用户名: 密码: 验证码:
放射增敏剂依他硝唑/紫杉醇联合应用及其纳米粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤乏氧细胞的放射抗拒性问题一直是放射肿瘤学和放射生物学研究的重点之一。乏氧细胞放射增敏剂被认为是最有希望解决这个难题的方法,各国医学工作者对此进行了深入的研究,已研制出了多种类型的增敏剂,如亲电子硝基化合物、生物还原活性物、巯基抑制剂和修复抑制剂等。但是,这些增敏剂的神经毒性、消化道症状等不良反应限制了它们的临床应用。目前认为联合用药是比较现实、稳妥、易行的提高增敏效果并减低毒性的途径,国外已有较多相关报道。本课题选用依他硝唑和紫杉醇两种有代表性的放射增敏剂,研究其联合应用的协同作用,为临床放射治疗增敏提供一种新的给药组合。同时,为了进一步克服放射增敏剂的不良反应并提高疗效,我们对它们的剂型进行改进,引入纳米技术。利用纳米药物载体对药物的可控制释放、靶向传输、提高难溶药物的溶解率和吸收率、提高药物疗效并降低毒副作用等优点,来充分发挥依他硝唑和紫杉醇的增敏效果,为放射增敏剂的临床应用提供新的思路。
     目的:
     研究依他硝唑和紫杉醇两种放射增敏剂的协同作用,制备出具有生物活性并可控释药物的依他硝唑/紫杉醇纳米粒,明确载药纳米粒增敏效果和剂型优势。
     方法:
     1.乏氧肿瘤细胞(人乳腺癌MCF-7细胞和人宫颈癌HeLa细胞)经依他硝唑和/或紫杉醇处理后接受60Coγ射线照射,采用MTT检测增殖能力,流式细胞仪检测细胞周期,平板克隆形成实验检测细胞克隆形成能力,比较单独用药与联合用药的差异;
     2.采用单乳和复乳溶酶挥发法制备单独和联合包裹依他硝唑/紫杉醇的纳米粒,高效液相色谱分析纳米粒的载药率、包封率和模拟体外释药,激光衍射仪研究粒径大小及分散范围,扫描电镜分析纳米粒的形态;
     3.乏氧MCF-7和HeLa细胞分别接受药物单体和载药纳米粒(根据体外释药曲线计算出释药量)作用一定时间后,观察给药后细胞形态的变化,透射电镜和荧光显微镜观察肿瘤细胞对纳米粒的吞噬摄取。此后肿瘤细胞接受60Coγ射线照射,采用流式细胞仪检测细胞周期,平板克隆形成实验检测细胞克隆形成能力,研究载药纳米粒的增敏活性并比较增敏效果的差异。
     结果:
     1.依他硝唑和紫杉醇联合应用后,照后5 d内MTT检测未观察到协同作用。依他硝唑和/或紫杉醇给药的乏氧HeLa细胞照后被阻滞在细胞周期的G1期,两种药物联合应用较单独用药导致更多的HeLa细胞停留在G1期,但对于乏氧MCF-7细胞周期无显著影响。细胞存活分析结果显示依他硝唑和/或紫杉醇可以增敏乏氧HeLa细胞,在吸收剂量为6、8和10Gy时两药具有协同作用;依他硝唑和/或紫杉醇也可以增敏乏氧MCF-7细胞,但两药无协同作用。100 nM紫杉醇对于乏氧MCF-7和HeLa细胞的辐射增敏作用较1 mM依他硝唑显著。HeLa细胞较MCF-7细胞对紫杉醇敏感。
     2.紫杉醇纳米粒呈光滑球形,粒径分布在100~500 nm之间,平均约300 nm,载药率和包封率分别为4.50%和85.51%,模拟体外释药曲线呈双相,即在爆发释放之后为缓慢释放,14 d内药物释放约为30%, 1 d内释放量占15%。紫杉醇纳米粒作用后,MCF-7细胞形态发生改变,极性增加,呈梭形;部分HeLa细胞出现皱缩,并且两种肿瘤细胞G2期细胞比例升高。透射电镜和荧光显微镜观察到细胞对纳米粒的吞噬摄取。给药组乏氧MCF-7和HeLa细胞照射后克隆形成能力较对照降低,紫杉醇纳米粒组较紫杉醇单体组作用更明显。
     3.依他硝唑纳米粒呈光滑球形,粒径分布在90~190 nm之间,平均约120 nm,载药率和包封率分别为1.66%和18.02%,模拟体外释药曲线呈双相,爆发释放现象明显,3 h内释放量约占50%, 1 d内药物释放超过90%。透射电镜和荧光显微镜结果可见细胞对纳米粒的吞噬摄取。给药组乏氧MCF-7和HeLa细胞照射后的克隆形成能力较对照降低,依他硝唑纳米粒组较依他硝唑单体组作用更明显。
     4.紫杉醇纳米粒、依他硝唑纳米粒和紫杉醇+依他硝唑纳米粒被成功制备。三种纳米粒均呈光滑球形,粒径分布在80~150nm之间,平均约110 nm。紫杉醇纳米粒的载药率和包封率分别为4.53%和85.52%,依他硝唑纳米粒的载药率和包封率分别为1.86%和20.06%。在依他硝唑+紫杉醇纳米粒中,紫杉醇的载药率和包封率分别为4.62%和90.51%,依他硝唑的载药率和包封率分别为1.92%和23.16%,在紫杉醇+依他硝唑纳米粒中两种药物的包封率均较在单药载药纳米粒中略高。两种药的模拟体外释药曲线均呈双相,紫杉醇在5 d内药物释放约为25%,1 d内释放量占15%;依他硝唑在3 h内释放量约占50%,1 d内药物释放超过90%。在依他硝唑+紫杉醇纳米粒中,两种药物的体外释放量较在单药纳米粒中略高。荧光显微镜和透射电镜结果可见MCF-7和HeLa细胞吞噬摄取紫杉醇+依他硝唑纳米粒。三种载药纳米粒给药后,乏氧MCF-7和HeLa细胞照射后的克隆形成能力较对照均降低,其增敏作用强弱依次为:依他硝唑纳米粒<紫杉醇纳米粒<紫杉醇+依他硝唑纳米粒。
     结论:
     1.依他硝唑和紫杉醇联合应用对乏氧HeLa细胞具有协同放射增敏作用,本课题为临床放射治疗提供了一种新的给药组合。
     2.依他硝唑/紫杉醇纳米粒被成功制备,它们的表征满意,可以被肿瘤细胞吞噬摄取,有生物活性的药物从纳米粒中释放。在本实验条件下,载药纳米粒的增敏作用较药物单体明显,两种药物联合包裹的纳米粒较单独包裹的纳米粒作用显著。依他硝唑/紫杉醇纳米粒具有剂型优势,本课题为放射增敏剂的临床应用提供了新的思路。
Radiation resistance of hypoxic tumor cells is one of the key points in radiation oncology and biology. It is thought that radiosensitizers are potential to overcome the problem. This area attracted the increasing attention from the medical researchers all over the world. Many kinds of radiosensitizers, such as electro-affinic compounds, biological reducers, SH inhibitors and reparation inhibitors etc., were developed. However, the side effects, such as neurotoxicity and symptoms of enteron etc., limited their clinical application. In order to increase radiosensitization without increasing toxicity, the combination of the drugs is actual, safe and effective. There were many correlative reports abroad. This study was carried out to determine the synergetic radiosensitizing effect of etanodazole and paclitaxel when administered together at clinically relevant concentrations. The study would provide a new combination of radiosensitizers to radiotherapy. Meanwhile, in order to increase further radiosensitization without increasing toxicity, the nanoparticles containing etanodazole and/or paclitaxel were prepared. The advantages of such a formulation include the controlled and targeted delivery of drugs, increased solubility and ingestion of drugs, increased therapeutic effect and reduced side effects. This study would provide a new idea for clinical application of radiosensitizers.
     OBJECTIVE:
     The object of this study was to determine the synergetic radiosensitizing effect of etanidazole and paclitaxel, to prepare active and controlled nanoparticles containing etanidazole and/or paclitaxel, to prove the radiosensitization of the drug-loaded nanoparticles and their advantage.
     METHODS:
     1. After administered together at clinically relevant concentrations of etanidazole and/or paclitaxel into the two hypoxic human tumor cell lines: a breast carcinoma (MCF-7) and a carcinoma cervicis (HeLa), cells were irradiated by 60Co gamma rays. The 3-(4, 5 dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay was used to determine the number of surviving cells. Cell cycle was evaluated by Flow cytometry (FCM). Cell viability was measured by the ability of single cell to form colonies in vitro. Difference between the combination of the drugs and drug alone was studied.
     2. The poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles containing etanidazole and/or paclitaxel were prepared by o/w and w/o/w emulsification-solvent evaporation method. The drug loading efficiency (LE), encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The size distribution and morphology of the nanoparticles were investigated by laser diffraction analyzer and scanning electron microscope (SEM).
     3. After administered the free drugs and the drug-loaded nanoparticles into hypoxic MCF-7 and HeLa cells (released drug doses calculated according to the release profile in vitro), the morphology of cells was photographed using phase-contrast photomicrographe. The cellular uptake of nanoparticles by MCF-7 and HeLa cells was evaluated by transmission electronic microscopy (TEM) and fluorescence microscopy. Then the tumor cells were irradiated by 60Co gamma rays. Cell cycle was evaluated by FCM. Cell viability was determined by the ability of single cell to form colonies in vitro. Radiosensitization of the drug-loaded nanoparticles and their difference were studied.
     RESULTS:
     1. The synergistic radiosensitive effect of etanidazole and paclitaxel was less obvious during 5 d after irradiation. After hypoxic HeLa cells administered were irradiated, the cells were mainly blocked in G1 phase. The combination of the two drugs resulted in more HeLa cells blocked in G1 phase. For MCF-7 cells, there was no significant statistical difference among the groups. The synergistic radiosensitizing effect of these two drugs on MCF-7 cells was not observed, but the radiosensitizing efficiency was additive for HeLa cells irradiated at 6, 8 and 10Gy. The radiosensitizing effect of paclitaxel at 100 nM was more significant than that of etanidazole at 1 mM. HeLa cells were more sensitive to paclitaxel than MCF-7 cells.
     2. The prepared paclitaxel-loaded nanoparticles were spherical shape with size between 100nm and 500nm, about 300nm on average. The loading efficiency of 4.50% and the encapsulation efficiency of 85.51% were obtained. The drug release pattern was biphasic with a fast release rate followed by a slow one. The amount of cumulated paclitaxel release over 14 days was about 30%. The kinetic data showed that majority of the drug release occurred in the first day (approximately 15%). Co-culture of MCF-7 and HeLa cells with paclitaxel-loaded nanoparticles demonstrated that MCF-7 cells extremely spreaded and became fusiform, and the part of HeLa cells treated was marcid. The number of cells blocked in the G2/M phase for two tumor cell lines significantly increased. The cellular uptake of nanoparticles was observed. The paclitaxel-loaded nanoparticles and free paclitaxel more effectively sensitized hypoxic tumor cells to radiation than control. The radiosensitization of paclitaxel-loaded nanoparticles was more significant than that of free paclitaxel.
     3. The prepared etanidazole-loaded nanoparticles were spherical shape with size between 90nm and 190nm, about 120nm on average. The loading efficiency of 1.66% and the encapsulation efficiency of 18.02% were obtained. The drug release pattern was biphasic with a fast release rate followed by a slow one. The burst effect was very large(about 50% in 3 h). The kinetic data showed that majority of the drug release occurred in the first day (approximately 90%). The cellular uptake of nanoparticles was observed. The etanidazole-loaded nanoparticles and free etanidazole more effectively sensitized hypoxic tumor cells to radiation than control. The radiosensitization of etanidazole-loaded nanoparticles was more significant than that of free etanidazole.
     4. The paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles were prepared. The surface of all the nanoparticles was smooth, rounded morphology and polydispersed with a diameter between 80 nm and 150 nm, about 110 nm on average. The results indicated that a loading efficiency of 4.53% and an encapsulation efficiency of 85.52% were obtained for paclitaxel-loaded nanoparticles, 1.86% and 20.06% for etanidazole-loaded nanoparticles. For paclitaxel+etanidazole nanoparticles, the loading efficiency and the encapsulation efficiency were 4.62% and 90.51% for paclitaxel, 1.92% and 23.16% for etanidazole, respectively. The drug encapsulation efficiency of paclitaxel+etanidazole nanoparticles is slightly higher than that of single drug-loaded nanoparticles. All the drug release patterns were biphasic with a fast release rate followed by a slow one. The amount of cumulated paclitaxel release over 5 days was about 25%. The kinetic data showed that majority of the drug release occurred in the first day (approximately 15%). The kinetic data showed that majority of the drug release from etanidazole-loaded nanoparticles occurred in the first day (approximately 90%). The burst effect was very large (about 50% in 3 h). The amount of cumulated drug release from paclitaxel+etanidazole nanoparticles was slightly more than that from single drug-loaded nanoparticles. The cellular uptake of paclitaxel+etanidazole nanoparticles was observed. The paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles effectively sensitized hypoxic tumor cells to radiation, their radiosensitizing effects: etanidazole-loaded nanoparticles < paclitaxel-loaded nanoparticles     CONCLUSIONS:
     1. The synergistic radiosensitizing effect of etanidazole and paclitaxel on hypoxic HeLa cells was observed. The study provided a new combination of radiosensitizers to radiotherapy.
     2. The nanoparticles containing etanidazole / paclitaxel were prepared. Characterization of nanoparticle delivery system is satisfactory. The tumor cells swallowed the nanoparticles. The released drugs retained its bioactivity. Under this experimental condition, the radiosensitizing effects of drug-loaded nanoparticles were more significant than that of the free drugs. The radiosensitization produced by paclitaxel+etanidazole nanoparticles was more significant than that of the single drug-loaded nanoparticles. The drug-loaded nanoparticles have advantages in dosage form. This study provided a new idea for clinical application of radiosensitizers.
引文
1. Raleigh JA, Dewhirst MW, Thrall DE, Feldmann HJ. Measuring tumor hypoxia. Semin Radiat Oncol, 1996, 6: 37-45.
    2. Al-Hallaq HA, River JN, Zamora M, Oikawa H, Karczmar GS. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys, 1998, 41: 151-159.
    3. Bernier J, Stratford MR, Denekamp J, Dennis MF, Bieri S, Hagen F, Kocagoncu O, Bolla M, Rojas A. Pharmacokinetics of nicotinamide in cancer patients treated with accelerated radiotherapy: the experience of the Co-operative Group of Radiotherapy of the European Organization for Research and Treatment of Cancer. Radiother Oncol, 1998, 48: 123-133.
    4. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res, 1996, 56: 4509-4515.
    5. Fyles AW, Miolsevic M, Wong R, Kavanagh MC, Pintilie M, Sun A, Chapman W, Levin W, Manchul L, Keane TJ,Hill RP. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol, 1998, 48:149-156.
    6. Fatigante L, Ducci F, Cartei F, Colosimo S,Marini C,Prediletto R,Danesi R,Laddaga M, Del Tacca M, Caciagli P. Carbogen and nicotinamide combined with unconventional radiotherapy in glioblastoma multiforme: a new modality treatment. Int J Radiat Oncol Biol Phys, 1997, 37: 499-504.
    7. Yeh KA, Biade S, Lanciano RM, Brown DQ, Fenning MC, Babb JS, Hanks GE, Chapman DC. Polarographic needle electrode measurements of oxygen in rat prostate carcinomas: accuracy and reproducibility. Int J Radiat Oncol Biol Phys, 1995, 33: 111-118.
    8. Morales A, Miranda M, Sanchez Reyes A, Biete A, Fernandez-Checa JC. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. Int J Radiat Oncol Biol Phys, 1998, 42: 191-203.
    9. Sutherland RM, Ausserer WA, Murphy BJ, Laderoute KR. Tumor Hypoxia and Heterogeneity: Challenges and Opportunities for the Future. Semin Radiat Oncol, 1996, 6: 59-70.
    10. Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J, Chiu RK, Lambin P. Hypoxia as a target for combined modality treatments. Eur J Cancer, 2002, 38: 240-257.
    11. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OCA. The concentration of oxygen dissolved in tissues at the time ofirradiation as a factor in ridaotherapy. Br J Radiol, 1953, 26: 638-648.
    12. Howes AE. An estimation of changes in the proportion and absolute numbers of hypoxic cell after irradiation of transplanted C3H mouse mammary tumors. Br J Radiol, 1969, 42: 441-447.
    13. Bush RS, Jenkin RDT, Allt WEC, Beale FA, Bean H, Dembo AJ. Definitive evidence for hypoxic cells influence in the cure in cancer therapy. Br J Cancer, 1978, 37(suppl.Ⅲ): 302-306.
    14. Brown JM. Evidence for actuely hypoxic cells in mouse tumour and a possible mechanism of reoxygenation. Br J Radiol, 1979, 52: 650-656.
    15. Fiuorillo A, Tranfa F, Canale F, Fariello I, D'Amore R, De Chiara C, Vassallo P, Muto P, De Rosa G, Bonavolonta G. Primary Ewing’s sarcoma of the maxilla, a rare and curable localization. Report of two cases, successfully treated by radiotherapy and systemic chemotherapy. Cancer Let, 1996, 103: 177-182.
    16. Adams GR. Hypoxia-mediated drugs for radiation and chemotherapy. Cancer, 1981, 48: 696-709.
    17. Brown JM. The mechanisms of cytotoxicity and chemosensitization of misonidazole and other nitromidazoles. Int J Radiat Oncol Biol Phys, 1982, 8: 675-682.
    18. Brown JM. Clinical perspectives for the use of new hypoxiccell sensitizers. Int J Radiat Oncol Biol Phys, 1982, 8: 1491-1497.
    19. Dische S. Chemical sensitizers for hypoxic cell: a decade of experience in clinical radiotherapy. Radiat Oncol, 1982, 3: 97-115.
    20. Adams GE. Stratford IJ. Hypoxia-mediated nitroheterocyclic drugs in the radio-and chemotherapy of cancer. Biochem Pharmacol, 1986, 35: 71-76.
    21. Overgard J. Misonidazole combined with splitcourse radiotherapy in the treatment of invasive carcinoma of larynx and pharynx. Final report from the Dahance 2 study. In: 6th Int Conf on Chemical Modifiers of Cancer Treatment, Paris, France, 1988: 3-4.
    22. Grigsby PW, Winter K, Wasserman TH, Marcial V, Rotman M, Cooper J, Keys H, Asbell SO, Phillips TL. Irradiation with or without misonidazole for patients with stages IIIB or IVA carcino ma of the cervix: final results of RTOG80~05. Int J Radiat Oncol Biol Phys, 1999, 44: 513-517.
    23. Beard C, Buswell L, Rose MA. PhaseII trial of external beam ra diation with etanidazole (SR - 2508) for the treatment of locally ad vanced prostate cancer. Int J Radiat Oncol Biol Phys, 1994, 29: 611-616.
    24. Coleman CN, Wasserman TH, Urtasun RC, Halsey J, Hirst VK, Hancock S, Phillips TL. PhaseⅠtrial of the hypoxic cellradiosensitizer SR-2508: the results of the five to six week drug schedule. Int J Radiat Oncol Biol Phys, 1986, 12: 1105-1108.
    25. Riese NE, Buswell L, Noll L, Pajak TF, Stetz J, Lee DJ, Coleman CN. Pharacokinetic monitoring and dose modification of etanidazole in the RTOG 85-27 Phase III head and neck trial. Int J Radiat Oncol Biol Phys, 1997, 39: 855-858.
    26. Urtasun RC, Palmer M, Kinney B, Belch A, Hewitt J, Hanson J. Intervention with the hypoxic tumor cell sensitizer etanidazole in the combined modality treatment of limited stage small-cell lung cancer, a one-institution study. Int J Radiat Oncol Biol Phys, 1998, 40: 337-342.
    27. Marcus KJ, Dutton SC, Barnes P, Coleman CN, Pomeroy SL, Goumnerova L, Billett AL, Kieran M, Tarbell NJ. A phaseⅠtrial of etanidazole and hyperfractionated radiotherapy in children with diffuse brainstem glioma. Int J Radiat Oncol Biol Phys, 2003, 55: 1182-1185.
    28. Lee DJ, Cosmatos D, Marcial VA, Fu KK, Rotman M,Cooper JS,Ortiz HG, Beitler JJ, Abrams RA, Curran WJ. Results of an RTOG phase III trial (RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally advanced head and neck carcinomas, Int J Radiat Oncol Biol Phys, 1995, 32: 567-576.
    29. Lawton CA, Coleman CN, Buzydlowski JW, Forman JD, Marcial VA, DelRowe JD, Rotman M. Results of a phase II trial of external beam radiation with etanidazole (SR 2508) for the treatment of locally advanced prostate cancer (RTOG Protocol 90-20). Int J Radiat Oncol Biol Phys, 1996, 36: 673-680.
    30. Eschwege F, Sancho-Garnier H, Chassagne D, Brisgand D, Guerra M, Malaise EP, Bey P, Busutti L, Cionini L, N'Guyen T, Romanini A, Chavaudra J, Hill C. Results of a European randomized trial of Etanidazole combined with radiotherapy in head and neck carcinomas. Int J Radiat Oncol Biol Phys, 1997, 39: 275-281.
    31. O’Dwyer, PJ, LaCreta, FP. Pharmacology and clinical investigation of SR-2508 (etanidazole). In New Drugs, Concepts, and Results in Cancer Chemotherapy, edited by F. M. Muggia (Norwell: Kluwer Academic Publishers), 1991, pp. 45-63.
    32. Rowinsky EK, Cavenave LA, Donehower RC. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst, 1990, 82: 1247-1259.
    33. Bissett D, Kaye SB. Taxol and taxotere — current status and future prospects. Eur J Cancer, 1993, 29: 1228–1231.
    34. Foa R, Norton L, Seidman AD. Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity.Int J Clin Lab Res, 1994, 24: 6-14.
    35. McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, Donehower RC. Taxol: a unique antineoplastic agent with significant activity in advanced ovarian epithelial neoplasms, Ann Intern Med, 1989, 111: 273-279.
    36. Rowinsky EK, Eisenhower EA, Chaudry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel (Taxol), Semin Oncol, 1993, 20: 1-15.
    37. 李艳芳,李孟达. 紫杉醇在子宫颈癌及子宫内膜癌治疗中的应用. 中国实用妇科与产科杂志,2004,20:139-141.
    38. 高彦慧,厉保秋,甘一如,董欣,程秀民,赵燕飚. 紫杉醇纳米粒注射液在荷瘤小鼠体内的组织分布及抗肿瘤作用. 山东大学学报,2006,44:823-827.
    39. 陆红霞,徐丛剑,李斌等. 紫杉醇纳米粒腹腔给药对大鼠卵巢癌的抑制作用及淋巴靶向性. 北京大学学报,2006,38:483-486.
    40. 潘达超,梁启廉,张英. 紫杉醇加 5-氟脲嘧啶持续滴注治疗晚期鼻咽癌. 实用癌症杂志,2002,17:407-407.
    41. 肖男,辛晓燕,滑玮. 磷脂酰肌醇 32 激酶抑制剂 LY294002联合紫杉醇对卵巢癌裸鼠移植瘤的治疗作用. 第四军医大学学报,2004,25:1120-1122.
    42. 曲维庆,王萍,张恩宁. 紫杉醇持续输注联合顺铂治疗晚期非小细胞肺癌. 中国癌症杂志,2006,16:304-306.
    43. 常红霞,申仰之,王爱红. 紫杉醇联合治疗中晚期上消化道癌的临床研究. 中国药物与临床,2005,5:144-146.
    44. 吴骥,朱红,沈美萍. 紫杉醇对人甲状腺未分化癌细胞体外作用的实验研究. 徐州医学院学报,2006,26:474-477.
    45. 甘泉,辛晓燕,刘玉,王德堂,郭会玲. 紫杉醇诱导人子宫内膜癌细胞增殖凋亡的实验研究. 第四军医大学学报,2006,27:1620-1623.
    46. 夏国豪,刘德林,许红霞,潘良豪. 紫杉醇联合小剂量顺铂和持续静滴低剂量氟尿嘧啶治疗晚期胃癌 35 例. 临床肿瘤学杂志,2006,11:195-197.
    47. 董建堂,王公平,张治业. 紫杉醇联合顺铂新辅助化疗方案治疗中晚期食管癌 98 例. 陕西医学杂志,2005,34:716-717.
    48. 冯刚,张湘茹. 紫杉类药物治疗卵巢癌. 中国新药杂志,1998,7:273-277.
    49. 唐丽萍,徐向英,马荣,韩毅敏,于丽波.多西紫杉醇对宫颈癌细胞系 HeLa 细胞毒性和放射增敏作用的研究.中国现代医学杂志,2006,16:2419-2422.
    50. 唐丽萍,马荣,徐向英,隋丽华,娄阁,王晶.多西紫杉醇对人宫颈癌细胞放射增敏作用的研究.中国实用妇科与产科杂志,2006,22:597-599.
    51. 蔡忠芳,张晓华,张大海. 小剂量紫杉醇联合放疗治疗局部晚期非小细胞肺癌的疗效观察. 实用肿瘤学杂志,2005,19:271-272.
    52. 廖东彪,李雪松,李慧,任索蓉,杜小波,周筱秋. 紫杉醇化疗同期后程三维适形放疗治疗局部晚期鼻咽癌短期疗效观察. 四川医学,2005,26:879-880.
    53. 杨俊泉, 李丽萍, 张瑞娟,田爱华,刘建平,熊伟,刘卫东. 适形放疗并同步紫杉醇时辰化疗非小细胞肺癌临床研究. 现代预防医学,2006,33:1283-1286.
    54. 吕纪马,王绿化,周宗玫,张红星,陈东福. 放射治疗同步紫杉醇化疗局部晚期非小细胞肺癌的Ⅱ期临床研究. 中华放射肿瘤杂志,2004,13:89-92.
    55. 杨新华,钟兰俊,李延持,沙江,袁双虎. 紫杉醇和顺铂加放疗同步治疗Ⅲ期非小细胞肺癌临床观察. 中国肿瘤临床与康复,2005,12:163-165.
    56. Tishler RB, Schiff PB, Geard CR, Hall EJ. Taxol: a novel radiation sensitizer, Int J Radiat Oncol Biol Phys, 1992, 22: 613-617.
    57. Tishler RB, Geard CR, Hall EJ, Schiff PB. Taxol sensitizes human astrocytoma cells to radiation. Cancer Res, 1992, 52: 3495-3497.
    58. Sinclair, WK, Morton, RA. X-ray sensitization during the cell generation cycle of cultured Chinese hamster cells, Radiat Res, 1966, 29: 450-475.
    59. Terasima R, Tolrnach LJ. X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells, Science, 1963, 140: 490-492.
    60. Withers HR, Mason K, Reid BO, Dubravsky N,Barkley HT Jr,Brown BW,Smathers JB. Response of mouse intestine to neurons and gamma rays in relation to dose and division cycle. Cancer, 1974, 34: 39-47.
    61. Weiss RB, Donehower RC, Wiernik PH. Hypersensitivity reactions from Taxol. J Clin Oncol, 1990, 8: 1263-1268.
    62. Waugh WN, Trissel LA, Stella VJ. Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers. Am J Hosp Pharm, 1991, 48: 1520-1524.
    63. Dorr RT. Pharmacology and toxicology of Cremophor EL diluent. Ann Pharmacother, 1994, 28: S11-S14.
    64. Szebeni J, Mugia FM, Alving CR. Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst, 1998, 90: 300-306.
    65. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer, 2001, 37: 1590-1598.
    66. Watts ME, Dennis MF, Woodcock M. Uptake and additivity of the radiosensitizing effects of Ro 03-8799 and SR-2508 in mammalian cells in vitro. Br J Radiol, 1987, 60: 1233-1235.
    67. Taghian A, Lespinasse F, Guichard ME. Radiosensitization bythe combination of etanidazole (SR-2508) and pimonidazole (Ro 03-8799) in human tumor xenografts. Int J Radiat Oncol Biol Phys, 1991, 21: 1535-1540.
    68. Newman HF, Ward R, Workman P, Bleehen NM. The multi-dose clinical tolerance and pharmacokinetics of the combined radiosensitizers, Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole). Int J Radiat Oncol Biol Phys, 1988, 15: 1073-1083.
    69. Newman HF, Bleehen NM, Workman P. A phaseⅠstudy of the combined hypoxic cell radiosensitisers, Ro 03-8799 and SR 2508: a preliminary report of single-dose toxicity, pharmacokinetics and tumour concentrations. Br J Radiol, 1986, 59: 423-425.
    70. Bleehen NM, Newman HF, Maughan TS, Workman P. A multiple dose study of the combined radiosensitizers Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole). Int J Radiat Oncol Biol Phys, 1989, 16: 1093-1096.
    71. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis, Adv Drug Deliv Rev, 2002, 54: 631-651.
    72. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in CaCO-2 cells is size dependant. Pharm Res, 1997, 14: 1568-1573.
    73. Yuan F, Leuning M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in human tumor xenograft. Cancer Res, 1994, 54: 3352-3356.
    74. Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release, 2000, 65: 261-269.
    75. Na K, Bum Lee T, Park KH, Shin EK, Lee YB, Choi HK. Self-assembled nanoparticles of hy drophobically-modified polysaccharide bearing vitamin H as a targeted anticancer drug delivery system. Eur J Pharm Sci, 2003, 18: 165-173.
    76. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res, 1999, 16: 1564-1569.
    77. Fricker J. Drugs with a magneticatic attraction to tumors. Drug Discov Today, 2001, 6: 387-389.
    78. 龚连生,张阳德,周少波. 磁性化疗纳米粒治疗大鼠移植性肝癌. 中国现代医学杂志,2001,11:14-16.
    79. Shinkai M, Ueda K, Ohtsu S, Honda H, Kohri K, Kobayashi T. Effect of functional magnetic particles on radiofrequency capacitive heating:an in vivo study. Jpn J Cancer Res, 2002, 93: 103-108.
    80. Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T. Heat shock protein70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunol Immunother, 2003, 52: 80-88.
    81. 向娟娟,朱诗国,吕红斌. 用氧化铁磁性纳米粒作为基因载体的研究. 癌症,2001, 20: 1009-1014.
    82. 徐华,宋涛. 磁性药物靶向治疗的进展. 国外医学生物医学工程分册, 2004, 27: 61-64.
    83. Barroug A, Glimcher MJ. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro. J Orthop Res, 2002, 20: 274-280.
    84. Soma CE, Dubernet C, Barratt G, Nemati F, Appel M, Benita S, Couvreur P. Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages. Pharm Res, 1999, 16: 1710-1716.
    85. Yoo HS, Lee KH, Oh JE, Park TG. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release, 2000, 68: 419-431.
    86. Bennis S, Robert J, Nemati F. Enhanced toxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumoral cells in culture. Cancer Res, 1992, 33: A2846.
    87. Couvreur C, Roblot-Treupel L, Poupon MF. Nanoparticles as microcarriers for anticancer drugs. Adv Drug Delve Rev, 1990,5: 209-230.
    88. Hu YP, Toulme N, Bennis S. Doxorubicin encapsulation in lipsomes and nanospheres for the reversal of multidrug resistance in vitro. Anticancer Drugs, 1994, 37-38.
    89. Kreuter J. Poly (alkyl acrylate) nanoparticle. Methods Enzymol, 1985, 112: 129-138.
    90. 修志龙,齐冬建,苏志国. 纳米技术在药物制剂中的应用. 高技术通讯,1996,9:56.
    91. 王章阳,廖工铁. 毫微粒载体材料的体内外降解及毒性. 中国药学杂志,1999,34:73-76.
    92. Song CX, Labhaseetwar V, Murphy H. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release, 1997, 43: 197-212.
    93. Convreur P, Duberner C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm, 1995, 41: 21.
    94. Scholes PD, Coombes AG, Lllum L. The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release, 1993, 25: 145-153.
    95. Yoshiaka K, Hiromistu Y. Properties of a pepfide containing DL-lactide /glycolide copolymer nanosphere by novel emulsion solvent difusion method. Eur J Pharm Biopharm,1998, 45: 41-48.
    96. Coska I, Eros I. Stability of multiple emulsions. Determination of factors influenceingmultip le drop breakdown. Int J Pharm, 1997, 156: 119-123.
    97. Thiruma G, Snjezata S. PLGA nanoparticles preparation by nanoprecipitation: drug loading and release studies of a water solution drug. J Controll Release, 1999, 57: 171-185.
    98. Hideki M, Masao K. Further application of a modified spontaneous emulsification solvent difusion method to various types of PLGA and PLA polymers for p reparation of nanoparticles. Powder Technol, 2000, 107: 137-143.
    99. Allemann E, Leroux JC, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly (D, L-lactic acid) nanoparticles produced by a salting-out procedure. Pharm Res, 1993, 10: 1732-1737.
    100. 杨西晓,陈建海,郭丹. 聚氰基丙烯酸正丁酯纳米粒的生物相容性研究. 南方医科大学学报,2005,25:1261-1263.
    101. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly (ethylene glycol)-poly (aspartic acid) block copolymer. Cancer Res, 1990, 50: 1693-1700.
    102. Esser S, Lampugnani MG, Corada M,Dejana E, Risau W. Vascular endothelial growth factor induces VE-Casdherintyrosine phosphorylation in endothelial cells. J Cell Sci, 1998, 111: 1853-1865.
    103. Verdun C, Brasseur F, Vranckx H,Couvreur P, Roland M. Tissue distribution of doxorubicin associated with polyhexylcyanoacrylate nanoparticles, Cancer Chemother. Pharmacal, 1990, 26: 13-18.
    104. 张志荣,何勤. 肝靶向万乃洛韦毫微粒的研究.药学学报,1998, 33: 702-706.
    105. Soma CE, Dubernet C, Couvreur P, Benita S, Couvreur P. Investigation of the macrophages on the cytotoxicity of doxorubicin-loaded nanoparticles on M5076 calls in vitro. J Control Relaese, 2000, 68: 283-289.
    106. Moghimi SM, Hunter AC, Murray GC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 2001, 53: 283-318.
    107. Irene B, Catherine D, Patrick C. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev, 2002, 54: 631-651.
    108. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev, 2001, 47: 65-81.
    109. Araujo L, Lobenberg R, Kreuter J. Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target, 1999, 6: 373-385.
    110. Lode L, Fichtner I, Kreuter J,Berndt A, Diederichs JE, ReszkaR. Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly (methyl-methacrylate) nanoparticles in experimental tumor models. Pharm Res, 2001, 18: 1613-1619.
    111. Sharma D, Chelvi TP, Kaur J,Chakravorty K, De TK, Maitra A, Ralhan R. Novel Taxol formulation: polyvinylpyrrolidone nanoparticle encapsulated Taxol for drug delivery in cancer therapy. Oncol Res, 1996, 8: 281-286.
    112. Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev, 2001, 47: 55-64.
    113. Hawley AE, Davis SS, Illum L. Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers. FEBS Lett, 1997, 400: 319-323.
    114. Feng SS, Huang GF, Mu L. Nanospheres of biodegradable polymers: a system for clinical administration of an anticancer drug paclitaxel (Taxol?). Ann Acad Med Singapore, 2000, 29: 633-639.
    115. Feng SS, Huang GF. Effects of emulsifiers on the controlled release of paclitaxel (Taxol?) from nanospheres of biobiodegradable polymers. J Control Release, 2001, 71: 53-69.
    116. Feng SS, Mu L, Win KY, Huang G. Nanoparticles of biodegradable polymers for clinical administration ofpaclitaxel. Curr Med Chem, 2004, 11: 413-424.
    117. Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol?) loaded poly(lactic-co-glycolicacid) microspheres prepared by spray drying technique with lipid/ cholesterol emulsifiers. J Control Release, 2001, 76: 239-254.
    118. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent extraction/evaporation technique for fabrication of polymeric nanospheres for controlled release of paclitaxel. J Control Release, 2002, 80: 129-144.
    119. Mu L, Feng SS. PLGA/TPGS nanoparticles for controlled release of paclitaxel: Effects of the emulsifier and the drug loading ratio. Pharm Res, 2003, 20: 1864-1872.
    120. Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release, 2002, 83: 273-286.
    121. Khin YW, Feng SS. In vitro and in vivo studies on vitamin E TPGS-emulsified poly (D, L-lactic-co-glycolic acid) nanoparticles for clinical administration of paclitaxel. Biomaterials, 2006, 27: 2285-2291.
    122. Attawia MA, Borden MD, Herbert KM, et al. Regional drug delivery with radiation for the treatment of Ewing’s sarcoma. In vitro development of a taxol release system. J ControlRelease, 2001, 71: 193-202.
    123. Wang J, Ng CW, Win KY, Shoemakers P, Lee TK, Feng SS, Wang CH. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation. J Microencapsul, 2003, 20: 317-327.
    124. Negishi T, Koizumi F, Uchino H, Kuroda J, Kawaguchi T, Naito S, Matsumura Y. NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitising agent compared to free paclitaxel. Br J Cancer, 2006, 95: 601-606.
    125. Wang FJ, Wang CH. Effects of fabrication conditions on the characteristics of etanidazole spray-dried microspheres. J Microencapsul, 2002, 4: 495-510.
    126. Wang FJ, Wang CH. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J Control Release, 2002, 81: 263-280.
    127. Wang FJ, Wang CH. Etanidazole-loaded microspheres fabricated by spray-drying different poly (lactide/glycolide) polymers: effects on microsphere properties. J Biomater Sci Polym Ed, 2003, 14: 157-183.
    128. Lee TH, Wang FJ, Wang CH. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J Control Release, 2002, 83: 437-452.
    129. Gupte1 A, Ciftci K. Formulation and characterization ofpaclitaxel, 5-FU and paclitaxel + 5-FU microspheres. Int J Pharm, 2004, 276, 93-106.
    130. Perez MH, Zinutti C, Lamprecht A, Ubrich N, Astier A, Hoffman M, Bodmeier R, Maincent P. The preparation and evaluation of poly (ε-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J Control Release, 2000, 65: 429-438.
    131. Perez MH, Siepmann J, Zinutti C, Lamprecht A, Ubrich N, Hoffman M, Bodmeier R, Maincent P. Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling. J Control Release, 2003, 88: 413-428.
    132. Kwon GS, Kataoka K. Block copolymer micelles as longcirculating drug vehicles. Adv Drug Deliver Rev, 1995, 16: 295–309.
    133. Konan YN, Gurney R, Allemann E. Preparation and characterization of sterile and freeze-dried sub-200nm nanoparticles. Int J Pharm. 2002, 233: 239-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700