用户名: 密码: 验证码:
环保型超疏水抗潮功能纸张的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纸张作为绿色环保材料被应用在越来越多的领域,传统的疏水改性-施胶已经不能满足纸张的防潮抗水性能。目前对纸张的防潮处理一般采取纸-塑或纸-金属的复合材料,阻隔水蒸气的效果明显,但纸张的绿色环保性能难以保证;而超疏水纸张的研究尚处于研发阶段,国内外报道较少。本论文主要通过纸张的内部添加、表面涂布和纤维改性的方法,对纸张的抗水蒸气和抗水性能及其机理进行了较为系统的研究。
     将蜂蜡乳化后进行湿部添加或表面涂布,并结合热处理和抛光等后续处理,考察了它们对纸张水蒸气阻隔效率和抗水性能的影响。通过对水蒸气透过材料的热力学和动力学分析可知,具有孔隙结构的纸张对水蒸气几乎不存在阻隔性能;纸张表面的均匀致密薄膜在满足低溶解系数和低扩散系数的条件下,才能有效抑制水蒸气的扩散。通过对液体接触角的模型分析可知,疏水性物质的表面粗糙度能强化其疏水性能。
     壳聚糖-蜂蜡双层涂布纸张的结果表明,其水蒸气阻隔性能随着壳聚糖浓度的升高而增强,但是起水蒸气阻隔作用的蜂蜡涂布量却随之降低。通过微观结构分析可知,蜂蜡涂布量的降低得益于预涂布壳聚糖的成膜性。同时,在壳聚糖-蜂蜡双涂层界面上存在一定的界面效应,使得复合膜的水蒸气阻隔效果优于单纯的蜂蜡物质。通过对蜂蜡-壳聚糖乳液涂布纸张的涂层微观形态观察可知,在较高温度下干燥乳液涂层时,蜂蜡颗粒的融化和再融合过程,弥补了乳液涂布时的微小细缝的缺陷;再加上乳液在高温下蜂蜡发生团聚和凝聚作用而产生的相分离作用,使得高温干燥下的乳液涂布对水蒸气阻隔性显著提高。
     物质的表面自由能和微观形态都能显著地影响超疏水性能,其中微观结构的影响相对更为重要。由蜂蜡和棕榈蜡组成的混合蜡乳液涂布在纸张表面,在合适的温度下,蜡质颗粒中的蜂蜡成分处于“液态”而棕榈蜡成分处于“固态”,两相发生分离,在球状混合蜡颗粒表面产生大量褶皱或碗状结构。该结构的尺寸与蜡质微球相比,属于亚微米级结构,因而构成了微米-亚微米的二级结构,大大地降低了蜡质表面与水的接触面积,产生了超疏水的涂布纸张。
     与TMCS和DMDCS相比,MTCS具有三个Si-Cl键,反应活性大大提高,疏水改性效果最明显。首先,MTCS与纤维表面的羟基缩合,形成厚度在10nm以下的聚甲基硅氧烷的单分子涂层;其次,溶剂中的MTCS在合适的水浓度下在涂层表面形成直径为20-50nm的细丝结构。这些在微米级纤维表面形成的纳米结构,形成了纳米-微米的二级结构,从而保证了超疏水界面的产生。纸张的强度由纤维之间的氢键提供,但在MTCS的改性过程中,纸张中的氢键数量大大减少,因而强度下降。为控制MTCS处理仅发生在在纸张界面上,纸张可以通过“半溶解-析出”的处理,得到致密的纤维素薄片。改性后的纤维素薄片既具有超疏水效应,又能保持较高机械强度。
Cellulosic paper is applicated in more and more areas as one kind of green andenvironmently friendly materials. However, troditional hydrophobiczation-sizing-cannot meetthe demands of moistrue and water resistance. Nowadays composite materials of paper-plastic/metal are usually ustilized to retard water vapor, which enhace the water vapor barrierevidently. The inherent advatanges of paper is no longer preserved in the meantime. Thesuperhydrophobization of paper rises recently years and there are few of studies in domesticand international reports. In this paper, a systematic study about the superhydrophobization ofpaper for enhaced moistrue and water resistance and its mechanisam, was carried out throughwet-end, surface coating and cellulose modification.
     The effects of beeswax aditive methods (wet-end aditive, surface coating, dip coating) andpost treatments (heat treatment, polishing) on water and moisture resistance were investigated.The results showed that water with pore structure had almost no barrier properties to watervapor. According to the thermodynamics and kinetics of water vapor through materials, thesurface coating film could be effective shield against the moisture in the condition of lowsolubility diffusion coefficient of the material. The roughness of hydrophobic material couldimprove its hydrophobicity according to the contact model analysis.
     The results of chitosan-beeswax bilayer coated paper showed that the WVTR was reducedas the chitosan concentration increased. However, the beeswax coating weight decreased dueto the good film forming of chitosan based on the microstructure observation. Besides, theinterface effect between beeswax and chitosan layers made the water vapor barrier of compositefilm better than pure beeswax. In the experiment of beeswax-chitosan emulsion coating, themicrostructure showed that the beeswax particles melted and re-agglomerated during heattreatment, and the creaming process of beeswax-chitosan emulsion magnified at highertemperature, both of which resulted in an improved moisture barrier property of the coatedpaper.
     The effort of surface morphology played a larger part than surface free energy did on thesuperhydrophobicity. Wax mixture, composed of beeswax and carnauba wax, was emulsified and coated at paper surface. At proper temperature, the beeswax part in the wax particles wasin "liquid state", while the carnauba wax part in "solid state", resulting mass of bowl-shape orfold structure at the surface of wax particles during phase seperation process. The hierarchicalsubmicro-/-micro-structure greatly reduced the contact area between wax miture and water,thus producing superhydrophobic surface.
     Compared with TMCS and DMDCS, MTCS had three Si-Cl bonds and showed the mostactive chemical reaction and thus best hydrophobization property. First, the MTCS condensedwith the hydroxyl group at the fire surface, resulting in the formation of self-assemblymonolayer (SAM) of polymethylsilane with a thickness of less than10nm; then, the MTCSpolymerised within its molecular to form filaments in a diameter of20-50nm at the SAMsurface. The formation of hierachical nano-/micro-structure composed of hydrophobic fibre andfilaments enssrured the production of superhydrophobic surface. In the process of silanizationof fibre, the hydrogen bonds, which provided the mechanical strength of paper, decreaseddramatically due to the condensation reaction and the strengh of papre was reduced. In order tocontrol the reaction sites just at the paper surface, the paper was treated with partially-dissolution and precipitation to obtain the dense cellulosic cellulosic flake. The modifiedcellulosic flake had a superhydrophobic surface and the mechancial strength was also preserved.
引文
[1] Ashley R J. Permeability and plastics packaging[M]. Springer,1985,269-308.
    [2] Brown H, Williams J. Food packaging technology[M]. Oxford, Blackwell Publishing Ltd.2003:65-94.
    [3] Song Y S, Begley T, Paquette K, et al. Effectiveness of polypropylene film as a barrierto migration from recycled paperboard packaging to fatty and high-moisture food[J]. FoodAdditives&Contaminants.2003,20(9):875-883.
    [4] Lange J, Wyser Y. Recent innovations in barrier technologies for plastic packaging-areview[J]. Packaging Technology and Science.2003,16(4):149-158.
    [5] Lahtinen K, Maydannik P, Johansson P, et al. Utilisation of continuous atomic layerdeposition process for barrier enhancement of extrusion-coated paper[J]. Surface andCoatings Technology.2011,205(15):3916-3922.
    [6]胡焱清,李保江,李大纲.纸/铝/塑复合水泥袋的研究与应用[J].包装工程.2006,27(6):113-115.
    [7] Morillon V, Debeaufort F, Blond G, et al. Factors affecting the moisture permeability oflipid-based edible films: a review[J]. Critical Reviews in Food Science and Nutrition.2002,42(1):67-89.
    [8] Donhowe G, Fennema O. Water vapor and oxygen permeability of wax films[J]. Journalof the American Oil Chemists' Society.1993,70(9):867-873.
    [9] Koelsch C M, Labuza T P. Functional, physical and morphological properties of methylcellulose and fatty acid-based edible barriers[J]. Lebensmittel-Wissenschaft+Technologie.1992,25(5):404-411.
    [10] Guilbert S, Gontard N. Le concept de l’emballage comestible[J]. AGORAL1992Nancy.1992:1-25.
    [11] H. B J. Plastic Fillms[M].3rded. New York, USA: Wiley,1988.
    [12] Vargas M, Pastor C, Chiralt A, et al. Recent Advances in Edible Coatings for Fresh andMinimally Processed Fruits[J]. Critical Reviews in Food Science and Nutrition.2008,48(6):496-511.
    [13] Khwaldia K, Arab Tehrany E, Desobry S. Biopolymer coatings on paper packagingmaterials[J]. Comprehensive Reviews in Food Science and Food Safety.2010,9(1):82-91.
    [14] Kamper S L, Fennema O. Water vapor permeability of edible bilayer films[J]. Journal ofFood Science.1984,49(6):1478-1481.
    [15] Kamper S L, Fennema O. Water vapor permeability of an edible, fatty acid, bilayer film[J].Journal of Food Science.1984,49(6):1482-1485.
    [16] Martin-Polo M, Mauguin C, Voilley A. Hydrophobic films and their efficiency againstmoisture transfer.1. Influence of the film preparation technique[J]. Journal of Agriculturaland Food Chemistry.1992,40(3):407-412.
    [17] Greener I K, Fennema O. Barrier Properties and Surface Characteristics of Edible, BilayerFilms[J]. Journal of Food Science.1989,54(6):1393-1399.
    [18] Gontard N, Marchesseau S, Cuq J L, et al. Water vapour permeability of edible bilayerfilms of wheat gluten and lipids[J]. International journal of food science&technology.1995,30(1):49-56.
    [19] Greener I K, Fennema O. Evaluation of edible, bilayer films for use as moisture barriersfor food[J]. Journal of Food Science.1989,54(6):1400-1406.
    [20] Weller C L, Gennadios A, Saraiva R A. Edible bilayer films from zein and grain sorghumwax or carnauba wax[J]. LWT-Food Science and Technology.1998,31(3):279-285.
    [21] Debeaufort F, Quezada-Gallo J, Delporte B, et al. Lipid hydrophobicity and physical stateeffects on the properties of bilayer edible films[J]. Journal of Membrane Science.2000,180(1):47-55.
    [22] Landmann W, Lovegren N V, Feuge R O. Permeability of some fat products tomoisture[J]. Journal of the American Oil Chemists Society.1960,37(1):1-4.
    [23] Kester J J, Fennema O. The influence of polymorphic form on oxygen and water vaportransmission through lipid films[J]. Journal of the American Oil Chemists’ Society.1989,66(8):1147-1153.
    [24] G llstedt M, T rnqvist J, Hedenqvist M S. Properties of nitrocellulose-coated andpolyethylene-laminated chitosan and whey films[J]. Journal of Polymer Science Part B:Polymer Physics.2001,39(10):985-992.
    [25] Navarro-Tarazaga M L, Del Ri o M A, Krochta J M, et al. Fatty Acid Effect onHydroxypropyl Methylcellulose-Beeswax Edible Film Properties and Postharvest Qualityof Coated ‘Ortanique’ Mandarins[J]. Journal of Agricultural and Food Chemistry.2008,56(22):10689-10696.
    [26] Navarro-Tarazaga M L, Sothornvit R, Pe rez-Gago M B. Effect of Plasticizer Type andAmount on Hydroxypropyl Methylcellulose-Beeswax Edible Film Properties andPostharvest Quality of Coated Plums (Cv. Angeleno)[J]. Journal of Agricultural and FoodChemistry.2008,56(20):9502-9509.
    [27] Hagenmaier R D, Baker R A. Wax Microemulsions and Emulsions as Citrus Coatings[J].Journal of Agricultural and Food Chemistry.1994,42(4):899-902.
    [28] Avena Bustillos R J, Krochta J M. Water Vapor Permeability of Caseinate-Based EdibleFilms as Affected by pH, Calcium Crosslinking and Lipid Content[J]. Journal of foodscience.1993,58(4):904-907.
    [29] Mchugh T H, Krochta J M. Water vapor permeability properties of edible whey protein-lipid emulsion films[J]. Journal of the American Oil Chemists’ Society.1994,71(3):307-312.
    [30] Rhim J, Wu Y, Weller C L, et al. Physical characteristics of emulsified soy protein-fattyacid composite films[J]. Sciences Des Aliments.1999,19(1):57-71.
    [31] Shellhammer T H, Krochta J M. Whey Protein Emulsion Film Performance as Affectedby Lipid Type and Amount[J]. Journal of Food Science.1997,62(2):390-394.
    [32] I B, Reynhardt E C. An investigation of the structures and molecular dynamics of naturalwaxes. I. Beeswax[J]. Journal of Physics D: Applied Physics.1988,21(9):1421-1428.
    [33] Basson I, Reynhardt E C. An investigation of the structures and molecular dynamics ofnatural waxes. II. Carnauba wax[J]. Journal of Physics D: Applied Physics.1988,21(9):1429-1433.
    [34] Fabra M J, Talens P, Chiralt A. Tensile properties and water vapor permeability of sodiumcaseinate films containing oleic acid-beeswax mixtures[J]. Journal of Food Engineering.2008,85(3):393-400.
    [35] Monedero F M, Fabra M J, Talens P, et al. Effect of oleic acid-beeswax mixtures onmechanical, optical and water barrier properties of soy protein isolate based films[J].Journal of Food Engineering.2009,91(4):509-515.
    [36] Gontard N, Duchez C, Cuq J, et al. Edible composite films of wheat gluten and lipids:water vapour permeability and other physical properties[J]. International Journal of FoodScience&Technology.1994,29(1):39-50.
    [37] Hagenmaier R D, Shaw P E. Moisture permeability of edible films made with fatty acidand hydroxypropyl methyl cellulose[J]. Journal of Agricultural and Food Chemistry.1990,38(9):1799-1803.
    [38] Chick J, Hernandez R J. Physical, Thermal, and Barrier Characterization of Casein-Wax-Based Edible Films[J]. Journal of Food Science.2002,67(3):1073-1079.
    [39] Perez-Gago M B, Krochta J M. Drying temperature effect on water vapor permeabilityand mechanical properties of whey protein-lipid emulsion films[J]. Journal of Agriculturaland Food Chemistry.2000,48(7):2687-2692.
    [40] Quezada Gallo J, Debeaufort F, Callegarin F, et al. Lipid hydrophobicity, physical stateand distribution effects on the properties of emulsion-based edible films[J]. Journal ofMembrane Science.2000,180(1):37-46.
    [41] Navarro-Tarazaga M L, Massa A, Pérez-Gago M B. Effect of beeswax content onhydroxypropyl methylcellulose-based edible film properties and postharvest quality ofcoated plums (Cv. Angeleno)[J]. LWT-Food Science and Technology.2011,44(10):2328-2334.
    [42] Mchugh T H, Krochta J M. Dispersed phase particle size effects on water vaporpermeability of whey protein-beeswax edible emulsion films[J]. Journal of FoodProcessing and Preservation.1994,18(3):173-188.
    [43] Pérez-Gago M B, Krochta J M. Lipid particle size effect on water vapor permeability andmechanical properties of whey protein/beeswax emulsion films[J]. Journal of Agriculturaland Food Chemistry.2001,49(2):996-1002.
    [44] Min S C, Janjarasskul T, Krochta J M. Tensile and moisture barrier properties of wheyprotein-beeswax layered composite films[J]. Journal of the Science of Food andAgriculture.2009,89(2):251-257.
    [45] Phan The D, Debeaufort F, Peroval C, et al. Arabinoxylan-lipid-based edible films andcoatings.3. Influence of drying temperature on film structure and functional properties[J].Journal of Agricultural and Food Chemistry.2002,50(8):2423-2428.
    [46] Debeaufort F, Voilley A. Effect of surfactants and drying rate on barrier properties ofemulsified edible films[J]. International Journal of Food Science&Technology.1995,30(2):183-190.
    [47] Karbowiak T, Debeaufort F, Voilley A. Influence of thermal process on structure andfunctional properties of emulsion-based edible films[J]. Food Hydrocolloids.2007,21(5):879-888.
    [48] Soazo M, Rubiolo A C, Verdini R A. Effect of drying temperature and beeswax contenton physical properties of whey protein emulsion films[J]. Food Hydrocolloids.2011,25(5):1251-1255.
    [49] Hunter J R. Emulsions[M]. Foundations of Colloid Science, Oxford Science Publications:Oxford, UK,1989:2,944-963.
    [50] Despond S, Espuche E, Cartier N, et al. Barrier properties of paper-chitosan and paper-chitosan-carnauba wax films[J]. Journal of Applied Polymer Science.2005,98(2):704-710.
    [51] Khwaldia K. Water vapour barrier and mechanical properties of paper-sodium caseinateand paper-sodium caseinate-paraffin wax film[J]. Journal of Food Biochemistry.2010,34(5):998-1013.
    [52] Han J, Salmieri S, Le Tien C, et al. Improvement of water barrier property of paperboardby coating application with biodegradable polymers[J]. Journal of Agricultural and FoodChemistry.2010,58(5):3125-3131.
    [53] Khwaldia K, Linder M, Banon S, et al. Effects of mica, carnauba wax, glycerol, andsodium caseinate concentrations on water vapor barrier and mechanical properties ofcoated paper[J]. Journal of Food Science.2005,70(3):192-197.
    [54] Sothornvit R. Effect of hydroxypropyl methylcellulose and lipid on mechanical propertiesand water vapor permeability of coated paper[J]. Food Research International.2009,42(2):307-311.
    [55] Reis A B, Yoshida C M, Reis A P C, et al. Application of chitosan emulsion as a coatingon kraft paper[J]. Polymer International.2011,60(6):963-969.
    [56] Guo Z, Liu W. Biomimic from the superhydrophobic plant leaves in nature: Binarystructure and unitary structure[J]. Plant Science.2007,172(6):1103-1112.
    [57] He S, Zheng M, Yao L, et al. Preparation and properties of ZnO nanostructures byelectrochemical anodization method[J]. Applied Surface Science.2010,256(8):2557-2562.
    [58] Huang Y, Sarkar D K, Chen X. A one-step process to engineer superhydrophobic coppersurfaces[J]. Materials Letters.2010,64(24):2722-2724.
    [59] Meng H, Wang S, Xi J, et al. Facile means of preparing superamphiphobic surfaces oncommon engineering metals[J]. The Journal of Physical Chemistry C.2008,112(30):11454-11458.
    [60] Park S H, Lee S M, Lim H S, et al. Robust superhydrophobic mats based on electrospuncrystalline nanofibers combined with a silane precursor[J]. ACS Applied Materials&Interfaces.2010,2(3):658-662.
    [61] Zhan N, Li Y, Zhang C, et al. A novel multinozzle electrospinning process for preparingsuperhydrophobic PS films with controllable bead-on-string/microfiber morphology[J].Journal of Colloid and Interface Science.2010,345(2):491-495.
    [62] Wang S, Li M, Lu Q. Filter paper with selective absorption and separation of liquids thatdiffer in surface tension[J]. ACS Applied Materials&Interfaces.2010,2(3):677-683.
    [63] Li J, Shi L, Chen Y, et al. Stable superhydrophobic coatings from thiol-ligandnanocrystals and their application in oil/water separation[J]. Journal of MaterialsChemistry.2012,22(19):9774-9781.
    [64] Xu D, Wang M, Ge X, et al. Fabrication of raspberry SiO2/polystyrene particles andsuperhydrophobic particulate film with high adhesive force[J]. Journal of MaterialsChemistry.2012,22(12):5784-5791.
    [65] Whitesides G M. The origins and the future of microfluidics[J]. Nature.2006,442(7101):368-373.
    [66] Weibel D B, Kruithof M, Potenta S, et al. Torque-actuated valves for microfluidics[J].Analytical Chemistry.2005,77(15):4726-4733.
    [67] Nguyen N, Huang X, Chuan T K. MEMS-micropumps: a review[J]. Journal of FluidsEngineering.2002,124(2):384-392.
    [68] Martinez A W, Phillips S T, Butte M J, et al. Patterned paper as a platform for inexpensive,low-volume, portable bioassays[J]. Angewandte Chemie International Edition.2007,46(8):1318-1320.
    [69] Li X, Tian J, Nguyen T, et al. Paper-based microfluidic devices by plasma treatment[J].Analytical Chemistry.2008,80(23):9131-9134.
    [70] Martinez A W, Phillips S T, Wiley B J, et al. FLASH: a rapid method for prototypingpaper-based microfluidic devices[J]. Lab on a Chip.2008,8(12):2146-2150.
    [71] Balu B, Berry A D, Hess D W, et al. Patterning of superhydrophobic paper to control themobility of micro-liter drops for two-dimensional lab-on-paper applications[J]. Lab on aChip.2009,9(21):3066-3075.
    [72] Balu B, Berry A D, Patel K T, et al. Directional mobility and adhesion of water drops onpatterned superhydrophobic surfaces[J]. Journal of Adhesion Science and Technology.2011,25(6-7):627-642.
    [73] Chin C D, Linder V, Sia S K. Lab-on-a-chip devices for global health: past studies andfuture opportunities[J]. Lab on a Chip.2007,7(1):41-57.
    [74] Sia S K, Linder V, Parviz B A, et al. An Integrated Approach to a Portable and Low-CostImmunoassay for Resource-Poor Settings[J]. Angewandte Chemie International Edition.2004,43(4):498-502.
    [75] Yang H, Deng Y. Preparation and physical properties of superhydrophobic papers[J].Journal of Colloid and Interface Science.2008,325(2):588-593.
    [76] Hu Z, Zen X, Gong J, et al. Water resistance improvement of paper by superhydrophobicmodification with microsized CaCO3and fatty acid coating[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2009,351(1):65-70.
    [77] Hu Z, Deng Y. Superhydrophobic surface fabricated from fatty acid-modifiedprecipitated calcium carbonate[J]. Industrial&Engineering Chemistry Research.2010,49(12):5625-5630.
    [78] Gustafsson E, Larsson P A, W gberg L. Treatment of cellulose fibres withpolyelectrolytes and wax colloids to create tailored highly hydrophobic fibrous networks[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects.2012,414:415-421.
    [79] Chen W, Wang X, Tao Q, et al. Lotus-like paper/paperboard packaging prepared withnano-modified overprint varnish[J]. Applied Surface Science.2013,266:319-325.
    [80] Arbatan T, Zhang L, Fang X, et al. Cellulose nanofibers as binder for fabrication ofsuperhydrophobic paper[J]. Chemical Engineering Journal.2012,210:74-79.
    [81] Quan C, Werner O, W gberg L, et al. Generation of superhydrophobic paper surfaces bya rapidly expanding supercritical carbon dioxide-alkyl ketene dimer solution[J]. TheJournal of Supercritical Fluids.2009,49(1):117-124.
    [82] Werner O, Quan C, Turner C, et al. Properties of superhydrophobic paper treated withrapid expansion of supercritical CO2containing a crystallizing wax[J]. Cellulose.2010,17(1):187-198.
    [83] Stepien M, Saarinen J J, Teisala H, et al. Adjustable wettability of paperboard by liquidflame spray nanoparticle deposition[J]. Applied Surface Science.2011,257(6):1911-1917.
    [84] Ogihara H, Xie J, Okagaki J, et al. Simple method for preparing superhydrophobic paper:spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency andtransparency[J]. Langmuir.2012,28(10):4605-4608.
    [85] Gon alves G, Marques P A, Trindade T, et al. Superhydrophobic cellulosenanocomposites[J]. Journal of Colloid and Interface Science.2008,324(1):42-46.
    [86] Bras J, Vaca-Garcia C, Borredon M, et al. Oxygen and water vapor permeability of fullysubstituted long chain cellulose esters (LCCE)[J]. Cellulose.2007,14(4):367-374.
    [87] Pasquini D, Teixeira E D M, Curvelo A A D S, et al. Surface esterification of cellulosefibres: processing and characterisation of low-density polyethylene/cellulose fibrescomposites[J]. Composites Science and Technology.2008,68(1):193-201.
    [88] Berlioz S, Molina-Boisseau S, Nishiyama Y, et al. Gas-phase surface esterification ofcellulose microfibrils and whiskers[J]. Biomacromolecules.2009,10(8):2144-2151.
    [89] Cunha A G, Freire C S, Silvestre A J, et al. Highly hydrophobic biopolymers prepared bythe surface pentafluorobenzoylation of cellulose substrates[J]. Biomacromolecules.2007,8(4):1347-1352.
    [90] Cunha A G, Freire C S, Silvestre A J, et al. Characterization and evaluation of thehydrolytic stability of trifluoroacetylated cellulose fibers[J]. Journal of Colloid andInterface Science.2007,316(2):360-366.
    [91] Nystr m D, Lindqvist J, stmark E, et al. Superhydrophobic bio-fibre surfaces via tailoredgrafting architecture[J]. Chemical Communications.2006(34):3594-3596.
    [92] Nystro m D, Lindqvist J, Ostmark E, et al. Superhydrophobic and self-cleaning bio-fibersurfaces via ATRP and subsequent postfunctionalization[J]. ACS Applied Materials&Interfaces.2009,1(4):816-823.
    [93] Balu B, Breedveld V, Hess D W. Fabrication of “roll-off” and “sticky” superhydrophobiccellulose surfaces via plasma processing[J]. Langmuir.2008,24(9):4785-4790.
    [94] Balu B, Kim J S, Breedveld V, et al. Tunability of the adhesion of water drops on asuperhydrophobic paper surface via selective plasma etching[J]. Journal of AdhesionScience and Technology.2009,23(2):361-380.
    [95] Li L, Breedveld V, Hess D W. Design and Fabrication of Superamphiphobic PaperSurfaces[J]. ACS Applied Materials&Interfaces.2013,5(11):5381-5386.
    [96] Cunha A G, Freire C, Silvestre A, et al. Preparation of highly hydrophobic and lipophobiccellulose fibers by a straightforward gas-solid reaction[J]. Journal of Colloid and InterfaceScience.2010,344(2):588-595.
    [97] Huang L, Chen K, Lin C, et al. Fabrication and characterization of superhydrophobic highopacity paper with titanium dioxide nanoparticles[J]. Journal of Materials Science.2011,46(8):2600-2605.
    [98] Fadeev A Y, Mccarthy T J. Binary monolayer mixtures: modification of nanopores insilicon-supported tris (trimethylsiloxy) silyl monolayers[J]. Langmuir.1999,15(21):7238-7243.
    [99] Fadeev A Y, Mccarthy T J. Trialkylsilane monolayers covalently attached to siliconsurfaces: wettability studies indicating that molecular topography contributes to contactangle hysteresis[J]. Langmuir.1999,15(11):3759-3766.
    [100] Albert K, Bayer E. Characterization of bonded phases by solid-state NMRspectroscopy[J]. Journal of Chromatography A.1991,544:345-370.
    [101] Rühe J, Novotny V J, Kanazawa K K, et al. Structure and tribological properties ofultrathin alkylsilane films chemisorbed to solid surfaces[J]. Langmuir.1993,9(9):2383-2388.
    [102] Oh M, Lee S, Paik K. Preparation of hydrophobic self-assembled monolayers on papersurface with silanes[J]. Journal of Industrial and Engineering Chemistry.2011,17(1):149-153.
    [103] Hair M L, Tripp C P. Alkylchlorosilane reactions at the silica surface[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects.1995,105(1):95-103.
    [104] Roumeliotis P, Unger K K. Structure and properties of n-alkyldimethylsilyl bonded silicareversed-phase packings[J]. Journal of Chromatography A.1978,149:211-224.
    [105] Nakajima A, Abe K, Hashimoto K, et al. Preparation of hard super-hydrophobic filmswith visible light transmission[J]. Thin Solid Films.2000,376(1):140-143.
    [106] Gao L, Mccarthy T J. A perfectly hydrophobic surface (θA/θR=180o/180o)[J]. Journal ofthe American Chemical Society.2006,128(28):9052-9053.
    [107] Khoo H S, Tseng F. Engineering the3D architecture and hydrophobicity ofmethyltrichlorosilane nanostructures[J]. Nanotechnology.2008,19(34):1-9.
    [108] Artus G R, Jung S, Zimmermann J, et al. Silicone nanofilaments and their application assuperhydrophobic coatings[J]. Advanced materials.2006,18(20):2758-2762.
    [109] Zimmermann J, Reifler F A, Fortunato G, et al. A Simple, One-Step Approach to Durableand Robust Superhydrophobic Textiles[J]. Advanced Functional Materials.2008,18(22):3662-3669.
    [110] Li S, Xie H, Zhang S, et al. Facile transformation of hydrophilic cellulose intosuperhydrophobic cellulose[J]. Chemical Communications.2007(46):4857-4859.
    [111] Silberzan P, Leger L, Ausserre D, et al. Silanation of silica surfaces. A new method ofconstructing pure or mixed monolayers[J]. Langmuir.1991,7(8):1647-1651.
    [112] Rollings D E, Tsoi S, Sit J C, et al. Formation and aqueous surface wettability ofpolysiloxane nanofibers prepared via surface initiated, vapor-phase polymerization oforganotrichlorosilanes[J]. Langmuir.2007,23(10):5275-5278.
    [113] ASTM T205sp-95Forming handsheets for physical tests of pulp[S]. West Conshohocken,PA, USA,1995.
    [114] Water vapor transmission rate of paper and paperboard at high temperature and humidity,Test Method T464om-12[S]. Tappi,2012.
    [115] ASTM E96/E96M-05Standard Test Methods for Water Vapor Transmission ofMaterials[S]. West Conshohocken, PA, USA,2005.
    [116]章莉娟,郑忠.胶体与界面化学[M].2版.广州:华南理工大学出版社,2006.
    [117] NovotnáP, Dernov kováJ.Surfacecrystallisationonbeeswax seals[J].Restaurator.2002,23(4):256-269.
    [118] Rogers C E. Permeation of gases and vapours in polymers[M]. Polymer permeability,Netherlands:Springer,1985,11-73.
    [119] Netti P A, Del Nobile M A, Ambrosio L, et al. Water transport in hyaluronic acid esters[J].Journal of Bioactive and Compatible Polymers.1996,11(4):312-327.
    [120] Flory P. Principles of polymer chemistry[M]. Ithaca, N.Y.: Cornell University Press,1953:495-518.
    [121] Del Nobile M A, Mensitieri G, Netti P A, et al. Anomalous diffusion in poly-ether-ether-ketone[J]. Chemical Engineering Science.1994,49(5):633-644.
    [122] Del Nobile M A, Mensitieri G, Lostocco L R, et al. Moisture transport properties of adegradable nylon for food packaging applications[J]. Packaging Technology and Science.1997,10(6):311-330.
    [123] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the RoyalSociety of London.1805,95:65-87.
    [124] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial&EngineeringChemistry.1936,28(8):988-994.
    [125] Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society.1944,40:546-551.
    [126] Grease resistance of flexible packaging materials, Test Method T507cm-99[S]. Tappi,2009.
    [127] Huang M, Khor E, Lim L. Uptake and cytotoxicity of chitosan molecules andnanoparticles: Effects of molecular weight and degree of deacetylation[J]. PharmaceuticalResearch.2004,2(21):344-353.
    [128] Kimpim ki T, Savolainen A V. Barrier dispersion coating of paper and board[M]. SurfaceApplication of Paper Chemicals, Springer Netherlands,1997,208-228.
    [129] Andersson C. New ways to enhance the functionality of paperboard by surface treatment-a review[J]. Packaging Technology and Science.2008,21(6):339-373.
    [130] Gaillard Y, Mija A, Burr A, et al. Green material composites from renewable resources:Polymorphic transitions and phase diagram of beeswax/rosin resin[J]. ThermochimicaActa.2011,521(1):90-97.
    [131] Jumaa M, Müller B W. Physicochemical properties of chitosan-lipid emulsions and theirstability during the autoclaving process[J]. International journal of pharmaceutics.1999,183(2):175-184.
    [132] Zhang W, Xiao H, Qian L. Enhanced water vapour barrier and grease resistance of paperbilayer-coated with chitosan and beeswax[J]. Carbohydrate Polymers.2014,30(101):401-406.
    [133] ner D, Mccarthy T J. Ultrahydrophobic surfaces. Effects of topography length scales onwettability[J]. Langmuir.2000,16(20):7777-7782.
    [134] Sirota E B, Herhold A B. Transient rotator phase induced nucleation in n-alkane melts[J].Polymer.2000,41(25):8781-8789.
    [135] Kotel Nikova E N, Platonova N V, Filatov S K. Identification of biogenic paraffins andtheir thermal phase transitions[J]. Geology of Ore Deposits.2007,49(8):697-709.
    [136] Fowkes F M. Attractive forces at interfaces[J]. Industrial&Engineering Chemistry.1964,56(12):40-52.
    [137] Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. Journal ofApplied Polymer Science.1969,13(8):1741-1747.
    [138] Cheng Y T, Rodak D E, Wong C A, et al. Effects of micro-and nano-structures on theself-cleaning behaviour of lotus leaves[J]. Nanotechnology.2006,17(5):1359.
    [139] Kameda T.13C solid-state NMR analysis of heterogeneous structure of beeswax in nativestate[J]. Journal of Physics D: Applied Physics.2005,38(24):4313.
    [140] Zhang Y, Wang J, He Y, et al. Solvothermal synthesis of nanoporous polymer chalk forpainting superhydrophobic surfaces[J]. Langmuir.2011,27(20):12585-12590.
    [141] Fadeev A Y, Mccarthy T J. Self-assembly is not the only reaction possible betweenalkyltrichlorosilanes and surfaces: monomolecular and oligomeric covalently attachedlayers of dichloro-and trichloroalkylsilanes on silicon[J]. Langmuir.2000,16(18):7268-7274.
    [142] Richard D, QuéréD. Bouncing water drops[J]. Europhysics Letters.2000,50(6):769-775.
    [143] Richard D, Clanet C, QuéréD. Surface phenomena: Contact time of a bouncing drop[J].Nature.2002,417(6891):811.
    [144]杨淑惠.植物纤维化学[M].3版.北京:中国轻工业出版社,2009.
    [145] Alexander M R, Short R D, Jones F R, et al. An X-ray photoelectron spectroscopicinvestigation into the chemical structure of deposits formed fromhexamethyldisiloxane/oxygen plasmas[J]. Journal of Materials Science.1996,31(7):1879-1885.
    [146] Sabata A, Van Ooij W J, Yasuda H K. Plasma-polymerized films of trimethylsilanedeposited on cold-rolled steel substrates. Part1. Characterization by XPS, AES and TOF-SIMS[J]. Surface and Interface Analysis.1993,20(10):845-859.
    [147] Ahmed A, Adnot A, Grandmaison J L, et al. ESCA analysis of cellulosic materials[J].Cellulose Chemistry and Technology.1987,21(5):483-492.
    [148] Sapieha S, Verreault M, Klemberg-Sapieha J E, et al. X-ray photoelectron study of theplasma fluorination of lignocellulose[J]. Applied Surface Science.1990,44(2):165-169.
    [149] Belgacem M N, Czeremuszkin G, Sapieha S, et al. Surface characterization of cellulosefibres by XPS and inverse gas chromatography[J]. Cellulose.1995,2(3):145-157.
    [150] Johansson L S, Campbell J M. Reproducible XPS on biopolymers: cellulose studies[J].Surface and Interface Analysis.2004,36(8):1018-1022.
    [151] Pertsin A J, Gorelova M M, Levin V Y, et al. An XPS study of the surface-bulkcompositional differences in siloxane-containing block copolymers and polymer blends[J].Journal of Applied Polymer Science.1992,45(7):1195-1202.
    [152] Ruan D, Zhang L, Mao Y, et al. Microporous membranes prepared from cellulose inNaOH/thiourea aqueous solution[J]. Journal of Membrane Science.2004,241(2):265-274.
    [153] Cai J, Zhang L, Zhou J, et al. Multifilament fibers based on dissolution of cellulose inNaOH/urea aqueous solution: structure and properties[J]. Advanced Materials.2007,19(6):821-825.
    [154] Yang Q, Qi H, Lue A, et al. Role of sodium zincate on cellulose dissolution in NaOH/ureaaqueous solution at low temperature[J]. Carbohydrate Polymers.2011,83(3):1185-1191.
    [155] Qin X, Lu A, Zhang L. Effect of stirring conditions on cellulose dissolution in NaOH/ureaaqueous solution at low temperature[J]. Journal of Applied Polymer Science.2012,126(S1): E470-E477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700