用户名: 密码: 验证码:
电对燃料电池用于铬铜镍重金属对苯酚尿素的产电及脱除基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水污染及水资源短缺问题是制约国民经济社会可持续发展的重要因素之一。传统的废水处理高能耗、高成本,致使污水处理厂难以为继、减排效益得不到正常发挥。能源需求增加也加剧了当前的能源危机,节能降耗的污水处理技术势在必行。然而,受水处理工艺的节制,技术提升空间有限。废水中蕴藏能量已有共识,提取能量已引起科学工作者的广泛关注。从废水中直接提取电能而无需给能的处理技术必将成为一个热点课题。
     本论文通过设计由还原性污染物与氧化性污染物组成的液相污染物电对燃料电池,模拟污染物,典型的选取Ethanol-Cr(Ⅳ)、Phenol-Cr(Ⅳ)、Urea-Cr(Ⅳ)、 NaBH4-Cu(Ⅱ)及NaBH4-Ni(Ⅱ)电对,将蕴含在燃料和氧化剂中的化学能转化为电能的同时直接去除或转化污染物,为实现污染物脱毒与产电共生进行了基础研究。
     设计了Ethanol-Cr(Ⅵ)电对燃料电池,以中空Pt/C负载催化阳极与碱性乙醇溶液构成阳极体系、以碳纤维布为电极与酸性Cr(Ⅵ)溶液构成阴极体系,组装成Ethanol-Cr(Ⅵ)电对燃料电池。当Cr (Ⅵ)为3.94mM时可产生开路电压1.46V,负载985Ω外电阻后得到0.7V的输出电压,运行54h后Cr(VI)去除率达96%,起始Cr(VI)浓度为8.65mM时最大功率密度为1900mWm-2。
     当用带苯环的碳氢污染物苯酚为燃料、以Ni/C负载催化阳极代替Pt/C催化阳极时,940mg L-1的苯酚实现98%的去除率,同时300mg L-1Cr(Ⅵ)达到99%的去除。苯酚在阳极发生电氧化转化为无毒的低分子量有机酸,Cr(VI)在阴极电还原为低毒性Cr(Ⅲ)。此时,开路电压为1.2V、功率密度184mWm-2。
     选择尿素或尿液作为燃料注入电对燃料电池,负载NiCo/C催化剂为阳极,组装的urea/urine-Cr(Ⅵ)电对燃料电池,0.033M燃料、150mg L-1Cr (Ⅵ)的开路电压为1.08V、最大功率密度为220mWm-2,负载985Ω外电阻运行25h后Cr(Ⅵ)去除率99.4%。改用尿液为燃料,其开路电压为0.84V,最大功率密度为90mWm-2,对应Cr(VI)去除率达98.4%。
     在此基础上,探索了低电位金属离子在电对燃料电池阴极的还原与去除。以尿素、乙醇、葡萄糖、淀粉和硼氢化钠为燃料,铜离子为氧化剂的电对燃料电池产生的开路电压分别为0.58V、0.65V、0.78V、0.65V和1.5V。当燃料为0.2MNaBH4和2M KOH,铜离子浓度为400mg L-1时,可产生1.5V的开路电压,最大功率密度为1000mWm-2。外加985Ω负载后输出电压为0.65V,运行23h后铜离子去除率达99.9%。若将400mg L-1Ni2+注入电对电池的阴极液,开路电压为1.05V、最大功率密度为260mWm-2。电池运行45.7h后,镍离子去除率达54.8%。
     由此可见,Cr(Ⅵ)、Cu(Ⅱ)、Ni(Ⅱ)与苯酚或尿素组成的电对燃料电池中可实现直接产电,同时污染物得以去除。这一方法可望成为污染物处理的一种新技术。
The shortage of water resources and water pollution restrict the sustainable development of economy and society. Current technologies for wastewater treatments are often energy-intensive. Sewage treatment plants usually needed energy input resulting in high operation costs. Increasing energy demand also contributed to the current energy crisis. Low energy-intensive technology of wastewater treatment is imperative. Usually, wastewater contains covert energy. Harvesting those energies directly from wastewater without supplying energy has become a hot research topic.
     In this paper, coupled redox fuel cell (CRFC) was designed, typically selecting Ethanol-Cr(Ⅵ), Phenol-Cr (Ⅵ), Urea-Cr(Ⅵ), NaBH4-Cu(Ⅱ) and NaBH4-Ni(Ⅱ) redox, to convert chemical energy in fuel and oxidant directly into electricity and simultaneously achieve detoxification of pollutants. The fundamental study on the harvest of electricity and removal of pollutants was conducted.
     Ethanol-Cr (Ⅵ) CRFC was assembled. The hollow Pt/C coated on the anode and alkaline alcohol solution composed of anode system, with carbon fiber cloth as the electrode and the acidic chromium (Ⅵ) solution as the cathode. When Cr (VI) was set at3.94mM, an open circuit voltage of1.46V and output voltage of0.7V were gained with loading an external resistance of985Ω. At this situation,96%removal of Cr (Ⅵ) was achieved after running54h. When the initial Cr (Ⅵ) concentration was8.65mM,1900mW m-2of a maximum power density can be obtained.
     When hydrocarbon organic phenol was used as fuel, and Ni/C instead of Pt/C was employed as the anode in the CRFC,98%phenol of940mg L-1anolyte and99%Cr(Ⅵ) of300mg L-1catholyte can be removed. Phenol electro-oxidation occurs at the anode into non-toxic, low molecular weight organic acids. Cr(Ⅵ) transfers to less toxic Cr (Ⅲ) in the cathodic reduction. Open circuit voltage was1.2V with a maximum power density of184mW m-2.
     0.033M urea or urine as fuel and150mg L-1Cr (Ⅵ) as oxidant, loading NiCo/C catalyst as the anode to assembly an urea/urine-Cr (Ⅵ) cell, the cell can result in the open-circuit voltage of1.08V and the maximum power density of220mW m-2. With 985Ω of load running25h,99.4%removal of Cr (Ⅵ) can be obtained. Use of urine as fuel, the open circuit voltage of0.84V, a maximum power density of90mW m-z corresponding to Cr (Ⅵ) removal of98.4%can be achieved.
     On this basis, the feasibility of the cathodic reduction and removal in the CRFC was also explored by using the metal ions with the low potentials as oxidants. Urea, ethanol, glucose, starch, and sodium borohydride as the fuel, copper ion as an oxidant, and the open circuit voltage of the fuel cell were0.58V,0.65V,0.78V,0.65V and1.5V, respectively. When the fuel is0.2NaBH4and2M KOH, copper ion concentration is400mg L-1, it can produce an open circuit voltage of1.5V and a maximum power density of1000mW m-2. The initial output voltage is0.65V. After running23h the copper ion removal is99.9%. If400mg L-1Ni2+implantation catholyte of the CRFC, an open circuit voltage of1.05V and a maximum power density of260mW m-2can be harvested. When the cell runs45.7h, the nickel ion removal is54.8%.
     Thus, Cr(Ⅵ), Cu(Ⅱ), Ni(Ⅱ) with phenol or urea in the CRFC can directly produce electricity, and contaminants can be simultaneously removed. This approach is expected to become a new technology for pollutant treatment.
引文
[1]R. Lee, The outlook for population growth, Science,333 (2011) 569-573.
    [2]中华人民共和国环保部,2012环境统计年报,http://zls.mep.gov.cn/hjtj/nb /2012tjnb/201312/t20131225_265553.htm,2014.
    [3]B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science,337 (2012) 686-690.
    [4]杨凌波,曾思育,鞠宇平,我国城市污水处理厂能耗规律的统计分析与定量识别,给水排水,34(2008)42-45.
    [5]International energy agency in world energy outlook 2011, http://www. worldenergyoutlook.org (International Energy Agency,2011), (2011) 546-547.
    [6]Z. G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D.W. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem Rev,111 (2011) 3577-3613.
    [7]J. P. Holdren, Energy and sustainability, Science,315 (2007) 737-737.
    [8]D. Ginley, M. A. Green, R. Collins, Solar energy conversion toward 1 terawatt, Mrs Bulletin,33 (2008) 355-364.
    [9]周志强,中国能源现状、发展趋势及对策,能源与环境,6(2008)9-10.
    [10]庞博文,李金锋,孙成才,中国未来五十年能源发展趋势,科技向导,17(2011)68-69.
    [11]J. X. Y. Gao, Chromium contamination accident in china:viewing environment policy of china, Environ. Sci. Technol.,45 (2011) 8605-8606.
    [12]B. Sorensen, Hydrogen and Fuel Cells, Elsevier Academic Press,2005.
    [13]B. Dunn, H. Kamath, J. M. Tarascon, Electrical energy storage for the grid:a battery of choices, Science,334 (2011) 928-935.
    [14]B. E. Logan, Extracting hydrogen electricity from renewable resources, Environ. Sci. Technol.,38 (2004) 160A-167A.
    [15]J. Benemann, Hydrogen biotechnology:Progress and prospects, Nat. Biotechnol., 14(1996) 1101-1103.
    [16]H. Im, H. Lee, M. S. Park, J.W. Yang, J. W. Lee, Concurrent extraction and reaction for the production of biodiesel from wet microalgae, Bioresource Technol, 152(2014)534-537.
    [17]0. Komolafe, S. B. V. Orta, I. Monje-Ramirez, I. Y. Noguez, A.P. Harvey, M. T. O. Ledesma, Biodiesel production from indigenous microalgae grown in wastewater, Bioresource Technol.,154 (2014) 297-304.
    [18]B.E. Logan, B. Hamelers, R.A. Rozendal, U. Schrorder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells:Methodology and technology, Environ. Sci. Technol.,40 (2006) 5181-5192.
    [19]P. L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as a net energy producer-can this be achieved?, Environ. Sci. Technol.,45 (2011) 7100-7106.
    [20]D. R. Lovley, The microbe electric:conversion of organic matter to electricity, Current opinion in biotechnology, science,19 (2008) 564-571.
    [21]K. R. R. A. Rabaey, Microbial electrosynthesis-revisiting the electrical route for microbial production, Appl. Ind. microB.,8 (2010) 706-716.
    [22]C.-J. Zhong, J. Luo, P.N. Njoki, D. Mott, B. Wanjala, R. Loukrakpam, S. Lim, L. Wang, B. Fang, Z. Xu, Fuel cell technology:nano-engineered multimetallic catalysts, Energy Environ. Sci.,1 (2008) 454.
    [23]P. W. R. Grove, On voltaic series and the combination of gases by platinum,14 (1839) 127-130.
    [24]E. H. Hull, K.K. Mathur, Citric-acid esters as plasticizers for medical-grade PVC, Mod. Plast.,61 (1984)66-68.
    [25]M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem Rev,104 (2004) 4245-4269.
    [26]Y. H. Chu, Y. G. Shul, Alcohol crossover behavior in direct alcohol fuel cells (DAFCs) System, Fuel Cells,12 (2012) 109-115.
    [27]C. Bianchini, P. K. Shen, Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells, Chem Rev,109 (2009) 4183-4206.
    [28]E. Antolini, E. R. Gonzalez, Alkaline direct alcohol fuel cells, J Power Sources, 195(2010)3431-3450.
    [29]C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J.M. Leger, Recent advances in the development of direct alcohol fuel cells (DAFC), J Power Sources, 105(2002)283-296.
    [30]K.-J. Jeong, C.M. Miesse, J.-H. Choi, J. Lee, J. Han, S.P. Yoon, S.W. Nam, T.-H. Lim, T.G. Lee, Fuel crossover in direct formic acid fuel cells, J. Power Sources,168 (2007) 119-125.
    [31]A. M. Bartrom, J. L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources,214 (2012) 68-74.
    [32]L. An, T.S. Zhao, S.Y. Shen, Q.X. Wu, R. Chen, Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output, J. Power Sources,196 (2011) 186-190.
    [33]J.Y. Chen, C.X. Zhao, M.M. Zhi, K.W. Wang, L.L. Deng, G. Xu, Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes, Electrochim. Acta,66 (2012) 133-138.
    [34]B. R. Tao, F. J. Miao, P. K. Chu, Preparation and characterization of a novel nickel-palladium electrode supported by silicon nanowires for direct glucose fuel cell, Electrochim. Acta,65 (2012) 149-152.
    [35]D. Basu, S. Basu, Synthesis and characterization of Pt-Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell, Int. J. Hydrogen Energy,36 (2011) 14923-14929.
    [36]Y. Liang, P. Wang, H. B. Dai, Hydrogen bubbles dynamic template preparation of a porous Fe-Co-B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution, J. Alloy. Compd.,491 (2010) 359-365.
    [37]Z. P. Li, B. H. Liu, K. Arai, S. Suda, A fuel cell development for using borohydrides as the fuel, J. Electrochem. Soc.,150 (2003) A868-A872.
    [38]P. Y. He, X.Y. Wang, Y. J. Liu, X. Liu, L. H. Yi, Comparison of electrocatalytic activity of carbon-supported Au-M (M=Fe, Co, Ni, Cu and Zn) bimetallic nanoparticles for direct borohydride fuel cells, Int. J. Hydrogen Energy,37 (2012) 11984-11993.
    [39]W. Yan, D. Wang, G. G. Botte, Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation, Electrochim. Acta,61 (2012) 25-30.
    [40]R. Lan, S.W. Tao, J.T.S. Irvine, A direct urea fuel cell-power from fertiliser and waste, Energy Environ. Sci.,3 (2010) 438-441.
    [41]E. Granot, B. Filanovsky, I. Presman, I. Kuras, F. Patolsky, Hydrazine/air direct-liquid fuel cell based on nanostructured copper anodes, J. Power Sources,204 (2012) 116-121.
    [42]A. Serov, C. Kwak, Direct hydrazine fuel cells:A review, Appl. Catal. B-Environ., 98(2010) 1-9.
    [43]S. J. Lao, H. Y. Qin, L. Q. Ye, B. H. Liu, Z. P. Li, A development of direct hydrazine/hydrogen peroxide fuel cell, J. Power Sources,195 (2010) 4135-4138.
    [44]R. Lan, S.W. Tao, Direct ammonia alkaline anion-exchange membrane fuel cells, Electrochem. Solid State Lett.,13 (2010) B83-B86.
    [45]S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, Fundamental studies on direct ammonia fuel cell employing anion exchange membrane, J. Power Sources,208 (2012)257-262.
    [46]R. F. Service, Is there a road ahead For cellulosic ethanol?, Science,329 (2010) 784-785.
    [47]R. F. Service, Cellulosic ethanol-Biofuel researchers prepare to reap a new harvest, Science,315 (2007) 1488-1492.
    [48]E. Waltz, Cellulosic ethanol booms despite unproven business models, Nat. Biotechnol.,26 (2008) 8-9.
    [49]S.Q. Song, P. Tsiakaras, Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs), Appl. Catal. B-Environ.,63 (2006) 187-193.
    [50]L. An, T.S. Zhao, An alkaline direct ethanol fuel cell with a cation exchange membrane, Energy Environ. Sci.,4 (2011) 2213-2217.
    [51]S.P. Annen, V. Bambagioni, M. Bevilacqua, J. Filippi, A. Marchionni, W. Oberhauser, H. Schonberg, F. Vizza, C. Bianchini, H. Grutzmacher, A biologically inspired organometallic fuel cell (OMFC) that converts renewable alcohols into energy and chemicals, Angew Chem. Int. Ed. Engl,49 (2010) 7229-7233.
    [52]L. An, T.S. Zhao, Performance of an alkaline-acid direct ethanol fuel cell, Int. J. Hydrogen Energy,36 (2011) 9994-9999.
    [53]T. Tsujiguchi, T. Iwakami, S. Hirano, N. Nakagawa, Water transport characteristics of the passive direct formic acid fuel cell, J. Power Sources,250 (2014) 266-273.
    [54]R.Y. Wang, J.G. Liu, P. Liu, X.X. Bi, X.L. Yan, W.X. Wang, X.B. Gc, M.W. Chen, Y. Ding, Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells, Chem. Sci.,5 (2014) 403-409.
    [55]S. H. Li, Y. Zhao, J. Chu, W. W. Li, H. Q. Yu, G. Liu, Y.C. Tian, A Pt-Bi bimetallic nanoparticle catalyst for direct electrooxidation of formic acid in fuel cells, Front. Env. Sci. Eng.,7 (2013) 388-394.
    [56]J. L. Wei, X.Y. Wang, Y. Wang, J. Guo, P.Y. He, S.Y. Yang, N. Li, F. Pei, Y.S. Wang, Carbon-supported Au hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells, Energy Fuels,23 (2009) 4037-4041.
    [57]U. B. Demirci, Direct borohydride fuel cell:Main issues met by the membrane-electrodes-assembly and potential solutions, J. Power Sources,172 (2007) 676-687.
    [58]F. Pei, Y. Wang, X. Wang, P. Y. He, L. Liu, Y. Xu, H. Wang, Preparation and performance of highly efficient Au nanoparticles electrocatalyst for the direct borohydride fuel cell, Fuel Cells,11 (2011) 595-602.
    [59]J. D. Qiu, G. C. Wang, R. P. Liang, X. H. Xia, H. W. Yu, Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells, J. Phys. Chem. C,115(2011)15639-15645.
    [60]G. Rostamikia, M. J. Janik, Borohydride Oxidation over Au(111):A first-principles mechanistic study relevant to direct borohydride fuel cells, J. Electrochem. Soc,156 (2009) B86-B92.
    [61]B. H. Liu, Z. P. Li, S. Suda, Anodic oxidation of alkali borohydrides catalyzed by nickel, J. Electrochem. Soc.,150 (2003) A398-A402.
    [62]B. H. Liu, Z. P. Li, S. Suda, Electrocatalysts for the anodic oxidation of borohydrides, Electrochim. Acta,49 (2004) 3097-3105.
    [63]M. M. Antxustegi, A. R. Pierna, N. Ruiz, Chemical activation of Vulcan (R) XC72R to be used as support for NiNbPtRu catalysts in PEM fuel cells, Int. J. Hydrogen Energy,39 (2014) 3978-3983.
    [64]Q. X. Li, H. M. Mao, J. G. Li, Q. J. Xu, Effect of nitric acid on modified mesoporous carbon as catalyst support of direct methanol fuel cell, J. Fuel Cell Sci. Technol.,10(2013)3.
    [65]K. Elouarzaki, R. Haddad, M. Holzinger, A. Le Goff, J. Thery, S. Cosnier, MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O-2 fuel cells, J. Power Sources,255 (2014) 24-28.
    [66]S. S. J. Aravind, S. Ramaprabhu, Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell, ACS Appl. Mat. interfaces,4 (2012) 3805-3810.
    [67]Y. Z. Wang, K. J. Chang, L. F. Hung, K. S. Ho, J.P. Chen, T. H. Hsieh, L. Chao, Carboxylated carbonized polyaniline nanofibers as Pt-catalyst conducting support for proton exchange membrane fuel cell, Synth. Met.,188 (2014) 21-29.
    [68]R. Padmavathi, D. Sangeetha, Synthesis and characterization of electrospun carbon nanofiber supported Pt catalyst for fuel cells, Electrochim. Acta,112 (2013) 1-13.
    [69]A. K. Sahu, K.G. Nishanth, G. Selvarani, P. Sridhar, S. Pitchumani, A.K. Shukla, Polymer electrolyte fuel cells employing electrodes with gas-diffusion layers of mesoporous carbon derived from a sol-gel route, Carbon,47 (2009) 102-108.
    [70]H. Zhu, Z. J. Guo, X.W. Zhang, K. F. Han, Y. B. Guo, F. H. Wang, Z. M. Wang, Y. S. Wei, Methanol-tolerant carbon aerogel-supported Pt-Au catalysts for direct methanol fuel cell, Int. J. Hydrogen Energy,37 (2012) 873-876.
    [71]C. H. Lee, Y. B. Lee, K. M. Kim, M. G. Jeong, D. S. Lim, Electrically conductive polymer composite coating on aluminum for PEM fuel cells bipolar plate, Renew. Energy,54(2013)46-50.
    [72]H. Hosseini, M. Mahyari, A. Bagheri, A. Shaabani, Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene:A highly efficient anodic catalyst for direct formic acid fuel cells, J. Power Sources,247 (2014) 70-77.
    [73]L. Z. Zheng, K. Han, L. Y. Xiong, Z. J. Zou, K. Tao, D. Ye, Graphene-supported Pt-based intermetallic as highly efficient catalysts in fuel cells, Asian J. Chem.,25 (2013)6075-6078.
    [74]J.H. Jung, H.J. Park, J. Kim, S.H. Hur, Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell, J. Power Sources, 248(2014) 1156-1162.
    [75]L. Samiee, F. Shoghi, A. Maghsodi, In situ functionalisation of mesoporous carbon electrodes with carbon nanotubes for proton exchange membrane fuel-cell application, Mater. Chem. Phys.,143 (2014) 1228-1235.
    [76]A. Marinkas, F. Arena, J. Mitzel, G.M. Prinz, A. Heinzel, V. Peinecke, H. Natter, Graphene as catalyst support:The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells, Carbon,58 (2013) 139-150.
    [77]L. Jiang, A. Hsu, D. Chu, R. Chen, Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions, Int. J. Hydrogen Energy,35 (2010) 365-372.
    [78]C.H. Cao, R. Lin, T.T. Zhao, Z. Huang, J.X. Ma, Preparation and characterization of core-shell Co@Pt/C catalysts for fuel cell, Acta Phys.-Chim. Sin.,29 (2013) 95-101.
    [79]N. Muthuswamy, J.L.G. de la Fuente, D.T. Tran, J. Walmsley, M. Tsypkin, S. Raaen, S. Sunde, M. Ronning, D. Chen, Ru@Pt core-shell nanoparticles for methanol fuel cell catalyst:Control and effects of shell composition, Int. J. Hydrogen Energy, 38(2013) 16631-16641.
    [80]H. Zhu, X.W. Li, F.H. Wang, Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy,36 (2011) 9151-9154.
    [81]Y.Y. Song, Y. Li, X.H. Xia, One-step pyrolysis process to synthesize dispersed Pt/carbon hollow nanospheres catalysts for electrocatalysis, Electrochem. Commun.,9 (2007)201-205.
    [82]H. Li, H. Lin, Y. Hu, H.X. Li, P. Li, X.G. Zhou, Hollow Pt-Ni alloy nanospheres with tunable chamber structure and enhanced activity, J. Mater. Chem.,21 (2011) 18447-18453.
    [83]S.J. Kim, C.S. Ah, D.J. Jang, Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles, Adv. Mater.,19 (2007) 1064-1068.
    [84]I. Choi, S.H. Ahn, M.H. Kim, O.J. Kwon, J.J. Kim, Synthesis of an active and stable Pt-shell-Pd-core/C catalyst for the electro-oxidation of methanol, Int. J. Hydrogen Energy,39 (2014) 3681-3689.
    [85]H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, C.L. Bai, Pt hollow nanospheres:Facile synthesis and enhanced electrocatalysts, Angew. Chem.-Int. Edit., 43(2004)1540-1543.
    [86]J. Zhao, W. Chen, Y. Zheng, X. Li, Novel carbon supported hollow Pt nanospheres for methanol electrooxidation, J Power Sources,162 (2006) 168-172.
    [87]L. Yi, Y. Song, W. Yi, X. Wang, H. Wang, P. He, B. Hu, Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells, Int. J. Hydrogen Energy,36 (2011) 11512-11518.
    [88]M. Crisan, M. Zaharescu, V.D. Kumari, M. Subrahmanyam, D. Crisan, N. Dragan, M. Raileanu, M. Jitianu, A. Rusu, G. Sadanandam, J.K. Reddy, Sol-gel based alumina powders with catalytic applications, Appl. Surf. Sci.,258 (2011) 448-455.
    [89]C. Alegre, M.E. Galvez, R. Moliner, V. Baglio, A.S. Arico, M.J. Lazaro, Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction, Appl. Catal. B-Environ.,147 (2014) 947-957.
    [90]T.S. Almeida, L.M. Palma, P.H. Leonello, C. Morais, K.B. Kokoh, A.R. De Andrade, An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: Effect of the preparation method on the electrocatalytic activity of the catalysts, J. Power Sources,215 (2012) 53-62.
    [91]A. Glusen, M. Muller, D. Stolten, Slot-die coating:a new preparation method for direct methanol fuel cells catalyst layers, J. Fuel Cell Sci. Technol.,10 (2013) 4.
    [92]D. Gerteisen, Transient and steady-state analysis of catalyst poisoning and mixed potential formation in direct methanol fuel cells, J. Power Sources,195 (2010) 6719-6731.
    [93]K.D.J. Popovic, J.D. Lovic, A.V. Tripkovic, P.K. Olszewski, Activity of carbon supported Pt3Ru2 nanocatalyst in CO oxidation, J. Serb. Chem. Soc.,74 (2009) 965-975.
    [94]J.H. Jiang, A. Wieckowski, Accelerated CO electrooxidation through a formate pathway in intermediate-temperature alkaline media, Electrochem. Commun.,20 (2012) 121-123.
    [95]D.V. Arulmani, J.I. Eastcott, S.G. Mavilla, E.B. Easton, Photo-enhanced activity of Pt and Pt-Ru catalysts towards the electro-oxidation of methanol, J. Power Sources, 247 (2014) 890-895.
    [96]C.M. Guo, M.X. Zhang, H.F. Tian, T. Wang, J.B. Hu, Preparation and enhanced catalytic activity of Pt-Au alloy catalysts for formic acid oxidation, J. Electrochem. Soc,160 (2013) F1187-F1191.
    [97]Q.G. He, B. Shyam, M. Nishijima, X.F. Yang, B. Koel, F. Ernst, D. Ramaker, S. Mukerjee, Highly stable Pt-Au@Ru/C catalyst nanoparticles for methanol electro-oxidation, J. Phys. Chem. C,117 (2013) 1457-1467.
    [98]S.H. Ahn, I. Choi, O.J. Kwon, J.J. Kim, One-step co-electrodeposition of Pt-Ru electrocatalysts on carbon paper for direct methanol fuel, Chem. Eng. J.,181 (2012) 276-280.
    [99]X. Dong, M. Nishida, T. Hibino, Proton-conductor-supported ultra-low loading Pt-Rh three-way catalysts, J. Phys. Chem. C,117 (2013) 1827-1832.
    [100]H. Tsaprailis, V.I. Birss, Sol-gel derived Pt-Ir mixed catalysts for DMFC applications, Electrochem. Solid State Lett.,7 (2004) A348-A352.
    [101]S. Hu, L.P. Xiong, X.B. Ren, C.B. Wang, Y.M. Luo, Pt-Ir binary hydrophobic catalysts:Effects of Ir content and particle size on catalytic performance for liquid phase catalytic exchange, Int. J. Hydrogen Energy,34 (2009) 8723-8732.
    [102]M.M. Tusi, N.S.O. Polanco, S.G. da Silva, E.V. Spinace, A.O. Neto, The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium, Electrochem. Commun.,13 (2011) 143-146.
    [103]D. Basu, S. Sood, S. Basu, Performance comparison of Pt-Au/C and Pt-Bi/C anode catalysts in batch and continuous direct glucose alkaline fuel cell, Chem Eng J, 228(2013)867-870.
    [104]A. Murthy, E. Lee, A. Manthiram, Electrooxidation of methanol on highly active and stable Pt-Sn-Ce/C catalyst for direct methanol fuel cells, Appl. Catal. B-Environ.,121 (2012) 154-161.
    [105]S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells, J. Power Sources,195 (2010) 1001-1006.
    [106]X. Tuaev, S. Rudi, V. Petkov, A. Hoell, P. Strasser, In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling, ACS nano,7 (2013) 5666-5674.
    [107]J.P. Qian, W. Wei, X.B. Huang, Y.M. Tao, K.Y. Chen, X.Z. Tang, A study of different polyphosphazene-coated carbon nanotubes as a Pt-Co catalyst support for methanol oxidation fuel cell, J. Power Sources,210 (2012) 345-349.
    [108]W. Trongchuankij, K. Poochinda, K. Pruksathorn, M. Hunsom, A study on novel combined processes for preparation of high performance Pt-Co/C electrocatalyst for oxygen reduction in PEM fuel cell, Renew. Energy,35 (2010) 2839-2843.
    [109]W. Trongchuankij, K. Pruksathorn, M. Hunsom, Preparation of a high performance Pt-Co/C electrocatalyst for oxygen reduction in PEM fuel cell via a combined process of impregnation and seeding, Appl. Energy,88 (2011) 974-980.
    [110]A.M.C. Luna, A. Bonesi, W.E. Triaca, A. Di Blasi, A. Stassi, V. Baglio, V. Antonucci, A.S. Arico, Investigation of a Pt-Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells, J. Nanopart. Res.,12 (2010) 357-365.
    [111]W.Z. Li, Q. Xin, Y.S. Yan, Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell:The effect of catalyst composition. Int. J. Hydrogen Energy,35 (2010)2530-2538.
    [112]V. Baglio, A. Di Blasi, C. D'Urso, V. Antonucci, A.S. Arico, R. Ornelas, D. Morales-Acosta, J. Ledesma-Garcia, L.A. Godinez, L.G. Arriaga, L. Alvarez-Contreras, Development of Pt and Pt-Fe catalysts supported on multiwalled carbon nanotubes for oxygen reduction in direct methanol fuel cells, J. Electrochem. Soc.,155 (2008) B829-B833.
    [113]S. Berchmans, H. Gomathi, G.P. Rao, Electrooxidation of alcohols and sugars catalyzed on a nickel-oxide modified glassy-carbon electrode J. Electroanal. Chem., 394(1995)267-270.
    [114]T.G. Nikiforova, A.A. Stepanova, O.A. Datskevich, V.V. Maleev, Porous nickel deposits formed in the oxidation of alcohols in an alkaline medium, Russ. J. Appl. Chem.,86 (2013) 1713-1718.
    [115]K. J,, S.H. J, Oxidation of alcohols by electrochemically regenerated nickel oxide hydroxide, Selec. oxidation of hydroxysteroids,46 (1999) 267.
    [116]J. Taraszewska, G. Roslonek, Electrocatalytic oxidation of methanol on a glassy-carbon electrode modified by nickel-hydroxide formed by ex-situ chemical precipitation, J. Electroanal. Chem.,364 (1994) 209-213.
    [117]V. Vedharathinam, G.G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)(2) catalyst in alkaline medium, Electrochim. Acta,108(2013)660-665.
    [118]V. Vedharathinam, G.G. Botte, Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium, Electrochim. Acta,81 (2012)292-300.
    [119]D.X. Cao, Y.Y. Gao, G.L. Wang, R.R. Miao, Y. Liu, A direct NaBH4-H2O2 fuel cell using Ni foam supported Au nanoparticles as electrodes, Int. J. Hydrogen Energy, 35 (2010) 807-813.
    [120]R. Lan, S. Tao, Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells, J. Power Sources,196 (2011) 5021-5026.
    [121]J.C. Seaman, P.M. Bertsch, L. Schwallie, In situ Cr(Ⅵ) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(Ⅱ) solutions, Environ Sci Technol,33 (1999) 938-944.
    [122]H.L. Ma, Y.W. Zhang, Q.H. Hu, D. Yan, Z.Z. Yu, M.L. Zhai, Chemical reduction and removal of Cr(Ⅵ) from acidic aqueous solution by ethylenediamine-reduced graphene oxide, J. Mater. Chem.,22 (2012) 5914-5916.
    [123]X.G. Li, B.N. Popov, T. Kawahara, H. Yanagi, Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells, J. Power Sources,196 (2011) 1717-1722.
    [124]W.J. Zhou, Z.H. Zhou, S.Q. Song, W.Z. Li, G.Q. Sun, P. Tsiakaras, Q. Xin, Pt based anode catalysts for direct ethanol fuel cells, Appl. Catal. B-Environ.,46 (2003) 273-285.
    [125]L. An, T.S. Zhao, R. Chen, Q.X. Wu, A novel direct ethanol fuel cell with high power density, J. Power Sources,196 (2011) 6219-6222.
    [126]H.-P. Liang, H.-M. Zhang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, C.-L. Bai, Pt hollow nanospheres:facile synthesis and enhanced electrocatalysts, Angew. Chem.,116 (2004) 1566-1569.
    [127]T.C. Tsou, R.J. Lin, J.L. Yang, Mutational spectrum induced by chromium(III) in shuttle vectors replicated in human cells:Relationship to Cr(III)-DNA interactions, Chem. Res. Toxicol.,10 (1997) 962-970.
    [128]B.R. James, The challenge of remediating chromium-contaminated soil, Environ. Sci. Technol.,30 (1996) A248-A251.
    [129]W.F. Liu, J. Zhang, C.L. Zhang, L. Ren, Preparation and evaluation of activated carbon-based iron-containing adsorbents for enhanced Cr(VI) removal:Mechanism study, Chem. Eng. J.,189 (2012) 295-302.
    [130]Y.L. Zhang, Y.M. Li, J.F. Li, G.D. Sheng, Y. Zhang, X.M. Zheng, Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron, Chem. Eng. J.,185(2012)243-249.
    [131]Q. Li, Y. Qian, H. Cui, Q. Zhang, R. Tang, J.P. Zhai, Preparation of poly(aniline-1,8-diaminonaphthalene) and its application as adsorbent for selective removal of Cr(VI) ions, Chem. Eng. J.,173 (2011) 715-721.
    [132]C.E. Barrera-Diaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater.,223 (2012) 1-12.
    [133]J.J. Testa, M.A. Grela, M.I. Litter, Heterogeneous photocatalytic reduction of chromium(Ⅵ) over TiO2 particles in the presence of oxalate:Involvement of Cr(V) species, Environ. Sci. Technol.,38 (2004) 1589-1594.
    [134]Z.H. Wang, W.H. Ma, C.C. Chen, J.C. Zhao, Photochemical coupling reactions between Fe(Ⅲ)/Fe(Ⅱ), Cr(Ⅳ)/Cr(Ⅲ), and polycarboxylates:Inhibitory effect of Cr species, Environ. Sci. Technol.,42 (2008) 7260-7266.
    [135]B. Sun, E.P. Reddy, P.G. Smirniotis, Visible light Cr(Ⅵ) reduction and organic chemical oxidation by TiO(2) photocatalysis, Environ. Sci. Technol.,39 (2005) 6251-6259.
    [136]C.L. Hsu, S.L. Wang, Y.M. Tzou, Photocatalyfic reduction of Cr(VI) in the presence of NO3- and Cl- electrolytes as influenced by Fe(Ⅲ), Environ Sci Technol, 41 (2007) 7907-7914.
    [137]X.J. Liu, L.K. Pan, Q.F. Zhao, T. Lv, G. Zhu, T.Q. Chen, T. Lu, Z. Sun, C.Q. Sun, UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(Ⅵ), Chem. Eng. J.,183 (2012)238-243.
    [138]F. Rodriguez-Valadez, C. Ortiz-Exiga, J.G. Ibanez, A. Alatorre-Ordaz, S. Gutierrez-Granados, Electroreduction of Cr(VI) to Cr(III) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation, Environ. Sci. Technol., 39(2005) 1875-1879.
    [139]S. Pamukcu, A. Weeks, J.K. Wittle, Enhanced reduction of Cr(VI) by direct electric current in a contaminated clay, Environ. Sci. Technol.,38 (2004) 1236-1241.
    [140]M. Tandukar, S.J. Huber, T. Onodera, S.G. Pavlostathis, Biological chromium(VI) reduction in the cathode of a microbial fuel cell, Environ. Sci. Technol., 43(2009)8159-8165.
    [141]L.P. Huang, J.W. Chen, X. Quan, F.L. Yang, Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell, Bioproc. Biosyst Eng.,33 (2010) 937-945.
    [142]L.P. Huang, X.L. Chai, S.A. Cheng, G.H. Chen, Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation, Chem. Eng. J.,166 (2011) 652-661.
    [143]F. Maillard, M. Martin, F. Gloaguen, J.M. Leger, Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition, Electrochim. Acta,47 (2002) 3431-3440.
    [144]M. Xia, M.C. Long, YD. Yang, C. C., W.M. Cai, B.X. Zhou, A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution, Appl. Catal. B-Environ.,110 (2011) 118-125.
    [145]G. Vereb, L. Manczinger, G. Bozso, A. Sienkiewicz, L. Forro, K. Mogyorosi, K. Hernadi, A. Dombi, Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation, Appl. Catal. B-Environ.,129 (2013) 566-574.
    [146]J.Y. Su, H.T. Yu, X. Quan, S. Chen, H. Wang, Hierarchically porous silicon with significantly improved oxidation capability for phenol degradation photocatalytic, Appl. Catal. B-Environ.,138-139(2013)427-433.
    [147]M.S. Sanchez, A.M. Valiente, J.A. Rodriguez, A.V. M., I.R. Ramos, A.G. Ruiz, Carbon nanostrutured materials as direct catalysts for phenol oxidation in aqueous phase, Appl. Catal. B-Environ.,104(2011) 101-109.
    [148]R.R.N. Marques, F. Stuber, K.M. Smith, A. Fabregat, C. Bengoa, J. Font, A. Fortuny, S. Pullket, G.D. FowleR, N.J.D. Graham, Sewage sludge based catalysts for catalytic wet air oxidation of phenol:Preparation, characterisation and catalytic performance, Appl. Catal. B-Environ.,101 (2011) 306-316.
    [149]M. Saeed, M. Ilyas, Oxidative removal of phenol from water catalyzed by nickel hydroxide, Appl. Catal. B-Environ.,129 (2013) 247-254.
    [150]M. Ferreira, H. Varela, R.M. Torresi, G. Tremiliosi, Electrode passivation caused by polymerization of different phenolic compounds, Electrochim. Acta,52 (2006) 434-442.
    [151]S.Patra, N. Munichandraiah, Electro-oxidation of phenol on polyethylenedioxyt-hiophene conductive-polymer-deposited stainless steel substrate, J. Electrochem. Soc,155 (2008) F23-F30.
    [152]R. Lan, S.W. Tao, Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells, J. Power Sources,196 (2011) 5021-5026.
    [153]L. Xiao, J.T. Lu, P.F. Liu, L. Zhuang, J.W. Yan, Y.G. Hu, B.W. Mao, C.J. Lin, Proton diffusion determination and dual structure model for nickel hydroxide based on potential step measurements on single spherical beads, J. Phys. Chem. B,109 (2005) 3860-3867.
    [154]S. Abaci, U. Tamer, K. Pekmez, A. Yildiz, Electrosynthesis of benzoquinone from phenol on alpha and beta surfaces of PbO2, Electrochim. Acta,50 (2005) 3655-3659.
    [155]T.A. Enache, A.M. Oliveira-Brett, Phenol and para-substituted phenols electrochemical oxidation pathways, J. Electroanal. Chem.,655 (2011) 9-16.
    [156]C. Comninellis, C. Pulgarin, Anodic-oxidation of phenol for wasterwater treatment J. Appl. Electrochem.,21 (1991) 703-708.
    [157]X.Y. Li, Y.H. Cui, Y.J. Feng, Z.M. Xie, J.D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res.,39 (2005) 1972-1981.
    [158]X.Y. Duan, F. Ma, Z.X. Yuan, L.M. Chang, X.T. Jin, Electrochemical degradation of phenol in aqueous solution using PbO2 anode, J. Taiwan Inst. Chem. Eng.,44(2013)95-102.
    [159]B.D. Katarzyna, K. Piotr, N. Katarzyna, Examination of benzoquinone electrooxidation pathway as crucial step of phenol degradation process, Electrochim. Acta,80(2012)22-26.
    [160]L. Liu, H.J. Liu, Z.Y. P., Y.Q. Wang, Y.Q. Duan, G.D. Gao, M. Ge, W. Chen, Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation, Environ. Sci. Technol., 42 (2008) 2342-2348.
    [161]Eureopean commission integrated pollution prevention and control:surface treatment of metals and plastics, (2006) pⅥ.
    [162]US EPA national recommended water quality criteria, http://water.epa.gov/ scitech/swguidance/standards/criteria/current/index.cfm, (2014).
    [163]W. Simka, J. Piotrowski, A. Robak, G. Nawrat, Electrochemical treatment of aqueous solutions containing urea, J. Appl. Electrochem.,39 (2009) 1137-1143.
    [164]I. Fittschen, H.H. Hahn, Characterization of the municipal wastewaterpart human urine and a preliminary comparison with liquid cattle excretion, Water Sci. Technol.,38(1998)9-16.
    [165]B.K. Boggs, R.L. King, G.G. Botte, Urea electrolysis:direct hydrogen production from urine, Chem. Commun., (2009) 4859-4861.
    [166]Y.e.a. Tang, Electro-catalytic performance of PdCo bimetallic hollow nano-spheres for the oxidation of formic acid, J. Solid State Electrochem,14 (2010) 2077-2082.
    [167]X. Wang, Y. Xia, Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation, Electrochem. Commun,10 (2008) 1644-1646.
    [168]H. Huang, Y. Fan, X. Wang, Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol, Electrochim. Acta,80 (2012) 118-125.
    [169]R.D. Armstrong, G.W.D. Briggs, E.A. Charles, Some effects of the addition of cobalt to the nickel-hydroxide electrode J. Appl. Electrochem.,18 (1988) 215-219.
    [170]P. Hernandez-Fernandez, Effect of Co in the efficiency of the methanol electrooxidation reaction on carbon supported Pt, J. Power Sources 195 (2010) 7959-7967.
    [171]S.L. Gojkovic, Electrochemical oxidation of methanol on Pt3Co bulk alloy, J. Serb. Chem. Soc.,68 (2003) 859-870.
    [172]J.R.C. Salgado, E. Antolini, E.R. Gonzalez, Carbon supported Pt-Co alloys as methanol-resistant oxygen-reduction electrocatalysts for direct methanol fuel cells, Appl. Catal.,57 (2005) 283-290.
    [173]R.D. Armstrong, E.A. Charles, Some effects of cobal hydroxide uopn the electrochemical-behavior of nickel-hydroxide electrodes J. Power Sources,25 (1989) 89-97.
    [174]H.C. Tao, M. Liang, W. Li, L.J. Zhang, J.R. Ni, W.M. Wu, Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell, J. Hazard. Mater.,189 (2011) 186-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700