用户名: 密码: 验证码:
大锻件材料30Cr2Ni4MoV钢的热变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大锻件通常用来制造大型结构件和重要承载零部件。随着电力、钢铁、石化、国防等行业的发展,大锻件的需求量越来越大。最近十年,我国大锻件的需求量将持续在一个高点,其中大型电站设备又将是需求的主要市场。但是,由于我国工业起步较晚,大锻件的制造能力难以达到要求,因而许多大锻件需要从国外进口,这不仅加重了各行业的负担,还使我国难以掌握关键性技术,限制了行业的发展。所以如何提高大锻件的生产能力将是我国面临的一个难题。
     大锻件的生产采用热加工,以便降低加工载荷。大锻件成本极高,一般不允许锻造失败,因此,研究大锻件材料热变形特性(流动应力和微观组织演变规律),将所建立的模型运用于计算机模拟,可以代替部分大型锻造试验,是研究大锻件成形规律、实现“控形控性”目标的最有力手段之一。
     本文选取我国生产低压转子的大锻件材料30Cr2Ni4MoV钢作为研究对象,通过热模拟压缩试验和定量金相试验获得大量的数据,从而建立了该种材料的高温流动应力模型和微观组织演变模型。
     通过将30Cr2Ni4MoV试样在Gleeble-3500热模拟机上进行热压缩试验,得到其真应力-应变的试验数据。30Cr2Ni4MoV钢在高温下的流动应力曲线具有典型的动态再结晶特征。针对流动应力随变形而变化的两个阶段,将材料的流动应力曲线分成加工硬化-动态回复阶段和动态再结晶阶段。建立模型时,认为变形温度决定了原子的扩散能力和位错移动的驱动力,变形速率决定了位错密度和晶界能的积累速度,借助Zener-Hollomon参数建立了各个特征变量的数学表达式,确立了该种材料的高温流动应力模型。并通过对动态再结晶阶段的流动应力分析,确立了该种材料的动态再结晶动力学模型。
     通过对试样进行定量金相分析,测量出30Cr2Ni4MoV试样在不同变形条件下的动态再结晶晶粒尺寸。认为动态再结晶晶粒尺寸只取决于变形条件,而与原始晶粒大小无关,借助Zener-Hollomon参数,建立了30Cr2Ni4MoV钢的动态再结晶晶粒尺寸模型。
     通过对有限元软件MSC.Marc进行二次开发,将建立的流动应力模型和微观组织演变模型编写进热-力耦合程序,对30Cr2Ni4MoV钢热变形时应变、应变速率、应力、动态再结晶百分数以及动态再结晶晶粒尺寸的分布进行了数值模拟,并与实验数据对照,验证了本文建立模型的正确性。
Heavy forgings are always used to produce large-sized structural parts and significant load bearing parts. With the development of industry, such as electric power and military defense, heavy forgings are demanded especially.
     In China, the gap of heavy forgings between demand and supply will be tremendous in the next decade. Particularly, China requires a large number of power plant equipments such as rotors. However, due to the low level of manufacturing industry, we have to import lots of important parts, which increase the burden of our country. More seriously, we don’t master the key technology of the heavy forgings production. Thus, we should improve the ability of heavy forgings manufacture.
     Heavy forgings are difficult to process because of their large sizes and heavy weights. In order to reduce the load, they are always produced by hot processing. Because of their high costs, heavy forgings are not allowed to fail. Therefore, we should find out their high temperature deformation characteristics, which contain the flow stress behavior and microstructure evolution to simulate the large forgings’deformation by computers afterwards.
     Based on the Gleeble-3500 thermo-mechanical simulation tests of alloy steel 30Cr2Ni4MoV, which is the material of low pressure rotor, a model of flow stress characterized by dynamic recrystallization (DRX) for 30Cr2Ni4MoV was put forward. In the model, the high temperature flow stress curve was divided into dynamic recovery region and dynamic recrystallization region. The characteristic parameters of flow stress models were described as functions of Zener-Hollomon parameter. By analyzing the dynamic recrystallization region of flow stress curve, the Kinetics of dynamic recrystallization was modeled.
     Based on the metallographic experiment, the dynamic recrystallization grain size of every specimen was measured. The model of dynamic recrystallization grain size was put forward on the basis of idea that the grain size is only determined by the deformation condition, which can be expressed by the Zener-Hollomon parameter Z.
     Based on MSC.Marc, a numerical simulation system for analyzing deformation and microstructural evolution was developed. Making using of the developed system, the distributions of equivalent strain, equivalent strain rate, equivalent stress, dynamic recrystallization volume fraction and dynamic recrystallization grain size in the specimen were obtained. The simulation results agree with the experimental results, which show the models and numerical simulation system can be used to design and optimize heavy forging processing techniques.
引文
[1]第一机械工业部机械研究院.国外发电设备大锻件译文集[M].北京:第一机械工业部机械研究院. 1972:26-59.
    [2]东北重型机械学院.大锻件热处理[M].黑龙江:东北重型机械学院. 1974: 1-32.
    [3]第一重机厂技术室情报组.电站大锻件生产技术总结[M].北京:第一重机厂技术室情报组. 1977: 1-18.
    [4]哈尔滨汽轮机厂. 20万千瓦汽轮机的结构[M].北京:水利电力出版社. 1992: 10-65.
    [5]侯曼西.工业汽轮机[M].重庆:重庆大学出版社. 1995: 1-60.
    [6]吴季兰.汽轮机设备及系统[M].北京:中国电力出版社. 2006: 1-23.
    [7]王凤喜.大锻件生产行业与锻造技术发展[J].锻压机械. 2002,1(4):3-6.
    [8]菜墉.我国自由锻液压机和大型锻件生产的发展历程[J].锻造与冲压. 2007(1):84-88.
    [9]郭会光,曲宗实.我国大锻件制造业的发展[J].大型铸锻件. 2003(1):42-45.
    [10]底学晋,李建华,菜墉.我国大锻件生产行业建设发展回眸[J].重型机械. 2000(1):1-8.
    [11]郭会光.我国大型锻件的发展与提高[J].机械工人. 2005(7):14-45.
    [12]第一机械工业部机械研究院.国外发电设备大锻件译文集[M].北京:第一机械工业部机械研究院. 1972:34-35.
    [13]刘振. 30Cr2Ni4MoV钢白点防止工艺的研究[J].特钢技术. 2003(1):27-28.
    [14]李雅武.精炼30Cr2Ni4MoV低压转子材料在超超临界机组上的应用[J].汽轮机技术. 2006,48(1):73-74.
    [15] J.H.Hollomon. Tensile Deformation[J]. Trans AIME. 1945(162):268-290.
    [16] D.C.Ludwigson. Modified stress-strain relation for fcc metals and alloys[J]. 1971,2(10):2825-2828.
    [17] E.Voce. The relationship between stress and strain for homogeneous deformation[J]. J Inst Metals. 1948(74):537-562.
    [18] P.V.Sivaprasad, S.Venugopal, S. Venkadesan. Effect of temperature and strain rate on tensile flow and work hardening behavior of a Ti modified austenitic stainless steel[J]. Materials Science and Technology. 2004,20(3):350-356.
    [19] C.M.Sellars. Modelling microstructural development during hot rolling[J]. Materials Science and Technology. 1990,6:1072-1081.
    [20] C.M.Sellars. Computer modeling of hot-working process[J]. Materials Science and Technology. 1985,1:325-332.
    [21] A.Laasraoui, J.J.Jonas. Recrystallization of austenite after deformation at high temperature and strain rates-analysis and modeling[J]. Metallurgical Transaction A. 1991,22A(7):151-160.
    [22] A.Laasraoui, J.J.Jonas. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transaction A. 1991,22A(7): 1545-1558.
    [23] H.Merking, U.F. Kocks. Kinetics of flow and strain hardening[J]. Acta Metallurgica. 1981,28:1865-1875.
    [24] Y.Estrin, H.Merking. A unified phenomenological description of work hardening and creep based on one-parameter model[J]. Acta Metallurgica. 1984,32(1):57-70.
    [25] Y.Estrin, H.Braasch, Y.Brechet. A dislocation density based constitutive model for cyclicdeformation[J]. Journal of Engineering Materials and Technology. 1996, 118(4):441-447.
    [26] S.Serajzadeh, A.K.Taheri. Prediction of flow stress at hot working condition[J]. Mechanics Research Communications. 2003,30:87-93.
    [27] S.Serajzadeh, A.K.Taheri. An investigation on the effect of carbon and silicon on flow behavior of steel[J]. Materials & Design. 2002, 23 (3) :271-276.
    [28] S.Serajzadeh, A.K.Taheri. An investigation of the silicon role on austenite recrystallization[J]. Materials Letters. 2002, 56 (6) :984-989.
    [29] R. Colas. Model for the hot deformation of low-carbon steel[J]. Journal of Materials Processing Technology. 1996,62 (1-3): 180-184.
    [30] A. Oudin, M.R.Barnett, P.D.Hodgson. Grain size effect on the warm deformation behaviour of a Ti-IF steel[J]. Materials Science and Engineering A. 2004, 367(1-2): 282-294.
    [31]吴瑞恒,张鸿冰等.基于晶粒尺寸的结构钢热变形流变应力数学模型[J].上海交通大学学报. 2003,37(10):1497-1500.
    [32]金蕾,徐有容. C-Mn钢热变形行为及流变应力模型的研究[J].上海大学学报(自然科学版). 1999,5(2):123-127.
    [33] L. Wang, Y. Fan, G. Huang, et al. Flow stress and softening behavior of wrought magnesium alloy AZ31B at elevated temperature[J]. Transactions of Nonferrous Metals Society of China. 2003,13(2): 335-338.
    [34] J. Liu, Z.S.Cui, C.X.Li. Modeling of flow stress characterizing dynamic recrystallization for magnesium alloy AZ31B. Computational Materials Science. 2008, 41(3): 375-382.
    [35] C.M.Sellars, J.A.Whiteman. Recrystallization and grain growth in hot rolling[J]. Metal Science. 1979,13(3-4): 187-194.
    [36] C.M.Sellars, J.H.Beynon. Microstructural Development During Hot Rolling of Titanium Microalloyed Steels. Proceeding of an International Conference on High Strength Low Alloy Steels. AIME. 1985: 142-150.
    [37] C.M.Sellars. Computer Modelling of Hot-Working Processes[J]. Materials Science and Technology. 1985,1(4): 325-332.
    [38] C.M.Sellars, W.J.McTegart. On the mechanism of hot deformation[J]. Acta Metallurgica. 1966,14(9):1136-1138.
    [39] T.Senuma, H.Yada. Annealing Processes, Recovery, Recrystallization and Grain Growth[J]. Metallurgy and Materials Science. 1986:547-552.
    [40] H.Yada, N.Matsuzu, K.Nakajima. Deformation stress and structural change during high strain rate hot deformation of carbon steel. Advances in the Physical Metallurgy and Applications of Steels, Proceedings of an International Conference. 1982:325-330.
    [41] Y.Saito, T.Enami, T.Tanaka. Trans. Iron Steel Inst. Jpn. 1985,25:1146-1155.
    [42] H.J.McQueen. Initiating nucleation of dynamic recrystallization, primarily in polycrystals[J]. Materials Science and Engineering A. 1988,101:149-160.
    [43] S.Nanba, M.Kitamura, et al. Prediction of microstructure distribution in the through-thickness direction during and after hot rolling in carbon steels[J]. ISIJ International. 1992,32:377-386.
    [44] S.Serajzadeh, A.K.Taheri. An investigation into the effect of carbon on the kinetics of dynamic restoration and flow behavior of carbon steels[J]. Mechanics of Materials. 2003, 35(7):653-660.
    [45] P.D.Hodgson, R.K.Gibbs. A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed steels[J]. ISIJ International. 1992,32(12): 1329-1338.
    [46] K.J.Lee. Recrystallization and precipitation interaction in Nb-containing steel[J]. Scripta Metallurgica. 1999,40:837-843.
    [47] T.Siwecki. Modeling of microstructure evolution during recrystallization controlled rolling[J]. ISIJ International. 1992,32(3):368-376.
    [48] S.-I.Kim, Y.Lee, D.L.Lee, et. Al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation[J]. Materials Science and Engineering A. 2003, 355(1-2):384-393.
    [49] S.-I. Kim, Y.Lee, B.L.Jang. Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling[J]. Materials Science and Engineering A. 2003, 357(1-2):235-239.
    [50] A. M. Elwazri, E. Essadiqi, S.Yue. The Kinetics of static recrystallization in microalloyed hypereutectoid steels[J]. ISIJ International. 2004,44(1):162-170.
    [51] A. M. Elwazri, E. Essadiqi, S.Yue. The Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels[J]. ISIJ International. 2004,44(4):744-752.
    [52] A. M. Elwazri, E. Essadiqi, S.Yue. Metadynamic and static recrystallization in microalloyed hypereutectoid steels[J]. ISIJ International. 2003,43(7):1080-1088.
    [53] A.Laasraoui, J.J.Jonas. Recrystallization of austenite after deformation at high temperature and strain rates-analysis and modeling[J]. Metallurgical Transactions A. 1991,22A(7):151-160.
    [54] D.P. Grong, H.R. Shercliff. Microstructural modeling in metals processing. Prog Mater Sci. 2002,47(2):163-282.
    [55]刘鹏飞,刘东,罗子健等. GH761合金的热变形行为与动态再结晶模型[J].稀有金属材料与工程. 2009,38(2): 275-280.
    [56]吴瑞恒,朱洪涛,张鸿冰等. 0.95C-18W-4Cr-1V高速钢动态再结晶的数学模型[J].上海交通大学学报. 2001,35(3):339-342.
    [57]崔忠圻.金属学与热处理[M].北京:机械工业出版社. 2004:214-215.
    [58]毛为民.金属的再结晶与晶粒长大[M].北京:冶金工业出版社. 1994: 112-160.
    [59]吕炎.锻件缺陷分析与对策[M].北京:机械工业出版社, 1999:1-25.
    [60]田村今男.高强度低合金钢的控制轧制与控制冷却[M].北京:冶金工业出版社. 1992:36-37.
    [61] H. Takuda, H.Fujimoto, N.Hatta. Modeling on flow stress of Mg-Al-Zn alloys at elevated temperature [J]. Journal of Materials Processing Technology. 1998,80-81(8):513-516.
    [62] Y.Bergstrom. A dislocation model for the stress-strain behavior of polycrystalline [alpha]-Fe with special emphasis on the variation of mobile and immobile dislocations[J]. Material Science and Engineering. 1970, 5(4) :193-200.
    [63] Y.Estrin, H.Mecking. Unified phenomenological description of work hardening and creep based on one-parameter models[J]. Acta Metallurgica. 1984,32(1):57-70.
    [64] H.Mecking, U.F.Kocks. Kinetics of flow and strain-hardening[J]. Acta Metallurgica. 1981,29(11): 1865-1875.
    [65] C.M.Sellars, J.A.Whiteman. Recrystallization and grain growth in hot rolling[J]. Metal Science. 1979,13(3-4):187-194.
    [66] R.Colas. A model for the hot deformation of low-carbon steel[J]. Journal of Materials Processing Technology. 1996,62(1-3):180-184.
    [67] M.E. Wahabi, J.M.Cabrera, J.M.Prado. Hot working of two AISI 304 steels: a comparative study[J]. Materials Science and Engineering A. 2003,343(1-2):116-125.
    [68] L.X.Kong, P.D.Hodgson, B.Wang. Development of constitutive models for metal forming with cyclic strain softening[J]. Journal of Materials Processing Technology. 1999,89-90:44-45.
    [69]张先宏,崔振山,阮雪榆.镁合金塑性成形技术——AZ31B成形性能及流变应力[J].上海交通大学学报. 2003,37(12): 1874-1877.
    [70]刘娟.镁合金锻造成形性能研究及数值模拟[D].上海:上海交通大学. 2008.
    [71]王有铭,李曼云,韦光等.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社. 1995:17-20.
    [72]毛为民.金属的再结晶与晶粒长大[M].北京:冶金工业出版社. 1994:198-200.
    [73]任福东.热加工工艺基础[M].北京:机械工业出版社. 1997: 1-200
    [74] R.Kopp, M.L.Cao, M.M.d.Souza. Multi-level simulation of metal forming process[In]. Proceedings of the Second International Conference on Technology of Plasticity. 1987:1129-1234.
    [75] R.Kopp, K.Karnhausen, M.M.d.Souza. Numerical simulation method for designing thermomechanical treatment illustrated by bar rolling[J]. Scandinavian Journal of Metallurgy. 1991,20:351-363.
    [76] S.-I.Kim, Y.-C.Yoo. Dynamic recrystallization behavior of AISI 304 stainless steel[J]. Materials Science and Engineering A. 2001,311:108-113.
    [77] C.A. Hernandez, S.F.Medina, J.Ruiz. Modeling austenite flow curves in low alloy and microalloyed steels[J].Acta Materialia. 1996,44(1):155-163.
    [78] S.I.Kim, Y.Lee, S.M.Byon. Study on constitutive relation of AISI 4140 steel subject to large strain at elevated temperatures[J]. Journal of Materials Processing Technology. 2003,140(1-3):84-89.
    [79] H.J.McQueen, S.Yue, N.D.Ryan, et. Al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology. 1995,53(1-2):293-310.
    [80] S.F.Medina, C.A.Hernandez. Modeling of the dynamic recrystallization of austenite in low alloy and microalloyed steels[J]. Acta Materialia. 1996,44(1): 165-171.
    [81]王占学.控制轧制与控制冷却[M].北京:冶金工业出版社. 1988:18-21.
    [82]吕炎.锻件缺陷分析与对策[M].北京:机械工业出版社, 1999:1-10.
    [83]高文民.金相检验基本知识[M].北京:中国铁道出版社. 1989:15-124.
    [84]裴卓.金相浸蚀手册[M].北京:科学普及出版社出版. 1982:1-152.
    [85]秦国友.定量金相[M].四川:四川科学技术出版社. 1987:15-78.
    [86] C.M. Sellars, J.A. Whiteman. Recrystallization and grain growth in hot rolling[J]. Metal Science. 1979,13(3-4):187-194.
    [87] MSC.Marc User Guides. MSC.Software Corporation. 2007.
    [88] MSC.Marc 2007 (Volume A): Theory an User Information. MSC.Software Corporation. 2007.
    [89] MSC.Marc 2007 (Volume D): User Subroutines and Special Routines. MSC.Software Corporation. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700