用户名: 密码: 验证码:
纤维素酶基因重组野生型乳酸杆菌表达系统的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是世界上最丰富的可再生资源,最终需要在纤维素酶的作用下分解为葡萄糖才能应用在生产生活的各个领域。如何提高动物尤其是草食动物对粗纤维的利用率,一直是人们努力研究的问题,应用纤维素酶便是重要的手段之一。纤维素酶广泛存在于微生物、动物和植物体内,对纤维素具有特异性的降解作用。乳酸杆菌是一类广泛存在于自然界的有益菌,具有特异的粘膜黏附性。寄生在动物消化道的乳酸杆菌能够耐受消化道环境,对动物生长和免疫有促进作用。本研究以构建重组乳酸杆菌,使之既能表达纤维素酶又对动物有益生菌的作用为出发点;用雏鸡为动物模型,以建立从基因克隆、整合载体构建、宿主菌的筛选与重组到消化道的定植与表达这样一个完整的技术体系为主要研究目的,进行了如下试验。
     1.采用改良CMC筛选培养基,在广泛筛选的基础上,从秦岭羚牛(Budorcas Taxicolor Bedfordi)粪便中筛选到一株纤维素分解菌。通过形态学和16SrDNA保守序列分析的方法将其鉴定为枯草芽孢杆菌,并命名为Bacillus subtilis LN。用两对特异性引物从其基因组中扩增到2个纤维素酶基因,一个大小1.5kb,连续编码500个氨基酸,命名为Cel15;另一个大小741bp,连续编码247个氨基酸,命名为Cel73。序列分析表明,这2个纤维素酶基因均属于纤维素分解酶家族的成员,且均能够在大肠杆菌中进行表达,表达产物大小分别为55kDa和27kDa,产物大部分以包涵体形式存在。
     2.采用MRS筛选培养基从成年鸡的嗉囊、小肠、盲肠的内容物及其上壁上分离得到6株乳酸菌,这些菌株均为革兰氏阳性菌,除一株为球形外,其余均为不规则的杆状。通过16SrDNA保守序列分析将其鉴定为:1株嗜淀粉乳杆菌(Lactobacillus amylovorus SNY), 2株罗伊乳杆菌(Lactobacillus reuteri XNY,Lactobacillus reuteri MNY),1株卷曲乳杆菌(Lactobacillus crispatus SBY),1株短乳杆菌(Lactobacillus brevis XBY),1株肠球菌(Enterococcus hirae MBY)。并与NCBI核苷酸数据库中的9个乳酸杆菌的16SrDNA序列共同构建系统遗传进化树,结果验证了16SrDNA保守序列比对分析结果的正确。
     3.采用基因克隆等分子生物学技术构建了分别包含Cel15和Cel73基因的整合载体pLEM4153和pLEM4154。通过优化的转化方法,将整合载体整合到了鸡消化道野生型乳酸杆菌(Lactobacillus reuteri XNY)基因组中,并获得两个重组乳酸杆菌XNY4153和XNY4154。通过实时定量PCR(Real time PCR)的方法对Cel15和Cel73基因在重组乳酸杆菌中mRNA表达量进行了检测。Cel15基因的mRNA的相对表达量为18849.5,Cel73基因相对表达量为1388。测定重组乳酸杆菌改良培养基发酵液的纤维素酶活力,结果为重组乳酸杆菌XNY4153最高为0.158U/mL,重组乳酸杆菌XNY4154最高为0.15U/mL。
     4.将重组乳酸杆菌和鸡小肠上皮细胞共培养,发现重组乳酸杆菌在体外能够黏附于小肠上皮细胞上。通过0日龄口腔灌服将重组乳酸杆菌接种到鸡消化道,在之后的7日龄、14日龄、21日龄和30日龄的雏鸡嗉囊、小肠、盲肠部位分离微生物,通过PCR特异扩增报告基因检测重组乳酸杆菌的存在与否。结果表明,重组乳酸杆菌可以定植到雏鸡消化道的嗉囊、小肠和盲肠等部位,30日龄能够检测到报告基因。接种重组乳酸杆菌对蛋雏鸡的体增重有显著影响(P<0.01)。同时,对饲料粗纤维的消化率差异也较显著(P<0.01)。说明,重组乳酸杆菌能够在雏鸡的消化道定植和表达,表达的纤维素酶对饲料粗纤维有分解作用。
     通过上述试验构建了乳酸杆菌表达系统,重组菌成功在雏鸡消化道定植,并对生长性能和饲料粗纤维消化率有显著提高。
Cellulose is the most abundant renewable resource in the world; it can use in many kinds of areas of people’s living and production only when it become glucose hydrolyzed by cellulase. How to improve the utilization rate of feed crude fiber of animals’especially ruminant anmimals is an important problem. Using cellulase is one of the methods of improving the utilization of feed crude fiber. Cellulase widely reside in microorganism, animals and plants, it can degrade cellulose specifically. Lactobacilli are kinds of probiotic widely reside in the nature world, and can adhere to the surface of mucous membranes specifically. The Lactobacilli stick to animal gut can tolerance the gut environment, and can promote the growth and immunity of animals. This research tries to construt a recombined Lactobacillus, and then uses it as a probiotic which can express cellulase. The main objective of this research is using chicken as model animal; establish a completed technique system from genes clone, integrative vector construct, host strain screen and recombine to recombined strain permanent plant and express in chicken gut.
     1. We isolated a cellulose degrade bacterium from the feces of Qinling Golden Takin(Budorcas Taxicolor Bedfordi) using improved CMC medium based on widely screen. We identified the bacterium belongs to the Bacillus using analysis of morphology and the conserved sequence 16SrDNA, and named it as Bacillus subtilis LN. Two cellulase genes were cloned from the bacterium chromosome DNA by two pairs of special primers. One is 1.5kb encoding 500 amino acid continuously, named Cel15; the other is 741bp, encoding 247 amino acid continuously, named Cel73. They are both the members of the cellulose hydrolysase family, and can be expressed in E.coli. The expression products are 55kDa and 27kDa respectively. Most of the products reside in the form of inclusion body.
     2. We isolated 6 Lactobacilli from crop, intestine and cecum content and wall of chick, using screen MRS medium. The Lactobacilli were all gram positive strains. They are all rhabditiform excepet one is globular. They then identified and named by 16SrDNA anylysis. The results are: 1 strain is Lactobacillus amylovorus SNY, 2 strains are Lactobacillus reuteri XNY and Lactobacillus reuteri MNY, 1 strain is Lactobacillus crispatus SBY, 1 strain is Lactobacillus brevis XBY, and 1 strain is Enterococcus hirae MBY. The results were reformed by constructing homology tree of these strains and 9 other strains of Lactobacilli from NCBI nucleotide data bank.
     3. Two integrative plasmids pLEM4153 and pLEM4154 which containing cellulase gene Cel15 and Cel73 respectively was constructed using molecular gene clone technology. The plasmids can integrate to wild type Lactobacillus reuteri XNY, by using an improved electro transformation protocol. And two recombined Lactobacillus reuteri XNY4153 and XNY4154 were screened. The two cellulase genes can express in recombined Lactobacilli detected by Real Time PCR. The two genes’mRNA relative expression amounts are: gene Cel15 is 18849.5 and the relative amount of gene Cel73 is 1388. The cellulase activity of fermentation broth of recombined Lactobacilli was determined, the results are: the highest cellulase activity of recombined Lactobacillus XNY4153 is 0.158U/mL, and the highest cellulase activity of Lactobacillus XNY4154 is 0.15U/mL.
     4. The recombined Lactobacilli can adhere to the enterocyte, after co-cultured the recombined Lactobacilli and enterocyte. The recombined Lactobacilli were inoculated to chicken gut in 0 day by drench from oral cavity. The cellulase genes were amplified by PCR in 7 days, 14 days 21 days and 30 days in the content of crop, small intestine and cecum of chicken. Planting recombined Lactobacilli can improve the bodyweights of chicken significantly(P<0.01), and at the same time, the digestibility of crude fiber was also influenced significantly by planting recombined Lactobacilli in chicken gut(P<0.01). This showed that the recombined Lactobacillus can permanent plant and express in chicken gut, the expressed cellulase can improve the grow performance and digestibility of feed crude fiber.
     We have constructed an expression system of Lactobacillus; permanent planted the recombined strain in chicken gut, and improved the growth profomance and the digestibility of feed crude fiber.
引文
丁轲. 2006.鹅细小病毒vp3基因与鹅白细胞介素-2基因分泌性融合表达载体的构建及在乳酸杆菌中表达的研究.博士论文,四川农业大学.雅安.
    林雪彦. 2006.鸡消化道乳酸杆菌的黏附研究.博士论文,山东农业大学.泰安.
    马春全. 2004.益生菌制剂的研制及其对雏鸡免疫学影响和机理的研究.博士论文,中国农业大学博士论文.北京.
    张玲. 2007.一株对虾肠道益生菌的筛选及其作用机理和应用效果的研究.博士论文,中国海洋大学.青岛.
    Abu-Tarboush H. M., Al-Saiady M. Y., Keir El-Din A. H. 1996. Evaluation of diet containing Lactobacilli on performance, Fecal Coliform, and Lactobacilli of young dairy calves. Animal Feed Science and Technology, 57(1-2): 39-49
    Adogla-Bessa T., Owen E. 1995. Ensiling of whole-crop wheat with cellulase-hemicellulase based enzymes. 2. Effect of crop growth-stage and enzyme on silage intake, digestibility and live-weight gain by steers. Animal Feed Science and Technology, 55(3-4): 349-357
    An H.-Y., Miyamoto T. 2006. Cloning and sequencing of plasmid pLC494 isolated from human intestinal Lactobacillus casei: Construction of an Escherichia coli-Lactobacillus shuttle vector. Plasmid, 55(2): 128-134
    Annison G. 1992. Commercial enzyme supplementation of wheatbased diets raises ileal glycanase activities and improves apparent metabolisable energy, starch and pentosan digestibilities in broiler chickens. Animal Feed Science and Technology, 38(2-3): 105-121
    Asha Poorna C., Prema P. 2007. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol, 98(3): 485-90
    Ass B. A. P., Ciacco G. T., Frollini E. 2006. Cellulose acetates from linters and sisal: Correlation between synthesis conditions in DMAc/LiCl and product properties. Bioresource Technology, 97(14): 1696-1702
    Baek S. J., Jung K. H., Kim H., Kim S. F. 1997. Expression and secretion of carboxymethyl cellulase in Bacillus subtilis by Lactobacillus casei lactate dehydrogenase gene promoter. Biotechnology Letters, 19(1): 27-29
    Bansal P., Hall M., Realff M. J., Lee J. H., Bommarius A. S. 2009. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnology Advances, 27(6): 833-848
    Bao Y., Zhang Y., Zhang Y., Liu Y., Wang S., Dong X., Wang Y., Zhang H. 2010. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21(5): 695-701
    Barnes E. M., Impey C. S. 1970. The isolation and properties of the predominant anaerobic bacteria in the caeca of chickens and turkeys. Br Poult Sci, 11(4): 467-81
    Bayer E. A., Chanzy H., Lamed R., Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Current Opinion in Structural Biology, 8(5): 548-557
    Beasley S. S., Saris P. E. 2004. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol, 70(8): 5051-3
    Beasley S. S., Takala T. M., Reunanen J., Apajalahti J., Saris P. E. 2004. Characterization and electrotransformation of Lactobacillus crispatus isolated from chicken crop and intestine. Poult Sci, 83(1): 45-8
    Beguin P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem, 131333-336
    Bello J., Sanchez-Fuertes M. A. 1995. Application of a mathematical model to describe the behaviour of the Lactobacillus spp. during the ripening of a Spanish dry fermented sausage (Chorizo). International Journal of Food Microbiology, 27(2-3): 215-227
    Benachour A., Frere J., Novel G. 1995. pUCL287 plasmid from Tetragenococcus halophila (Pediococcus halophilus) ATCC 33315 represents a new theta-type replicon family of lactic acid bacteria. FEMS Microbiology Letters, 128(2): 167-175
    Bernardeau M., Vernoux J. P., Gueguen M. 2002. Safety and efficacy of probiotic lactobacilli in promoting growth in post-weaning Swiss mice. International Journal of Food Microbiology, 77(1-2): 19-27
    Bfuin P., Aubert J.-P. 1994. The biological degradation of cellulose. FEMS Microbiology Reviews, 13(1): 25-58
    Bhat M. K. 2000a. Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18355-383
    Bhat M. K. 2000b. Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5): 355-383
    Bhat M. K., Bhat S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15(3-4): 583-620
    Binetti A. G., Capra M. L., Alvarez M. A., Reinheimer J. A. 2008. PCR method for detection and identification of Lactobacillus casei / paracasei bacteriophages in dairy products. International Journal of Food Microbiology, In Press, Accepted Manuscript361
    Boot H. J., Kolen C. P., Pot B., Kersters K., Pouwels P. H. 1996. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus. Microbiology, 142 (9):2375-84
    Boot H. J., Kolen C. P., Pouwels P. H. 1995. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J Bacteriol, 177(24): 7222-30
    Bredholt S., Nesbakken T., Holck A. 2001. Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats. International Journal of Food Microbiology, 66(3): 191-196
    Brisbin J. T., Zhou H., Gong J., Sabour P., Akbari M. R., Haghighi H. R., Yu H., Clarke A., Sarson A. J., Sharif S. 2008. Gene expression profiling of chicken lymphoid cells after treatmentwith Lactobacillus acidophilus cellular components. Dev Comp Immunol, 32(5): 563-74
    Bustany, Zuhair A. l. 1996. The effect of pelleting an enzyme-supplemented barley-based broiler diet. Animal Feed Science and Technology, 58(3-4): 283-288
    Canibe N., Miettinen H., Jensen B. B. 2008. Effect of adding Lactobacillus plantarum or a formic acid containing-product to fermented liquid feed on gastrointestinal ecology and growth performance of piglets. Livestock Science, 114(2-3): 251-262
    Carro M. D., Lopez S., Gonzalez J. S., Ovejero F. J. 1994. Comparison of laboratory methods for predicting digestibility of hay in sheep. Small Ruminant Research, 14(1): 9-17
    Cha J., Matsuoka S., Chan H., Yukawa H., Inui M., Doi R. H. 2007. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes. J Microbiol Biotechnol, 17(11): 1782-8
    Chakrabarti I., Gani M. A., Chaki K. K., Sur R., Misra K. K. 1995. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comparative Biochemistry and Physiology Part A: Physiology, 112(1): 167-177
    Chaurasia A. K., Parasnis A., Apte S. K. 2008. An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. Journal of Microbiological Methods, 73(2): 133-141
    Chen H., Jin S. 2006. Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzyme and Microbial Technology, 39(7): 1430-1432
    Chen J., Wang Q., Hua Z., Du G. 2007. Research and application of biotechnology in textile industries in China. Enzyme and Microbial Technology, 40(7): 1651-1655
    Chi Z., Chi Z., Zhang T., Liu G., Li J., Wang X. 2009. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnology Advances, 27(3): 236-255
    Chiu C.-H., Guu Y.-K., Liu C.-H., Pan T.-M., Cheng W. 2007. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish & Shellfish Immunology, 23(2): 364-377
    Cocconcelli P. S., Gasson M. J., Morelli L., Bottazzi V. 1991. Single-stranded DNA plasmid, vector construction and cloning of Bacillus stearothermophilus [alpha]-amilase in Lactobacillus. Research in Microbiology, 142(6): 643-652
    Corsetti A., Settanni L. 2007. Lactobacilli in sourdough fermentation. Food Research International, 40(5): 539-558
    Crawford A. C., Kricker J. A., Anderson A. J., Richardson N. R., Mather P. B. 2004. Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene, 340(2): 267-274
    Crawford D. L., McCoy E. 1972. Cellulases of Thermomonospora fusca and Streptomyces thermodiastaticus. Appl Microbiol, 24(1): 150-2
    Dalloul R. A., Lillehoj H. S., Tamim N. M., Shellem T. A., Doerr J. A. 2005. Induction of local protective immunity to Eimeria acervulina by a Lactobacillus-based probiotic. ComparativeImmunology, Microbiology and Infectious Diseases, 28(5-6): 351-361
    Deepika G., Charalampopoulos D., Allen I. L., Sima S., Geoffrey M. G. 2010. Surface and Adhesion Properties of Lactobacilli. In Advances in Applied Microbiology, Vol. Volume 70, Academic Press, pp. 127-152.
    Desvaux M. 2005. The cellulosome of Clostridium cellulolyticum. Enzyme and Microbial Technology, 37(4): 373-385
    Divne C., Stahlberg J., Teeri T. T., Jones T. A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 A long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol, 275(2): 309-25
    Duckworth A. W., Ruiz-Barba J. L., Warner P. J. 1993. Construction of integrating derivatives of pHV60 for use in Lactobacillus plantarum. FEMS Microbiology Letters, 114(3): 267-272
    Edelman S., Leskela S., Ron E., Apajalahti J., Korhonen T. K. 2003. In vitro adhesion of an avian pathogenic Escherichia coli O78 strain to surfaces of the chicken intestinal tract and to ileal mucus. Veterinary Microbiology, 91(1): 41-56
    El-Ghaish S., Dalgalarrondo M., Choiset Y., Sitohy M., Ivanova I., Haertl T., Chobert J.-M. 2010. Screening of strains of Lactococci isolated from Egyptian dairy products for their proteolytic activity. Food Chemistry, 120(3): 758-764
    Eveleigh D. E., Mandels M., Andreotti R., Roche C. 2009. Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2(21): 1-8
    Fortineau N., Trieu-Cuot P., Gaillot O., Pellegrini E., Berche P., Gaillard J.-L. 2000. Optimization of green fluorescent protein expression vectors for in vitro and in vivo detection of Listeria monocytogenes. Research in Microbiology, 151(5): 353-360
    Gan Q., Allen S. J., Taylor G. 2003. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochemistry, 38(7): 1003-1018
    Gao F., Jiang Y., Zhou G. H., Han Z. K. 2008. The effects of xylanase supplementation on performance, characteristics of the gastrointestinal tract, blood parameters and gut microflora in broilers fed on wheat-based diets. Animal Feed Science and Technology, In Press, Corrected Proof(142): 173-184
    Giraffa G., Chanishvili N., Widyastuti Y. Importance of lactobacilli in food and feed biotechnology. Research in Microbiology, In Press, Accepted Manuscript Gory L., Montel M.-C., Zagorec M. 2001. Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products. FEMS Microbiology Letters, 194(2): 127-133
    Gosalbes M. J., Esteban C. D., Galan J. L., Perez-Martinez G. 2000. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol, 66(11): 4822-8
    Graminha E. B. N., Goncalves A. Z. L., Pirota R. D. P. B., Balsalobre M. A. A., Da Silva R., Gomes E. 2008. Enzyme production by solid-state fermentation: Application to animal nutrition.Animal Feed Science and Technology, 144(1-2): 1-22
    Grangette C., Muller-Alouf H., Hols P., Goudercourt D., Delcour J., Turneer M., Mercenier A. 2004. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun, 72(5): 2731-7
    Grigorevski de Lima A. L., Pires do Nascimento R., da Silva Bon E. P., Coelho R. R. R. 2005. Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology, 37(2): 272-277
    Guan L. L., Hagen K. E., Tannock G. W., Korver D. R., Fasenko G. M., Allison G. E. 2003. Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl Environ Microbiol, 69(11): 6750-7
    Guarner F., Schaafsma G. J. 1998. Probiotics. Int J Food Microbiol, 39237-238
    Guarneri T., Rossetti L., Giraffa G. 2001. Rapid identification of Lactobacillus brevis using the polymerase chain reaction. Letters in Applied Microbiology 33377-381
    Guo R., Ding M., Zhang S. L., Xu G. J., Zhao F. K. 2008. Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean. J Comp Physiol [B], 178(2): 209-15
    Guo Y.-P., Fan S.-Q., Fan Y.-T., Pan C.-M., Hou H.-W. 2010. The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy, 35(2): 459-468
    Gusakov A. V., Sinitsyn A. P., Gerasimas V. B., Savitskene R. Y., Steponavichus Y. Y. 1985. A product inhibition study of cellulases from Trichoderma longibrachiatum using dyed cellulose. Journal of Biotechnology, 3(3): 167-174
    Hakamada Y., Endo K., Takizawa S., Kobayashi T., Shirai T., Yamane T., Ito S. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochimica et Biophysica Acta (BBA) - General Subjects, 1570(3): 174-180
    Han W., He M. 2010. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Bioresource Technology, 101(10): 3724-3731
    Harun-ur-Rashid M., Togo K., Ueda M., Miyamoto T. 2007. Identification and characterization of dominant lactic acid bacteria isolated from traditional fermented milk Dahi in Bangladesh. World Journal of Microbiology and Biotechnology, 23(1): 125-133
    Hasani A., Pavia D., Rotondetto S., Clarke S. W., Spiteri M. A., Agnew J. E. 1998. Effect of oral antibiotics on lung mucociliary clearance during exacerbation of chronic obstructive pulmonary disease. Respir Med, 92(3): 442-7
    Hata T., Tanaka R., Ohmomo S. 2010. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1. International Journal of Food Microbiology, 137(1): 94-99
    Havenith C. E. G., Seegers J. F. M. L., Pouwels P. H. 2002. Gut-associated lactobacilli for oralimmunisation. Food Research International, 35(2-3): 151-163
    Heilig H. G., Zoetendal E. G., Vaughan E. E., Marteau P., Akkermans A. D., de Vos W. M. 2002. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol, 68(1): 114-23
    Hess M. 2008. Thermoacidophilic proteins for biofuel production. Trends in Microbiology, 16(9): 414-419
    Hong J., Wang Y., Kumagai H., Tamaki H. 2007. Construction of thermotolerant yeast expressing thermostable cellulase genes. Journal of Biotechnology, 130(2): 114-123
    Hormann S., Vogel R. F., Ehrmann M. 2006. Construction of a new reporter system to study the NaCl-dependent dnaK promoter activity of Lactobacillus sanfranciscensis. Appl Microbiol Biotechnol, 70(6): 690-7
    Inborr J., Schmitz M., Ahrens F. 1993. Effect of adding fibre and starch degrading enzymes to a barley/wheat based diet on performance and nutrient digestibility in different segments of the small intestine of early weaned pigs. Animal Feed Science and Technology, 44(1-2): 113-127
    Inoue T., Moriya S., Ohkuma M., Kudo T. 2005. Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene, 34967-75
    Israelsen M., Rexen B., Thomsen K. V. 1978. Cellulase insoluble fibre as a measure of unavailable organic matter in cattle compounds containing alkalitreated straw. Animal Feed Science and Technology, 3(3): 227-234
    Jakhmola R. C., Weddell J. R., Greenhalgh J. F. D. 1990. Ensiling grass with straw. I. Effect of straw, cellulase enzyme and urea on chemical composition of grass and grass/legume silages. Animal Feed Science and Technology, 28(1-2): 39-50
    Jin L. Z., Ho Y. W., Abdullah N., Ali M. A., Jalaludin S. 1998. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Animal Feed Science and Technology, 70(3): 197-209
    JoséM. Bruno-Bárcena, M. Andrea Azcárate-Peril, Todd R. Klaenhammer, Hassan. H. M. 2005. Marker-free chromosomal integration of the manganese superoxide dismutase gene (sodA) from Streptococcus thermophilus into Lactobacillus gasseri. FEMS Microbiology Letters, 246(1): 91-101
    Kanatani K., Tahara T., Oshimura M., Sano K., Umezawa C. 1995. Characterization of a small cryptic plasmid, pLA105, from Lactobacillus acidophilus TK8912. Journal of Fermentation and Bioengineering, 80(4): 394-399
    Kaneko Y., Kobayashi H., Kiatpapan P., Nishimoto T., Napitupulu R., Ono H., Murooka Y. 2000. Development of a host-vector system for Lactobacillus plantarum L137 isolated from a traditional fermented food produced in the Philippines. Journal of Bioscience and Bioengineering, 89(1): 62-67
    Khasanov F. K., Zvingila D. J., Zainullin A. A., Prozorov A. A., Bashkirov V. I. 1992. Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology. Mol Gen Genet, 234(3): 494-7
    Kim E. S., Lee H. J., Bang W.-G., Choi I.-G., Kim K.-H. 2008. A novel cellulase activity enhancing protein from bacillus subtilis, a functional homolog of a plant expansin. Journal of Biotechnology, 136(Supplement 1): S426-S426
    Klaenhammer T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 12(1-3): 39-85
    Klaenhammer T. R. 1995. Genetics of intestinal lactobacilli. International Dairy Journal, 5(8): 1019-1058
    Knowlton K. F., Taylor M. S., Hill S. R., Cobb C., Wilson K. F. 2007. Manure Nutrient Excretion by Lactating Cows Fed Exogenous Phytase and Cellulase. Journal of Dairy Science, 90(9): 4356-4360
    Lacassagne L., Melcion J. P., de Monredon F., Carr B. 1991. The nutritional values of faba bean flours varying in their mean particle size in young chickens. Animal Feed Science and Technology, 34(1-2): 11-19
    Lallo C. H. O., Singh R., Donawa A. A., Madoo G. 1997. The ensiling of poultry offal with sugarcane molasses and Lactobacillus culture for feeding to growing/finishing pigs under tropical conditions. Animal Feed Science and Technology, 67(2-3): 213-222
    Lam E. K. Y., Yu L., Wong H. P. S., Wu W. K. K., Shin V. Y., Tai E. K. K., So W. H. L., Woo P. C. Y., Cho C. H. 2007. Probiotic Lactobacillus rhamnosus GG enhances gastric ulcer healing in rats. European Journal of Pharmacology, 565(1-3): 171-179
    Lara-Flores M., Olvera-Novoa M. A., Guzman-Mendez B. E., Lopez-Madrid W. 2003. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture, 216(1-4): 193-201
    Lee S. J., Kim S. R., Yoon H. J., Kim I., Lee K. S., Je Y. H., Lee S. M., Seo S. J., Dae Sohn H., Jin B. R. 2004. cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(1): 107-116
    Lee Y.-J., Kim B.-K., Lee B.-H., Jo K.-I., Lee N.-K., Chung C.-H., Lee Y.-C., Lee J.-W. 2008. Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresource Technology, 99(2): 378-386
    Leek A. B. G., Callan J. J., Reilly P., Beattie V. E., O'Doherty J. V. 2007. Apparent component digestibility and manure ammonia emission in finishing pigs fed diets based on barley, maize or wheat prepared without or with exogenous non-starch polysaccharide enzymes. Animal Feed Science and Technology, 135(1-2): 86-99
    Leloup L., Ehrlich S. D., Zagorec M., Morel-Deville F. 1997. Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol, 63(6): 2117-23
    Lenting H. B. M., Warmoeskerken M. M. C. G. 2001a. Mechanism of interaction betweencellulase action and applied shear force, an hypothesis. Journal of Biotechnology, 89(2-3): 217-226
    Lenting H. B. M., Warmoeskerken M. M. C. G. 2001b. Guidelines to come to minimized tensile strength loss upon cellulase application. Journal of Biotechnology, 89(2-3): 227-232
    Leuschner R. G. K., Bew J., Coeuret V., Vernoux J.-P., Gueguen M. 2003. A collaborative study of a method for the enumeration of probiotic lactobacilli in animal feed. Food Microbiology, 20(1): 57-66
    Lewis G. E., Hunt C. W., Sanchez W. K., Treacher R., Pritchard G. T., Feng P. 1996. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Anim Sci, 74(12): 3020-8
    Li W., Zhang W.-W., Yang M.-M., Chen Y.-L. 2008. Cloning of the Thermostable Cellulase Gene from Newly Isolated Bacillus subtilis and its Expression in Escherichia coli. Molecular Biotechnology, 40(2): 195-201
    Li Y.-G., Tian F.-L., Gao F.-S., Tang X.-S., Xia C. 2007. Immune responses generated by Lactobacillus as a carrier in DNA immunization against foot-and-mouth disease virus. Vaccine, 25(5): 902-911
    Li Y. H., Ding M., Wang J., Xu G.-j., Zhao F. k. 2006. A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp.AC-1. Appl Microbiol Biotechnol, 70(4): 430-436
    Lin W.-H., Yu B., Jang S.-H., Tsen H.-Y. 2007. Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe, 13(3-4): 107-113
    Ling Lin F., Zi Rong X., Wei Fen L., Jiang Bing S., Ping L., Chun Xia H. 2007. Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnology Advances, 25(1): 1-12
    Liong M. T., Shah N. P. 2006. Effects of a Lactobacillus casei Synbiotic on Serum Lipoprotein, Intestinal Microflora, and Organic Acids in Rats. Journal of Dairy Science, 89(5): 1390-1399
    Liu J. R., Lai S. F., Yu B. 2007a. Evaluation of an intestinal Lactobacillus reuteri strain expressing rumen fungal xylanase as a probiotic for broiler chickens fed on a wheat-based diet. Br Poult Sci, 48(4): 507-14
    Liu J. R., Yu B., Lin S. H., Cheng K. J., Chen Y. C. 2005a. Direct cloning of a xylanase gene from the mixed genomic DNA of rumen fungi and its expression in intestinal Lactobacillus reuteri. FEMS Microbiol Lett, 251(2): 233-41
    Liu J. R., Yu B., Liu F. H., Cheng K. J., Zhao X. 2005b. Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol, 71(11): 6769-75
    Liu J. R., Yu B., Zhao X., Cheng K. J. 2007b. Coexpression of rumen microbial beta-glucanase and xylanase genes in Lactobacillus reuteri. Appl Microbiol Biotechnol, 77(1): 117-24
    Ljungh ?., Wadstr?m T. 2006. Lactic Acid Bacteria as Probiotics. Curr. Issues Intestinal Microbiol., 73-90
    Lubbadeh W., Haddadin M. S. Y., Al-Tamimi M. A., Robinson R. K. 1999. Effect on thecholesterol content of fresh lamb of supplementing the feed of Awassi ewes and lambs with Lactobacillus acidophilus. Meat Science, 52(4): 381-385
    Lucey M., Daly C., Fitzgerald G. 1993. Identification and sequence analysis of the replication region of the phage resistance plasmid pCI528 from Lactococcus lactis subsp. cremoris UC503. FEMS Microbiology Letters, 110(3): 249-256
    Lynd L. R., Weimer P. J., van Zyl W. H., Pretorius I. S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66(3): 506-77, table of contents Maassen C. B. M., Boersma W. J. A., van Holten-Neelen C., Claassen E., Laman J. D. 2003.
    Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens: implications for vaccine development. Vaccine, 21(21-22): 2751-2757
    Marquardt R. R., Boros D., Guenter W., Crow G. 1994. The nutritive value of barley, rye, wheat and corn for young chicks as affected by use of a Trichoderma reesei enzyme preparation. Animal Feed Science and Technology, 45(3-4): 363-378
    Marzotto M., Maffeis C., Paternoster T., Ferrario R., Rizzotti L., Pellegrino M., Dellaglio F., Torriani S. 2006. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Research in Microbiology, 157(9): 857-866
    Mason C. K., Collins M. A., Thompson K. 2005. Modified electroporation protocol for Lactobacilli isolated from the chicken crop facilitates transformation and the use of a genetic tool. Journal of Microbiological Methods, 60(3): 353-363
    McCann M. E. E., McEvoy J. D. G., McCracken K. J. 2006. Factors affecting digestibility of barley-based diets for growing pigs. Livestock Science, 102(1-2): 51-59
    Medina E., Guzman C. A. 2001. Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine, 19(13-14): 1573-80
    Miettinen-Oinonen A., Londesborough J., Joutsjoki V., Lantto R., Vehmaanper J. 2004. Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme and Microbial Technology, 34(3-4): 332-341
    Miroslava Marciňáková, Trine Dan? Klingberg, Andrea Lauková, Budde B. B. 2009. The effect of pH, bile and calcium on the adhesion ability of probiotic enterococci of animal origin to the porcine jejunal epithelial cell line IPEC-J2. Anaerobe, In Press, Corrected Proof Mogk A., Hayward R., Schumann W. 1996. Integrative vectors for constructing single-copy transcriptional fusions between Bacillus subtilis promoters and various reporter genes encoding heat-stable enzymes. Gene, 182(1-2): 33-36
    Monedero V., Yebra M. J., Poncet S., Deutscher J. 2008. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Research in Microbiology, 159(2): 94-102
    Montagne L., Pluske J. R., Hampson D. J. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology 10895-117
    Morita H., Toh H., Fukuda S., Horikawa H., Oshima K., Suzuki T., Murakami M., Hisamatsu S.,Kato Y., Takizawa T., Fukuoka H., Yoshimura T., Itoh K., O'Sullivan D. J., McKay L. L., Ohno H., Kikuchi J., Masaoka T., Hattori M. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res, 15(3): 151-61
    Mottet C., Michetti P. 2005. Probiotics: wanted dead or alive. Dig Liver Dis, 37(1): 3-6 Muir W. I., Bryden W. L., Husband A. J. 2000. Immunity, vaccination and the avian intestinal tract. Developmental & Comparative Immunology, 24(2-3): 325-342
    Mulakala C., Reilly P. J. 2005a. Force calculations in automated docking: enzyme-substrate interactions in Fusarium oxysporum Cel7B. Proteins, 61(3): 590-6
    Mulakala C., Reilly P. J. 2005b. Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study. Proteins, 60(4): 598-605
    Muller M., Lier D. 1994. Fermentation of fructans by epiphytic lactic acid bacteria. J Appl Bacteriol, 76(4): 406-11
    Murray P. G., Collins C. M., Grassick A., Tuohy M. G. 2003. Molecular cloning, transcriptional, and expression analysis of the first cellulase gene (cbh2), encoding cellobiohydrolase II, from the moderately thermophilic fungus Talaromyces emersonii and structure prediction of the gene product. Biochemical and Biophysical Research Communications, 301(2): 280-286
    Najjari A., Ouzari H., Boudabous A., Zagorec M. 2008. Method for reliable isolation of Lactobacillus sakei strains originating from Tunisian seafood and meat products. International Journal of Food Microbiology, 121(3): 342-351
    Nava G. M., Attene-Ramos M. S., Gaskins H. R., Richards J. D. 2009. Molecular analysis of microbial community structure in the chicken ileum following organic acid supplementation. Veterinary Microbiology, 137(3-4): 345-353
    Nollet L., Mbanzamihigo L., Demeyer D., Verstraete W. 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Animal Feed Science and Technology, 71(1-2): 49-66
    Nomachi W., Urago K.-I., Oka T., Ekino K., Matsuda M., Goto M., Furukawa K. 2002. Molecular breeding of Aspergillus kawachii overproducing cellulase and its application to brewing barley shochu. Journal of Bioscience and Bioengineering, 93(4): 382-387
    Ohmiya K., Sakka K., Kimura T., Morimot K. 2003. Application of microbial genes to recalcitrant biomass utilization and environmental conservation. Journal of Bioscience and Bioengineering, 95(6): 549-561
    Park J., Lee M., Jung J., Kim J. 2005. pIH01, a small cryptic plasmid from Leuconostoc citreum IH3. Plasmid, 54(2): 184-9
    Park Y. S., Lee J. Y., Kim Y. S., Shin D. H. 2002. Isolation and characterization of lactic acid bacteria from feces of newborn baby and from dongchimi. J Agric Food Chem, 50(9): 2531-6
    Pavlova S. I., Kili? Ali O., Topisirovic L., Miladinov N., Hatzos C., Tao L. 2002.Characterization of a cryptic plasmid from Lactobacillus fermentum KC5b and its use for constructing a stable Lactobacillus cloning vector. Plasmid, 47(3): 182-192
    Percival Zhang Y. H., Himmel M. E., Mielenz J. R. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24(5): 452-481
    Phan T. T. P., Nguyen H. D., Schumann W. 2006. Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expression and Purification, 46(2): 189-195
    Plessas S., Fisher A., Koureta K., Psarianos C., Nigam P., Koutinas A. A. 2008. Application of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and L. helveticus for sourdough bread making. Food Chemistry, 106(3): 985-990
    Pouwels P. H., Leer R. J., Boersma W. J. 1996. The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J Biotechnol, 44(1-3): 183-92
    Pouwels P. H., Leer R. J., Shaw M., Heijne den Bak-Glashouwer M. J., Tielen F. D., Smit E., Martinez B., Jore J., Conway P. L. 1998. Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int J Food Microbiol, 41(2): 155-67
    Prisca Scha¨r-Zammaretti M.-L. D., Nicola D, Amico, Michael Affolter, and Job Ubbink. 2005. Influence of Fermentation Medium Composition on Physicochemical Surface Properties of Lactobacillus acidophilus?. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,, 718165–8173
    Pu Y., Ziemer C., Ragauskas A. J. 2006. CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydrate Research, 341(5): 591-597
    Raghavendra P., Halami P. M. 2009. Screening, selection and characterization of phytic acid degrading lactic acid bacteria from chicken intestine. International Journal of Food Microbiology, 133(1-2): 129-134
    Rai S. N., Mudgal V. D. 1996. Effect of alkali and (or) steam treatment of wheat straw or cellulase augmented concentrate mixture on rumen fermentation in goats. Small Ruminant Research, 19(3): 219-225
    Ramlachan N., Anderson R. C., Andrews K., Laban G., Nisbet D. J. 2007. Characterization of an antibiotic resistant Clostridium hathewayi strain from a continuous-flow exclusion chemostat culture derived from the cecal contents of a feral pig. Anaerobe, 13(3-4): 153-160
    Randazzo C. L., Torriani S., Akkermans A. D., de Vos W. M., Vaughan E. E. 2002. Diversity, dynamics, and activity of bacterial communities during production of an artisanal Sicilian cheese as evaluated by 16S rRNA analysis. Appl Environ Microbiol, 68(4): 1882-92
    Reddish M. A., Kung Jr L. 2007. The Effect of Feeding a Dry Enzyme Mixture with Fibrolytic Activity on the Performance of Lactating Cows and Digestibility of a Diet for Sheep. Journal of Dairy Science, 90(10): 4724-4729
    Rees H. C., Grant S., Jones B., Grant W. D., Heaphy S. 2003. Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles,7415-421
    Rhee M. S., Kim J.-w., Qian Y., Ingram L. O., Shanmugam K. T. 2007. Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans. Plasmid, 58(1): 13-22
    Roberts A. P., Hennequin C., Elmore M., Collignon A., Karjalainen T., Minton N., Mullany P. 2003. Development of an integrative vector for the expression of antisense RNA in Clostridium difficile. Journal of Microbiological Methods, 55(3): 617-624
    Russell W. M., Klaenhammer T. R. 2001. Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microbiol, 67(9): 4361-4
    Ryu D. D. Y., Mandels M. 1980. Cellulases: Biosynthesis and applications. Enzyme and Microbial Technology, 2(2): 91-102
    SáPereira P., Costa-Ferreira M., Aires-Barros M. R. 2002. Enzymatic properties of a neutral endo-1,3(4)-[beta]-xylanase Xyl II from Bacillus subtilis. Journal of Biotechnology, 94(3): 265-275
    Sambrook J., Fritsch E. F., Maniatis T. 1989. Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor Laboratory Press, New York.
    Sashihara N., Kudo T., Horikoshi K. 1984. Molecular cloning and expression of cellulase genes of alkalophilic Bacillus sp. strain N-4 in Escherichia coli. J Bacteriol, 158(2): 503-6
    Sawatari Y., Sugiyama H., Suzuki Y., Hanaoka A., Saito K., Yamauchi H., Okada S., Yokota A. 2005. Development of fermented instant Chinese noodle using Lactobacillus plantarum. Food Microbiology, 22(6): 539-546
    Saxena I. M., Brown Jr M. R., Hans J. Bohnert H. N., Norman G. L. 2008. Biochemistry and Molecular Biology of Cellulose Biosynthesis in Plants: Prospects for Genetic Engineering. In Advances in Plant Biochemistry and Molecular Biology, Vol. Volume 1, Pergamon, pp. 135-160.
    Schein M. 1997. Enzymatic properties of cellulases from Humicola insolens. Journal of Biotechnology, 57(1-3): 71-81
    Scheppler L., Vogel M., Zuercher A. W., Zuercher M., Germond J.-E., Miescher S. M., Stadler B. M. 2002. Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle. Vaccine, 20(23-24): 2913-2920
    Schuein M. 2000. Protein engineering of cellulases. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1543(2): 239-252
    Serror P., Sasaki T., Ehrlich S. D., Maguin E. 2002. Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis with various plasmids. Appl Environ Microbiol, 68(1): 46-52
    Shanmugavelu S., Ruzickova G., Zrustova J., Brooker J. D. 2006. A fermentation assay to evaluate the effectiveness of antimicrobial agents on gut microflora. Journal of Microbiological Methods, 6793-101
    Shimotsu H., Henner D. J. 1986. Construction of a single-copy integration vector and its use inanalysis of regulation of the trp operon of Bacillus subtilis. Gene, 43(1-2): 85-94
    Shu Q., Gill H. S. 2002. Immune protection mediated by the probiotic Lactobacillus rhamnosus HN001 (DR20(TM)) against Escherichia coli O157:H7 infection in mice. FEMS Immunology and Medical Microbiology, 34(1): 59-64
    Siddhanta A. K., Prasad K., Meena R., Prasad G., Mehta G. K., Chhatbar M. U., Oza M. D., Kumar S., Sanandiya N. D. 2009. Profiling of cellulose content in Indian seaweed species. Bioresource Technology, 100(24): 6669-6673
    Singh R., Varma A. J., Seeta Laxman R., Rao M. 2009. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: Comparison with commercial cellulase. Bioresource Technology, 100(24): 6679-6681
    Sinitsyn A. P., Gusakov A. V., Grishutin S. G., Sinitsyna O. A., Ankudimova N. V. 2001. Application of microassays for investigation of cellulase abrasive activity and backstaining. Journal of Biotechnology, 89(2-3): 233-238
    Sipsas N. V., Zonios D. I., Kordossis T. 2002. Safety of Lactobacillus strains used as probiotic agents. Clin Infect Dis, 34(9): 1283-4; author reply 1284-5
    Skjolaas K. A., Burkey T. E., Dritz S. S., Minton J. E. 2007. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2. Veterinary Immunology and Immunopathology, 115(3-4): 299-308
    Solaiman D. K. Y., Somkuti G. A., Steinberg D. H. 1992. Construction and characterization of shuttle plasmids for lactic acid bacteria and Escherichia coli. Plasmid, 28(1): 25-36
    Strompfov V., Marcinakova M., Simonov M., Bogovic-Matijasic B., Laukov A. 2006a. Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe, 12(2): 75-79
    Strompfov V., Marcinov M., Simonov M., Bogovic-Matijasic B., Laukov A. 2006b. Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe, 12(2): 75-79
    Sudhamani M., Ismaiel E., Geis A., Batish V., Heller K. J. 2008a. Characterisation of pSMA23, a 3.5 kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid, 59(1): 11-19
    Sudhamani M., Ismaiel E., Geis A., Batish V., Heller K. J. 2008b. Characterisation of pSMA23, a 3.5Kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid, 59(1): 11-19
    Sukumaran R. K., Singhania R. R., Mathew G. M., Pandey A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 34(2): 421-424
    Susumu I. 1997. Alkaline cellulases from alkaliphilic Bacillus:Enzymatic properties, genetics, and application to detergents. Exremophiles, 161-66
    Szijarto N., Faigl Z., Reczey K., Mezes M., Berserryi A. 2004. Cellulase fermentation on a novelsubstrate (waste cardboard) and subsequent utilization of home-produced cellulase and commercial amylase in a rabbit feeding trial. Industrial Crops and Products, 20(1): 49-57
    Szijut N., Siika-aho M., Tenkanen M., Alapuranen M., Vehmaanper J., Ruzey K., Viikari L. 2008. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. Journal of Biotechnology, 136(3-4): 140-147
    Tajima K., Ohmori H., Aminov R. I., Kobashi Y., Kawashima T. 2010. Fermented liquid feed enhances bacterial diversity in piglet intestine. Anaerobe, 16(1): 6-11
    Takashima S., Nakamura A., Hidaka M., Masaki H., Uozumi T. 1999. Molecular cloning and expression of the novel fungal beta-glucosidase genes from Humicola grisea and Trichoderma reesei. J Biochem, 125(4): 728-36
    Talebnia F., Taherzadeh M. J. 2006. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae. J Biotechnol, 125(3): 377-84
    Tanja L?hteinen, Erja Malinen, Joanna M.K. Koort, Ulla Mertaniemi-Hannus, Tanja Hankimo, Ninja Karikoski, Soile Pakkanen, Hanna Laine, Hanna Sillanp??, S?derholm H., Palva A. 2009. Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe, In Press, Corrected Proof
    Teeri T. T., Koivula A., Linder M., Wohlfahrt G., Divne C., Jones T. A. 1998. Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans, 26(2): 173-8
    Tejido M. L., Ranilla M. J., Carro M. D. 2002. In vitro digestibility of forages as influenced by source of inoculum (sheep rumen versus Rusitec fermenters) and diet of the donor sheep. Animal Feed Science and Technology, 97(1-2): 41-51
    Teresa Alegre M., Carmen RodrIguez M., Mesas J. M. 2004. Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS Microbiology Letters, 241(1): 73-77
    Thompson K., Collins M. A. 1996. Improvement in electroporation efficiency for Lactobacillus plantarum by the inclusion of high concentrations of glycine in the growth medium. Journal of Microbiological Methods, 26(1-2): 73-79
    Tierney J., Gowing H., Van Sinderen D., Flynn S., Stanley L., McHardy N., Hallahan S., Mulcahy G. 2004. In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species. Veterinary Parasitology, 122(3): 171-182
    Titi H., Lubbadeh W. F. 2004. Effect of feeding cellulase enzyme on productive responses of pregnant and lactating ewes and goats. Small Ruminant Research, 52(1-2): 137-143
    Titi H. H., Tabbaa M. J. 2004. Efficacy of exogenous cellulase on digestibility in lambs and growth of dairy calves. Livestock Production Science, 87(2-3): 207-214
    Todorov S. D., Ho P., Vaz-Velho M., Dicks L. M. T. 2010. Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriu, traditional pork products from Portugal. Meat Science, 84(3): 334-343
    Todorov S. D., Rachman C., Fourrier A., Dicks L. M. T., van Reenen C. A., Prevost H., DoussetX. Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe, In Press, Corrected Proof
    Tokuda G., Lo N., Watanabe H., Slaytor M., Matsumoto T., Noda H. 1999. Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1447(2-3): 146-159
    Torigoi E., Henrique-Silva F., Escobar-Vera J., Carle-Urioste J. C., Crivellaro O., El-Dorry H., El-Gogary S. 1996. Mutants of Trichoderma reesei are defective in cellulose induction, but not basal expression of cellulase-encoding genes. Gene, 173(2): 199-203
    Tsapatsaris S., Kotzekidou P. 2004. Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. International Journal of Food Microbiology, 95(2): 157-168
    Valiente Moro C., Thioulouse J., Chauve C., Normand P., Zenner L. 2009. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Research in Microbiology, 160(1): 63-70
    van de Guchte M., Serror P., Chervaux C., Smokvina T., Ehrlich S. D., Maguin E. 2002. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 82(1-4): 187-216
    Van der Meulen R., Grosu-Tudor S., Mozzi F., Vaningelgem F., Zamfir M., Font de Valdez G., De Vuyst L. 2007. Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. International Journal of Food Microbiology, 118(3): 250-258
    Vicente Monederoa, María Jesús Yebraa, Sandrine Poncetb, Deutscher J. 2008. Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Research in Microbiology, 159(2): 94-102
    Vincent J. G., Veomett R. C., Riley R. F. 1959. Antibacterial activity associated with Lactobacillus acidophilus. J Bacteriol, 78477-84
    Vosman B., Kooistra J., Olijve J., Venema G. 1986. Integration of vector-containing Bacillus subtilis chromosomal DNA by a Campbell-like mechanism. Mol Gen Genet, 204(3): 524-31
    Walker D. C., Aoyama K., Klaenhammer T. R. 1996. Electrotransformation of Lactobacillus acidophilus Group A1. FEMS Microbiology Letters, 138(2-3): 233-237
    Wang L. J., Shan A. S., Song J. c. 2003. Performance and Nutrient Utilization of Layers Fed Diet Supplemented with Microbial Phytase and Cellulase. Journal of Northeast Agricultural University, 10(1): 33-39
    Wang Y., Yuan H., Wang J., Yu Z. 2009. Truncation of the cellulose binding domain improved thermal stability of endo-[beta]-1,4-glucanase from Bacillus subtilis JA18. Bioresource Technology, 100(1): 345-349
    Watanabe H., Tokuda G. 2001. Animal cellulases. Cell Mol Life Sci, 58(9): 1167-78
    Wei M.-Q., Rush C. M., Norman J. M., Hafner L. M., Epping R. J., Timms P. 1995. An improved method for the transformation of Lactobacillus strains using electroporation. Journal ofMicrobiological Methods, 21(1): 97-109
    Weinberg Z. G., Ashbell G., Hen Y., Azrieli A. 1995. The effect of cellulase and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages. Animal Feed Science and Technology, 55(3-4): 287-293
    Westers L., Westers H., Quax W. J. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1694(1-3): 299-310
    Wolf M., Geczi A., Simon O., Borriss R. 1995. Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology, 141 ( Pt 2)281-90
    Xia Y., Chen W., Fu X., Zhang H., Yang S., Ding X. 2005. Construction of an integrative food-grade expression system for Bacillus subtilis. Food Research International, 38(3): 251-256
    Xu F., Ding H., Tejirian A. 2009. Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme and Microbial Technology, 45(3): 203-209
    Yang C.-Y., Ho Y.-C., Pang J.-C., Huang S.-S., Tschen J. S.-M. 2009. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresource Technology, 100(3): 1454-1458
    Ye X. Y., Ng T. B., Cheng K. J. 2001. Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli. The International Journal of Biochemistry & Cell Biology, 33(1): 87-94
    Yin Y. L., Baidoo S. K., Schulze H., Simmins P. H. 2001. Effects of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with [beta]-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Production Science, 71(2-3): 97-107
    Yu B., Liu J. R., Chiou M. Y., Hsu Y. R., Chiou P. W. S. 2007a. The Effects of Probiotic Lactobacillus reuteri Pg4 Strain on Intestinal Characteristics and Performance in Broilers Asian-Aust. J. Anim. Sci., 20(8): 1243-1251
    Yu B., Liu J. R., Hsiao F. S., Chiou P. W. S. 2008a. Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous [beta]-glucanase as a probiotic in poultry diets based on barley. Animal Feed Science and Technology, 141(1-2): 82-91
    Yu B., Liu J. R., Hsiao F. S., Chiou P. W. S. 2008b. Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous b-glucanase as a probiotic in poultry diets based on barley. Animal Feed Science and Technology, 14182-91
    Yu L.-X., Gray B. N., Rutzke C. J., Walker L. P., Wilson D. B., Hanson M. R. 2007b. Expression of thermostable microbial cellulases in the chloroplasts of nicotine-free tobacco. Journal of Biotechnology, 131(3): 362-369
    Yu Q. H., Dong S. M., Zhu W. Y., Yang Q. 2007c. Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiol Lett, 275(2): 207-13
    Zhou J. S., Pillidge C. J., Gopal P. K., Gill H. S. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International Journal of Food Microbiology, 98(2): 211-217
    Zhuge B., Du G.-C., Shen W., Zhuge J., Chen J. 2008. Expression of a Bacillus subtilis pectate lyase gene in Pichia pastoris. Biochemical Engineering Journal, 40(1): 92-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700