Miya M., Saitoh K., et al. Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. Mol Phylogenet Evol,2007,43:1096-1105
    Lecomte F., Grant W.S., Dodson J.J., et al. Living with uncertainty:genetic imprints of climate shrifts in East Pacific anchovy(Engraulis mordax) and sardine (Sardinops sagax). Mol. Ecol., 2004,13:2169-2182
    Lemaire C., Allegrucci G., Naciri M., et al. Do discrepancies between microsatellite and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)? Mol. Ecol.,2000,9:457-467
    Liu J.X., Gao T.X., Wu S.F., et al. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck & Schlegel,1845). Mol. Ecol.,2007,16:275-288
    Liu J.X., Gao T.X., Yokogawa K., et al. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass(Lateolabrax japonicus) and spotted_sea bass(Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol., 2006a,39:799-811
    Lourie S.A., Green D.M., Vincent A.C.J. Dispersal, habitat differences, and comparative phylogeography of Southeast Asian seahorses (Syngnathidae:Hippocampus). Mol. Ecol.,2005, 14:1073-1094
    Lundy C.J., Moran P., Rico C., et al. Macrogeographic population differentiation in oceanic environments:a case study of European hake(Merluccius merluccius), a commercially important fish. Mol. Ecol.,1999,8:1889-1898
    Machado-Schiaffino G., Campo D., Garcia-Vazquez E. Strong genetic differentiation of the Austral hake(Merluccius australis) across the species range. Mol. Phylogenet. Evol.,2009, 53:351-356
    Magoulas A., Tsimenides N., Zouros E. Mitochondrial DNA phylogeny and the reconstruction of the population history of a species:the case of the European anchovy (Engraulis encrasicolus). Mol. Biol. Evol.,1996,13:178-190
    Manni F., Guerard E., Heyer E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier's algorithm. Hum. Biol.,2004,76:173-190
    Marincovich L., Gladenkov A.Y. New evidence for the age of Bering Strait. Quat. Sci. Rev.,2001, 20:329-335
    Mayr E. Systematics and the origin of species. New York:Columbia University Press,1942
    Mayr E., Linsley E.G., Usinger R.L Methods and principles of systematic zoology. MeGraw Hill Book Company, New York.1953.
    McHugh J.L. Geographic variation in the Pacific herring. Copeia,1954,1:139-151
    McHugh J.L. The influence of light on the number of vertebrae in the grunion Leuresthes tenuis. Copeia,1954,1:23-25
    McManus J.W. Marine speciation, tectonics and sealevel changes in southeast Asia. Proc.5th Int. Coral Reef Congr.,1985,4:133-138
    McMillan W.O., Palumbi S.R. Concordant evolutionary patterns among Indo-West Pacific Butterflyfishes. Proc. R. Soc. London Ser. B.,1995,260:229-236
    Meyer, A. Evolution of mitochondrial DNA in fishes. In:Biochemistry and molecular biology of fishes (Hochachka P.W.& Mommsen T.P., eds). Amsterdam:Elsevier,1993:1-38
    Miller KM., Le K.D., Beacham T.D. Development of tri-and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua). Mol. Ecol.,2000,9:238-239
    Miya M., Nishida M. Speciation in the open sea. Nature,1997,389:803-804
    Nei M. Molecular evolutionary genetics. New York:Columbia University Press,1987.
    Nei M., Maruyama T., Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution,1975,29:1-10
    Nei M., Maruyama T., Wu C.I. Models of evolution of reproductive isolation. Genetics,1983, 103:557-579
    Nelson R.J., Beacham T.D., Small M.P. Microsatellite analysis of the population structure of a Vancouver Island sockeye salmon (Oncorhynchus nerka) stock complex using nondenaturing gel electrophoresis. Mol. Mar. Biol. Biotech.,1998,7:312-319
    Nielsen J.L, Gan C.A, Wright J.M., et al. Biogeographic distributions of mitochondrial and nuclear markers for southern steelhead. Mol. Mar. Biol. Biotech.,1994,3:281-293
    Norris A.T., Bradley D.G., Cunningham E.P. Microsatellite genetic variation between and within farmed and wild Atlantic Salmon Salmo salar population. Aquaculture,1999,180:47-264
    O'Reilly P., Hamilton L.C., McConnell S.K., et al. Rapid analysis of genetic variation in Atlantic salmon(Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci.,1996,53:2292-2298
    O'Connell M., Dillon M.C., Wright J.M. Development of primers for polymorphic microsatellite loci in the Pacific herring (Clupea harengus pallasi). Mol. Ecol.,1998,3:358-360
    O'Connell M., Dillon M.C., Wright J.M., et al. Genetic structuring among Alaskan Pacific herring populations identified using microsatellite variation. J Fish Biol.,1998,1:150-163
    O'Leary D.B., Coughlan J., Dillane E., et al. Microsatellite variation in cod Gadus morhua throughout its geographic range. J. Fish. Biol.,2007,70:310-335
    Olivier L. Populations 1.2.28. http://www.cnrs-gif.fr/pge/bioinfo/populations.
    Olsen J.B., Lewis C.J., Kretschmer E.J., et al. Characterization of 14 tetranucleotide microsatellite loci derived from Pacific herring. Mol. Ecol. Notes,2002,2:101-103
    Palsson W.A. Pacific cod(Gadus macrocephalus) in Puget Sound and adjacent water:biology and stock assessment. Wash. Dep. Fish. Tech. Rep.,1990,112:137
    Palumbi S.R. Genetic divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst.,1994,25:547-572
    Palumbi S.R. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl.,2003,13:146-158
    Perez-Enriquez R., Takagi M., Taniguchi N. Genetic variability and pedigree tracing of a hatchery- reared stock of red sea bream(Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture,1999,173:413-423
    Pogson G.H., Mesa K.A. Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes. Molec. Biol. Evol.,2004,21:65-75
    Pogson G.H., Taggart C.T., Mesa K.A., et al. Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographic scales. Evolution,2001,55:131-146
    Posada D., Crandall K.A. Modeltest:testing the model of DNA substitution. Bioinformatics, 1998,14:817-818
    Pritchard J.K., Stephans M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959
    Ray N., Currat M., Excoffier L., Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol.,2003,20:76-86
    Raymond M., Rosset F. Genepop:Population Genetics Software for Exact Test and Ecumenism. J. Hered.,1995,86:248-249
    Raymond M., Rousset F. An exact test for population differentiation. Evolution,1995, 49:1280-1283
    Repaci V., Stow A.J., Briscoe D.A. Fine-scale genetic structure, co-founding and multiple mating in the Australian allodapine bee(Ramphocinclus brachyurus). J.Zool.,2007,270:687-691
    Rocha L.A., Bass A.L., Robertson D.R., et al. Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei:Acanthuridae). Mol. Ecol.,2002,11:243-252
    Rocha L.A., Robertson D.R., Rocha C.R., et al. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol. Ecol.,2005,14:3921-3928
    Rogers A.R. Genetic evidence for a Pleistocene population expansion. Evolution,1995, 49:608-615
    Rogers A.R., Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol.,1992,9:552-569
    Rohling E.J., Fenton M., Jorissen F J., et al. Magnitudes of sea-level lowstands of the past 500,000 years. Nature,1998,394:162-165
    Roques S., Sevigny J.M., Bernatchez L Genetic structure of deep-water redfish, Sebastes Mentella, populations across the North Atlantic. Mar. Biol.,2002,140:297-307
    Rounsefell GA., Dahlgren E.H. Fluctuations in the supply of herring, Clupea pallasii, in Prince William Sound, Alaska. Ibid.,1932,47:263-291
    Rounsefell G.A., Dahlgren E.H. Races of herring, Clupea pallasii, in southeastern Alaska. Ibid., 1935,48:119-141
    Rounsefell, GA. Contribution to the biology of the Pacific herring, Clupea pallasii, and the condition of the fishery in Alaska. Bull. U. S. Bur. Fish,1930,45:227-320
    Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics,1997,145:1219-1228
    Ruzzante D.E., Mariano S., Bekkevold D., et al. Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc. R. Soc. London Ser. B, Biol. Sci.,2006,273:1459-1464
    Ruzzante D.E., Taggart C.T., Cook D., et al. Genetic differentiation between inshore and offshore Atlantic cod(Gadus morhua L.) of Newfoundland:microsatellite DNA variation and anti-freeze level. Can. J. Fish. Aquat. Sci.,1996,53:634-645
    Saitoh K. Genetic variation and local differentiation in the Pacific cod Gadus macrocephalus around Japan revealed by mtDNA and RAPD markers. Fish. Sci.,1998,64:673-679
    Saitou N., Nei M The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.,1987,4:406-425
    Sakurai Y. Reproductive characteristics of walleye pollock with special reference to ovarian development, fecundity and spawning behavior. In:International Symposium on the Biology and Management of Walleye Pollock, Alaska Sea Grant, Fairbanks, AK,1988.97-115.
    Sakurai Y., Hattori T. Reproductive behavior of Pacific cod in captivity. Fish. Sci.,1996, 62:222-228
    Salgueiro P, Carvalho G, Collares-Pereira MJ, et al. Microsatellite analysis of genetic population structure of the endangered cyprinid Anaecypris hispanica in Portugal:implications for conservation. Biol. Conserv.,2003,109:47-56
    Santos S., Hrbek T., Farias I.P., et al. Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America:deep genetic divergence without morphological change. Mol. Ecol.,2006,15:4361-4373
    Sato A., Takezaki N., Tichy H., et al. Origin and speciation of Haplochromine fishes in East African crater lakes investigated by the analysis of their mtDNA, Mhc genes, and SINEs. Mol. Biol. Evol.,2003,20:1448-1462
    Schneider S., Excoffier L Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites:application to human mitochondrial DNA. Genetics,1999,152:1079-1089
    Scoles D.R., Graves J.E. Genetic analysis of the population structure of yellowfin tuna Thunnus albacares in the Pacific Ocean. Fish. Bull.,1993,91:690-698
    Scribner K.T., Gust J.R., Fields R.L. Isolation and characterization of novel salmon microsatellite loci:cross-species amplification and population genetics applications. Can. J. Fish. Aquat. Sci., 1996,53:833-841
    Sekino M., Hrara M. Isolation and characterization microsatellite DNA loci in Japan flounder Palarlichthys olivaceus. Mol. Ecol.,2000,9:2201-2203
    Shaw P.W., Arkhipkin A.I., Al-Khairulla H. Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean:the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Mol. Ecol.,2004,13:3293-3303
    Shimada A. M., Kimura D. K. Seasonal movements of Pacific cod, Gadus macrocephalus, in the eastern Bering Sea and adjacent waters based on tag-recapture data. Fish. Bull. U.S.1994, 92:800-816
    Shulman M.J., Bermingham E. Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution,1995,49:897-910
    Skaala 0., Hoyheim B., Glover K.A., et al. Microsatellite analysis in domesticated and wild Atlantic salmon (Salmo salar L):allelic diversity and identification of individuals. Aquaculture, 2004,240:131-143
    Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 1993,47:264-279
    Slatkin M., Hudson R.R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics,1991,129:555-562
    Song N., Zhang X., Sun X., et al. Population genetic structure and larval dispersal potential of spottedtail goby Synechogobius ommaturus of the Northwest Pacific. J. Fish. Biol. In press
    Stark J.W. Geographic and seasonal variations in maturation and growth of female Pacific cod (Gadus macrocephalus) in the Gulf of Alaska and Bering Sea. Fish. Bull.,2007,105:396-407
    Stevenson J.C. The movement of herring in British Columbia waters as determined by tagging. Rapp. P.-V. Reun. Perm. Int. Explor. Mer,1955,140:33-34
    Sturmbauer C., Baric S., Salzburger W., et al. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol. Biol. Evol.,2001,18:144-154
    Swofford D.L. PAUP*. Phylogenetic analysis Using Parsimony (and Other Methods), Version 4. Sinauer Associates, Sunderland, MA,2002.
    Takeshi K., Yosh. I., Masayuki K., et al. Genetic diversity and population structure of white-spotted charr, Salvelinus leucomaenis, in the Lake Biwa water system inferred from AFLP analysis. Ichthyol. Res,2008,55:141-1471
    Tamaki K., Honza E. Global tectonics and formation of marginal basins:role of the western Pacific. Episodes,1991,14:224-230
    Tamura K., Dudley J., Nei M., et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.,2007,24:1596-1599
    Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol.,1993,10:512-526
    Taylor E.B., Dodson J.J. A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus). Mol. Ecol.,1994,3:235-248
    Templeton A.R. Nested clade analysis of phylogeographic data:testing hypotheses about gene flow and populations history. Mol. Ecol.,1998,7:381-397
    Templeton A.R. Nested clade analysis of phylogeographic data:testing hypotheses about gene flow and populations history. Mol. Ecol.,1998,7:381-397
    Templeton A.R. Statistical phylogeography:methods of evaluating and minimizing inference errors. Mol. Ecol.,2004,13:789-809
    Templeton A.R., Sing C.F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analysis with cladogram uncertainty and recombination. Genetics,1993,134:659-669
    Tester A.L. Populations of herring (Clupea pallasii) in the coastal waters of British Columbia. Jour. Biol. Bd. Canada,1937,3:108-144
    Tester A.L. Populations of herring along the west coast of Vancouver Island on the basis of mean vertebral number, with a critique of method. Jour. Biol. Bd. Canada,1949,7:403-420
    Thomas W.K., Withler R.E., Beckenbach A.T. Mitochondrial DNA analysis of Pacific salmonid evolution. Can. J. Zool.,1986,64:1058-1064
    Thompson, William F. A contribution to the life-history of the Pacific herring:Its Bearing on the condition and future of the fishery. Rept. Brit. Col. Comm. Fish.,1916:539-587
    Truveller C.A. Genetic differentiation of the North Sea herring by biochemical and immunological characters. Biochemical and population genetics. Leningrad. (In Russian, cited in Altukhov and Salmendova 1981),1979
    Utter F.M. Biochemical genetics and fishery management:an historical perspective. J. Fish Biol., 1991,39:1-20
    Vermeij G.J. Anatomy of an invasion-the trans-Arctic interchange. Paleobiology,1991, 17:281-307.
    von der Heyden S., Lipinski M.R., Matthee C.A. Remarkably low mtDNA control region diversity in an abundant demersal fish. Mol. Phylogenet. Evol., doi:10.1016/j.ympev.2009.09.018
    Wang P.X. Response of Western Pacific marginal seas to glacial cycles:paleoceanographic and sedimentological features. Mar. Geol.,1999,156:5-39
    Ware D.M. Life history characteristics, reproductive value, and resilience of Pacific herring (Clupea harengus pallasi). Can J Fish Aquat Sci.,1985,42:127-137
    Wares J.P., Cunningham C.W. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution,2001,55:2455-2469
    Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure. Evolution,1984,38:1358-1370
    Wilimovsky N.J., Peden A., Peppar J. Systematics of six demersal fishes of the north Pacific Ocean. Fish. Res. Board Can. Tech. Rep.,1967,34:95.
    Wilimovsky N.J., Peden A., Peppar J. Systematics of six demersal fishes of the north Pacific Ocean. Fish. Res. Board Can. Tech. Rep.,1967,34:95
    X Jiang., Yang G., Liao M., et al. Microsatellite DNA polymorphism of Japanese sea bass (Laterolabrax japonicus) inhabiting Chinese and Japanese coasts. J. Appl. Ichthyol.,2007, 24:180-186
    Xiao Y., Zhang Y., Gao T., et al. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fish.,2009, 85:303-314
    Yeh F.C., Yang R., Boyle T.J., et al. POPGENE 1.32, Microsoft Windows-based freeware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada.2000.
    Yu H.T., Lee Y.J., Huang S.W., et al. Genetic analysis of the populations of Japanese anchovy (Engraulidae:Engraulis japonicus) using microsatellite DNA. Mar. Biotech.,2002,4:471-479
    Yu Z.N., Kong X.Y., Guo T.H., et al. Mitochondrial DNA sequence variation of Japanese anchovy Engraulis japonicus from the Yellow Sea and East China Sea. Fish. Sci.,2005,71:299-307
    Zabeau M., Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting. Euor. Patent. Appl., EP0534858,2005-04-27
    Zardoya R., Castilho R., Grande C., et al. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel(Scomber japonicus) in the Mediterranean Sea. Mol. Ecol.,2004,13:1785-1798
    Zatcoff M.S., Ball A.O., Chapman R.W. Characterization of polymorphic microsatellite loci from black grouper, Mycteroperca bonaci (Teleostei:Serranidae). Mol. Ecol. Notes,2002, 2:217-219
    Zhan A., Hu J., Hu X., et al. Fine-scale population genetic structure of Zhikong scallop (Chlamys farreri):Do Local Marine Currents Drive Geographical Differentiation? Mar. Biotechnol.,2009, 11:223-235
    Zhu D., Jamieson B.G.M., Hugall A., et al. Sequence evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow fishes (Melanotaeniidae). Mol. Biol. Evol.,1994,11:672-683

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700