用户名: 密码: 验证码:
油井解堵作业机器人结构设计及运动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油层仿生电脉冲造缝解堵技术是本课题组开发出的一种新的油井解堵方法。该方法是利用智能解堵作业机器人将正负电极送入射孔通道中进行火花放电以实现对地层的造缝和解堵。该方法可以解决物理解堵和化学解堵分层困难且易造成二次污染的难题,能够有效地提高油井采收率。由于机器人的工作方式不同于传统的解堵方法,开展油井解堵作业机器人的研究工作具有重要的理论意义和工程应用价值。
     采用理论分析与实验研究相结合的方法,开展了油井解堵作业机器人结构设计及其控制方面的研究工作。在总体结构设计、变形分析以及运动控制等方面取得了一些创新性的研究成果。
     对自适应导向机构、井壁支撑机构、蠕动行走机构、射孔检测机构以及电极送进机构进行了设计,利用Pro/E软件得到了油井解堵作业机器人的三维模型,完成了样机模型的制造与装配。
     建立了油井解堵作业机器人的温度场模型,对整体结构进行了三维数值模拟,给出了不同温度条件下整体结构的变形和应力分布情况。对整体机构进行了模态分析,得到了整体结构前10阶的固有频率和振型。
     对支撑结构进行了受力分析,得到了作用力与结构的关系式。建立了支撑机构的仿真模型,得到不同支撑距离时构件的变形及应力分布情况。对导向杆和连接杆进行了静力分析,得到不同受力条件下导向杆和连接杆的变形和应力分布曲线。此外,还研究了温度变化对支撑机构、导向杆和连接杆变形和应力的影响。
     研究了解堵作业机器人的下井作业过程,提出了利用单片机进行运动控制的方法。对稳压电源模块、单片机时钟模块、射孔检测电路、步进电机控制以及圆管电磁推杆的控制进行了设计,得到了总体的控制方案。
Plug removal with electrical pulse for oil wells is a new method developed by us to solve the problem of well plugging. An intelligent robot is designed to take positive and negative electrodes into the perforations and conduct discharge operation on plug formation. This method can solve the problems of slicing difficulty and secondary pollution easily and improve oil recovery factor effectively. For the reason that working mode of the robot is different from traditional methods, research on the plug removal robot for oil wells has important theoretical and engineering values.
     Approach combined with theoretical analysis and experimental study is adopted on the research of structure design and motion control. On the aspect of overall structural design, deformation analysis and process control movement, a number of innovative research results have been made.
     Self-adaptive guiding mechanism, supporting mechanism on sidewall, creep walking mechanism, detection mechanism for perforation and feed-in mechanism of electrodes are designed. Three-dimensional model of the plug removal robot is obtained by Pro/E and experimental prototype is manufactured and made up.
     Temperature field of the plug removal robot is analyzed and temperature variations are simulated. Deformation and stress distribution of the overall structure are given under different temperature conditions. Modal analysis is also carried out and top 10 bands of natural frequency and mode shape are obtained.
     Mechanical analysis of the supporting structure is analysed and relational expression between sidewall force and structure is given. Simulation model of the supporting structure is established and deformation and stress distribution of components under different supporting distance are analyzed. Static analysis is also carried out for guiding rod and connecting rod and deformation and stress distribution curves are obtained under different loads. In addition, affect of temperature variations on deformation and stress distribution of them is also studied.
     Working process of plug removal robot is researched and motion control system using microprocessor is proposed. Regulated power supply, clock of microprocessor, circuit of detecting perforation, control of stepping motor and pipe electromagnet are designed and control scheme of overall structure is established.
引文
[1]李伟翰,颜红侠,王世英,等.近井地带解堵技术研究进展[J].油田化学, 2005, 22(4): 381-384.
    [2]鞠斌山,伍增贵,邱晓凤,等.油层伤害问题的研究概况与进展[J].西安石油学院学报, 2001, 16(3): 12-16.
    [3]樊世忠,何纶.国内外油气层保护技术的新进展(П)-工程技术措施[J].石油钻探技术, 2005, 33(2): 1-4.
    [4]刘开第,庞彦军,孙光勇.解堵技术选优决策的未确知测度模型[J].石油学报, 2001, 22(1): 89-93.
    [5] Leonard J. Kalfayan, BJ services. Fracture Acidizing: History, Present State, and Future[A]. SPE Hydraulic Fracturing Technology Conference[C]. United States: Society of Petroleum Engineers (SPE), 2007: 531-538.
    [6] Xiaohan Pei, Yusheng Zhang, Shujin Zhang, et al. Research and application on horizontal well sectional acidizing technology[A]. Asia Pacific Oil and Gas Conference and Exhibition[C]. Indonesia: Society of Petroleum Engineers (SPE), 2007: 454-456.
    [7] Jianghong Jia, Yuanfang Cheng Xiutai Zhao, et al. Damage mechanism and plug removing technique of the low permeability reservoirs in Chunliang Oilfield[J]. Petroleum Exploration and Development, 2008, V35(3): 330-334.
    [8] Balakirev V. A., Sotnikov G. V., Tkach Yu. V, et al. High-frequency method of removal of paraffin plugs in the equipment of oil wells and oil pipelines[J]. Journal of Engineering Physics and Thermophysics, 2002, V75(5): 1174-1183.
    [9] Lightford, Stephen, Pitoni, et al. Development and field use of a novel solvent/water emulsion for the removal of asphaltene deposits in fractured carbonate formations[A]. SPE Annual Technical Conference and Exhibition[C]. United States: Society of Petroleum Engineers (SPE), 2008, V23(3): 301-311.
    [10] Gensheng Li, Zhongwei Huang, Debin Zhang, et al. Study of treatment of near well-bore formation processed with high pressure rotating water jets[J]. Petroleum Science and Technology, 2002, V20(9&10): 961-972.
    [11]张建国,王方.物理与化学复合在解堵降水增油方面的研究[A].中国油田采油与集输用化学品开发应用研讨会论文集[C].贵阳:中国油田化学品, 2008: 38-41.
    [12]李根生,黄中伟,张德斌,等.高压水射流与化学剂复合解堵工艺的机理及应用[J].石油学报, 2005, 26(1): 96-99.
    [13]马加骥,荣耀森.高压水射流油井解堵技术的研究[J].石油钻采工艺, 18(6): 85-88.
    [14]张建国,刘全国,甄思广.低频水力振动器解堵原理及现场应用[J].石油大学学报(自然科学版), 2003, 27(5): 47-49.
    [15]梁春,李庆,焦亚凤.水力振动法处理油层技术的研究与应用[J].大庆石油地质与开发, 2006, 26(2): 65-67.
    [16] Grebennikov. I. Yu, Gun'ko. V. I, Dmitrishin. A.Ya, et al. Assessment of the attained level and prospects for development of high-voltage pulse capacitors for downhole electric discharge facilities[J]. Russian Electrical Engineering, 2007, V78(8): 435-438.
    [17]张永发,祝济之,胡长华,等.超声波地层解堵机理研究初步[J].北京理工大学学报, 2006, 26(5): 397-400.
    [18]王洪波.超声波采油技术在孤岛油田的应用[J].内蒙古石油化工, 2008, (16):85.
    [19]孙鹞鸿,左公宁,姚儒彬,等.一种用于油水井解堵增油的高压电脉冲源[J].钻采工艺, 2000, 23(5): 45-47.
    [20]李强,史建.物理—化学复合解堵新技术[J].内蒙古石油化工.2008, (1): 76-78.
    [21]刘涛,曹亚明,王桂杰,等.复合压裂解堵技术的研究与试验[J].小型油气藏. 2006, (12): 45-48.
    [22]张建国,楚子星,郭建卿,等.水气脉冲波复合化学解堵技术[J].油气地质与采收率. 2007, 14(5): 101-103.
    [23]杨倩云,郭保雨,沈丽.生物酶可解堵钻井液解堵机理研究[J].钻井液与完井液, 2009, 26(3): 12-15.
    [24]杨德华,董治学,罗波.生物酶解堵技术现场试验研究[J].石油天然气学报, 2008, 30(6): 321-323.
    [25]苏崇华.生物酶解堵增产研究与应用[J].石油钻采工艺, 2008, 30(5): 96-100.
    [26]李丽,纪振云,迟成亮.低渗透油田选择性酸化解堵剂研制[J].钻井液与完井液, 2007, 24(1): 44-46.
    [27] Malagon C., Pournik M, Hill A D. The texture of acidized fracture surfaces: Implications for Acid Fracture Conductivity[J]. SPE Production & Operations, 2008, 23(3): 343-352.
    [28]王庆莲.油井化学解堵增产技术研究[J].油气田地面工程. 2005, 24(10): 5.
    [29]王庆,赵明宸,孟红霞.生物酶在出砂稠油井解堵中的应用[J].油田化学. 2002, 19(1): 24-26.
    [30] Cusack F, Brown D R, Costerton J W, et al. Field and Laboratory Studies of Microbial/Fines Plugging of Water Injection Wells: Mechanism, Diagnosis and Removal[J]. Journal of Petroleum Science and Engineering, 1987, V1(1): 39-50.
    [31]贾江鸿,程远方,赵修太,等.纯梁油田低渗透油藏伤害机理及解堵技术[J].石油勘探与开发. 2008, 35(3): 330-334.
    [32]贾江鸿,赵修太,程远方,等. CJS水伤害解堵剂的室内评价及应用.钻井液与完井液[J]. 2007, 24(2): 53-55.
    [33]田乃林,牛桂玲.注聚合物井井底堵塞物解除方法的室内研究[J].钻采工艺, 2002, 25 (6): 86-88.
    [34]郑延成,赵修太,赵维鹏.破除聚合物凝胶的试验研究[J].石油钻采工艺, 1999, 21 (5): 72-75.
    [35]周卫强,李新华,刘桂军,等.高效JHW复合解堵配方的研制与应用[J].石油天然气学报, 2005, 27(3): 390-391.
    [36]张岩,隋伟娜,刘春国.聚合物驱解堵增注技术在孤岛油田的应用[J].钻采工艺, 2006, 29(1) : 87-90.
    [37]李君,杨希志.注聚井用JY21解堵剂的研制及性能评价[J].化学工程师, 2004, (7): 10-12.
    [38]从君丽.油井电火花解堵造缝机器人控制系统的研究[D].东营:中国石油大学(华东), 2008.
    [39]牛世龙,董贤勇.高压水射流解堵技术的应用[J].石油矿场机械, 2002, 31(3) :41-43.
    [40]刘扬,狄鹏,高志勇,等.大功率超声波解堵工艺技术及其应用[J].河南石油, 2006, 20(2): 81-82.
    [41]王江宽,罗艳红.水力冲击压裂—化学复合解堵技术的研究与应用[J].油田化学, 1999, 16(3): 220-223.
    [42]张立,张伟峰,宋和平.多脉冲高能气体压裂—二氧化氯复合解堵技术研究[J].西安石油学院学报(自然科学版), 2003, 18(3): 21-24.
    [43]张荣军,蒲春生.振动-土酸酸化复合解堵室内实验研究[J].石油勘探与开发, 2004,31(5): 114-116.
    [44]黄中伟,李根生,刘全国.振荡-酸化深部复合解堵机理与应用[J].石油勘探与开发, 2006, 33(5): 618-621.
    [45]蔡波,袁玉峰,袁萍,等.热化学复合酸化解堵技术研究[J].钻井液与完井液. 2003, 20(3): 39-40.
    [46]何海峰.压力脉冲复合化学解堵技术在孤东油田的应用[J].中国高新技术企业. 2007, (8): 201.
    [47]丁凡.管道机器人技术与微管道机器人[D].浙江:浙江大学, 2001.
    [48] Sakamoto S, Hara F, Hosokai H, et al. Parallel-link robot for pipe inspection[A]. 31st Annual Conference of IEEE Industrial Electronics Society[C]. United States: Institute of Electrical and Electronics Engineers Computer Society, 2005: 345-350.
    [49] Choi H R, Ryew S M. Robotic system with active steering capability for internal inspection of urban gas pipelines[J]. Mechatronics, 2002, V16(12): 713-736.
    [50] Chatzakos P, Markopoulos Y P, Hrissaqis K, et al. On the development of a modular external-pipe crawling omni-directional mobile robot[J]. Industrial Robot, 2006, V33(4): 291-297.
    [51] Oya, Tomoyasu, Okada, et al. Development of a steerable, wheel-type, in-pipe robot and its path planning[J]. Advanced Robotics, 2005, V19(6): 635-650.
    [52] Miyagawa, Toyomi, lwatsuki, et al. Characteristics of in-pipe mobile robot with wheel drive mechanism using planetary gears[A]. 2007 IEEE International Conference on Mechatronics and Automation[C]. China: Inst. of Elec. and Elec. Eng. Computer Society 2007: 3646-3651.
    [53]于会涛,马培荪,何冬青.轮式微型机器人运动机理与步态规划[J].东南大学学报(英文版), 2006, 22(2): 191-195.
    [54] Lee Cheong Hee, Kim Soo Hyun, Kang Sung Chul, et al Double-track mobile robot for hazardous environment applications[J]. Advanced Robotics, 2003, V17(5): 447-459.
    [55]陈淑艳,陈文家.履带式移动机器人研究综述[J].机电工程, 2007, 24(12): 109-112.
    [56]任福君,颜兵兵.蠕动转向机构的设计与分析[J].机械工程学报, 2009, 45(1): 50-55.
    [57] Yonghong Liu, Yi Yan. Study on bionic robot of EDM hole[A]. Proceedings of the International Conference on Mechanical Transmissions(ICMT). China: Chinese MachinePress, 2001: 606-608.
    [58] Hayashi I, lwatsuki N, lwashina S. The running characteristics of a screw-principle microrobot in a smal bent pipe[A]. IEEE Sixth International Symposium on Micro Machine and Human Science [C]. Japan: IEEE, 1995, 225-228.
    [59]南景富,刘延斌,牛广林.轮式移动机器人的运动及定位分析[J].机械设计与制造, 2007, (7): 148-150.
    [60]马荣朝,潘英俊,秦岚.小口径管道用机器人行星齿轮式行走机构设计[J].农业机械学报. 2003, 23(3): 109-111.
    [61]万海波,包志炎.螺旋轮式微型管道机器人设计[J].机械工程师, 2008, (7): 6-7.
    [62]钱晋武,章亚男.螺旋轮驱动的细小管内移动机器人研究[J].光学精密工程, 1999, 7(4): 54-59.
    [63] Yunwei Zhang, Guozheng Yan. In-pipe inspection robot with active pipe-diameter adaptability and automatic tractive force adjusting[J]. Mechanism and Machine Theory. 2007, V42(12): 1618-1631.
    [64]于志伟.管道检测机器人机构设计及性能分析[D].北京:北京信息科技大学, 2007.
    [65]王冬梅.煤气管道机器人图像处理及其质量评判方法[D].上海:上海交通大学, 2004.
    [66] Jinwan Lim, Hyunjun Park, Jaemin An, et al. One pneumatic line based inchworm-like micro robot for half-inch pipe inspection[J]. Mechatronics, 2008, 18(7): 315-322.
    [67]曹凤国.电火花加工技术[M].北京:化学工业出版社, 2005.
    [68]祝效华. ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社, 2004.
    [69]戴锅生.传热学(第二版)[M].北京:高等教育出版社, 1998.
    [70]署恒木,仝兴华.工程有限单元法[M].东营:石油大学出版社, 2003.
    [71]荣先成,王洪军.有限元法[M].成都:西南交通大学出版社, 2007.
    [72]潘平彬.基于ANSYS的压电复合材料性能分析与研究[D].南京:南京航空航天大学, 2004.
    [73]张家荣,赵廷元.工程常用物质的热物理性质手册[M].北京:新时代出版社, 1987.
    [74]马庆芳,方荣生.实用热物理性质手册[M].北京:中国农业机械出版社, 1976.
    [75]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社, 1994.
    [76]闻邦椿,机械振动学[M].北京:机械工业出版社, 2000.
    [77]王呼佳,陈洪军. ANSYS工程分析进阶实例[M].北京:中国水利水电出版社, 2006.
    [78]张朝晖,王富耻,杨素媛,等. ANSYS 8.0结构分析及实例解析[M].北京:机械工业出版社, 2006.
    [79]张朝晖,范群波,贵大勇,等. ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社, 2005.
    [80]赵建领. 51系列单片机开发宝典[M].北京:电子工业出版社, 2007.
    [81]王平,施文灶,黄晞,等.专用芯片的步进电机步距角细分控制[J].新器件新技术, 2009, (5): 49-52.
    [82]魏守山,莫以为,黄云奇.基于单片机和驱动芯片的步进电机控制系统设计[J].机床电器, 2008, (1): 43-47.
    [83]王玮,陈毕双,杨捷顺.基于TA8435H驱动的步进电机的单片机控制[J].机电工程技术, 2009, 38(7): 34-35.
    [84]关学忠,胡松.单片机与TA8435的步进电机细分控制[J].单片机与嵌入式系统应用. 2006, (3): 76-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700