用户名: 密码: 验证码:
介质阻挡放电去除气态混合VOCs的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压放电等离子体处理气态有机污染物(VOCs)是一种新型的VOCs末端治理技术,因其具有效率高、无选择性、使用范围广等特点呈现出良好的应用前景。本论文以丙酮/苯/四氯乙烯/间二甲苯的混合气体为目标污染物,采用双极性窄脉冲高压电源与介质阻挡放电结合进行降解处理,探讨了混合VOCs降解时各组分间的相互影响规律,并对电源参数和反应器结构进行了优化。此外,论文还对DBD等离子体-催化体系降解混合VOCs的协同效应进行了研究。主要研究成果及结论如下:
     1.研究比较了DBD分别与工频交流电源和双极性窄脉冲电源结合时电压、电流波形,功率注入特性和VOCs的降解特性,发现脉冲DBD兼有脉冲放电的陡前沿、窄脉宽的特点,可产生瞬间大功率放电和高能电子,能更有效的去除VOCs。在注入功率均为15.0 W的条件下,处理气体流量为2.5 L/min,浓度均为200 ppm的丙酮/苯/四氯乙烯/间二甲苯混合气体时,交流DBD下四种污染物的降解率分别为10%/27%/45%/96%,而采用脉冲DBD则可提高至23%/52%/57%/99%。
     2.对脉冲DBD体系中电源和反应器的匹配进行了优化研究,考察了峰值电压、放电频率和脉冲成形电容等参数对能量注入和VOCs降解效率的影响。结果表明:增大脉冲峰值电压和频率可以提高能量的注入,促进对污染物的降解;脉冲成形电容与DBD反应器存在最佳匹配关系,对于线筒式DBD反应器,脉冲成形电容与反应器静态电容的最佳匹配关系为10~20倍。
     3.从功率有效注入和等离子体分布方面对DBD反应器结构进行了优化,考察了电极形式、放电间隙、介质尺寸和放电长度等参数对VOCs降解效果的影响。结果表明:与不锈钢螺纹电极相比,不锈钢棒电极下等离子体分布更加均匀,对VOCs的降解效率也更高;增大反应器的放电间隙,会引起反应器内功率密度变小和高能活性粒子的分布不均匀,使得对VOCs的降解效率下降;相同的放电间隙下,适当放大反应器的介质尺寸和放电长度有利于对VOCs的降解。
     4.通过考察四种混合VOCs的降解特性和尾气成分的分析,探讨了混合VOCs降解时各组分间的相互影响规律。结果表明:混合VOCs同时降解时,组分之间有相互的影响作用,分子结构不稳定,电离能较小的污染物会优先降解,降解产生的小分子中间产物会对其它组分的降解产生抑制作用。
     5.对脉冲DBD等离子体降解VOCs时CO2和CO选择性的变化特征进行了研究,发现尾气中的CO2和CO是由不同的降解途径生成的,增加放电电压并不能促进CO向CO2的转化。
     6.研究了DBD等离子体-催化体系下混合VOCs的降解特性和CO2选择性的变化规律,并探讨了相关作用机理。结果表明:DBD等离子体与催化结合不仅可以提高VOCs的降解率,还可以提高CO2选择性,抑制CO的生成;混合VOCs中各组分的催化降解性能与其在催化剂上的吸附能力大小有关,吸附能力越强,催化降解效果越明显。
As a novel technology for the removal of gaseous VOCs, the nonthermal plasma process has such advantages as high removal efficiency, nonselective, wide using range and so on, and exhibits promising application perspective. In this paper, the mixture of acetone, benzene, m-xylene and perchloroethylene (PCE) was chosen as the object and a bipolar pulse DBD system was set up by combining the bipolar pulse high voltage and DBD to remove the mixed VOCs in air. The feasibility and mechanism of mixed VOCs decomposition by nonthermal plasma were studied. The optimization of power supply parameters and reactor structure was investigated. Furthermore, this paper also set up a nonthermal plasma-catalysis system for mixed VOCs decomposition and investigated the synergistic effect and mechanism of this system. The main results are summarized as follows:
     1. The voltage waveforms, current waveforms and characteristics of input power for industry frequency alternate current DBD as well as bipolar pulse DBD had been investigated. The results showed that comparing with industry frequency alternate current DBD, the bipolar pulse DBD exhibited the advantages of short pulsed corona discharge that sharp pulse edge and narrow pulse width which led to more quantities of high-energy particles generate and better for VOCs decomposition. Under the conditions of 15 W average power,2.5 L/min flow rate and 200 ppm concentraten, the decomposition rates of acetone, benzene, PCE and m-xylene in their mixture were 23%,52%,57% and 99% for the bipolar pulse DBD, comparing with industry frequency alternate current DBD were only 10%,27%,45% and 96%。
     2. For the bipolar pulse DBD system, the optimization of matching the power supply and reactor was investigated by studying the effects of pulse peak voltage, pulse repetitive rate and capacitance of the pulse capacitor. Experiment results indicated that increasing the pulse peak voltage and pulse repetitive rate could improve the energy injection and promote the decomposition of VOCs. For the wire-tube DBD reactor, the appropriate match rate between the pulse capacitor and the static capacitance of reactor was 10~20 times.
     3. The DBD reactor configuraten was optimized at the aspect of the effective power input and spatial distribution of energy. Effects of electrode material, discharge gap, size of barrier and discharge length on the VOCs decomposition had been studied. The results showed that comparing with the stainless steel bolt, the stainless steel rod as the electrode had more uniform plasma distribution and high decomposition rates of VOCs. The reactor energy density and decomposition rates of VOCs decreased with the increased of discharge gap. At the same discharge gap, appropriate enlarging the reactor size and discharge length was helpful to the remove of VOCs.
     4. The interactions among the components were investigated by studied the decomposition characteristics of four kinds of mixed VOCs and analyzed the exhaust components. The results showed that there were some interactions among the components when the mixed VOCs were removed simultaneously. The component that had smaller ionization energy was priority to be decomposed to micromolecule intermediate products which will reduced the degradation efficiency of other components.
     5. The CO2 and CO selectivity of VOCs degradation in DBD had been studied. The results indicated that the CO2 and CO were generated by different degradation pathway that increasing the pulse peak voltage could not promote the conversion of CO to CO2.
     6. The degradation characteristics and mechanisms of mixed VOCs and CO2 selectivity in nonthermal plasma-catalyst system had been studied. The results suggested that DBD nonthermal plasma combining with catalysis could both enhance the decomposition rates of VOCs and CO2 selectivity. For the mixed VOCs decomposition, the catalytic capability of metal catalyst was related to the adsorption capacity of each VOC component. Adsorption capacity of VOC component in catalyst surface was stronger, the more obvious effect of catalytic degradation.
引文
[1]http://www.who.int.[Z].
    [2]The definition relates to indoor air quality[R]. World Health Organisation,1989.
    [3]吴忠标.大气污染控制技术[M].北京:化学工业出版社,2002.
    [4]Weetman F. Volatile organic chemicals in the environment[J]. Indoor Environment.1994,3(1):55-57.
    [5]Carter W, Luo D, Malkina I. Investigation of the atmospheric reactions of chloropicrin[J]. Atmospheric Environment.1997,31(10):1425-1439.
    [6]Pitten F A, Bremer J, Kramer A. Air contamination with volatile organic compounds (VOCs) and health complaints[J]. Deutsche Medizinische Wochenschrift.2000,125(18):545-550.
    [7]Yassaa N, Meklati B Y, Brancaleoni E, et al. Polar and non-polar volatile organic compounds (VOCs) in urban Algiers and saharian sites of Algeria[J]. Atmospheric Environment.2001,35(4):787-801.
    [8]朱天乐.室内空气污染控制[M].北京:化学工业出版社,2002.
    [9]吴忠标,赵伟荣.室内空气污染及净化技术[M].北京:化学工业出版社,2005.
    [10]Sunesson A L, Rosen I, Stenberg B, et al. Multivariate evaluation of VOCs in buildings where people with non-specific building-related symptoms perceive health problems and in buildings where they do not[J]. Indoor Air.2006,16(5):383-391.
    [11]徐玉党.室内空气污染控制与洁净技术[M].重庆:重庆大学出版社,2006.
    [12]Lee C, Hsieh S. Health risk assessment for human exposure to VOCs in a paint manufacturing plant of Taiwan[J]. Epidemiology.2007,18(5):70-71.
    [13]Clean Air Act[S].1977.
    [14]Clean Air Act[S].1990.
    [15]大气污染物综合排放标准[S].1996.
    [16]中华人民共和国大气污染防治法[S].2000.
    [17]Ruddy E N, Carroll L A. Select the best VOC control strategy[J]. Chemical Engineering.1993,28(7): 854-862.
    [18]郝吉明,马广大.大气污染控制工程(第二版)[M].北京:高等教育出版社,2002.
    [19]Chen Y S, Liu H S. Absorption of VOCs in a rotating packed bed[J]. Industrial & Engineering Chemistry Research.2002,41(6):1583-1588.
    [20]龚圣,黄肖容,隋贤栋.室内空气净化技术[J].环境污染治理技术与设备.2004,15(14):55-58.
    [21]Ruhl M J. Recover VOCs via adsorption on activated carbon[J]. Chemical Engineering Progress.1993, 89(7):37-41.
    [22]Pires J, Carvalho A, Carvalho M B. Adsorption of volatile organic compounds in Y zeolites and pillared clays[J]. Microporous and Mesoporous Materials.2001,43(3):277-280.
    [23]李婕,羌宁.挥发性有机物(VOC_S)活性炭吸附回收技术综述[J].四川环境.2007,26(06):101-105.
    [24]李洪美.活性炭纤维对有机废气吸附性能的研究[D].大连:大连理工大学,2008.
    [25]Li Y X, Chen J Y, Sun Y H. Adsorption of multicomponent volatile organic compounds on semi-coke[J]. Carbon.2008,46(6):858-863.
    [26]Park S J, Kim Y B, Yeo S D. Vapor adsorption of volatile organic compounds using organically modified clay[J]. Separaten Science and Technology.2008,43(5):1174-1190.
    [27]Dwivedi P, Gaur V, Sharma A. Comparative stydy of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber[J]. Separaten and Purification Technology. 2004,39(1-2):23-37.
    [28]Yahaya G. Separaten of volatile organic compounds (BTEX) from aqueous solutions by a composite organophilic hollow fiver membrane-based pervaporaten process[J]. Journal of Membrane Science.2007, 21(1-2):413-420.
    [29]Hou K Y, Wang J D, Li H Y. A new membrane inlet interface of a vacuum ultraviolet lamp ionization miniature mass spectrometer for on-line rapid measurement of volatile organic compounds in air[J]. Rapid Communications in Mass Spectrometry.2007,21(22):3554-3560.
    [30]王志伟,耿春香,安慧.膜法回收有机蒸汽进展[J].环境科学与管理.2009,34(3):100-105.
    [31]王新,方向晨,刘忠生等.橡胶废气催化燃烧处理技术[J].当代化工.2009,38(02):191-193.
    [32]宋萃,陈敏,张婷等.VOCs催化燃烧Pd-Y/不锈钢丝网催化剂的性能[J].无机化学学报.2009,25(03):397-401.
    [33]Abdullah A Z, Abu Bakar M Z, Bhatia S. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst[J]. Journal of Hzazrdous Materials.2006,129(1-3):39-49.
    [34]Lou J C, Tu Y J. Incinerating volatile organic compounds with ferrospinel catalyst MnFe2O4:An example with isopropyl alcohol[J]. Journal of the Air & Waste Management Association.2005,55(12): 1809-1815.
    [35]何毅,王华,李光明等.有机废气催化燃烧技术[J].江苏环境科技.2004,17(01):35-38.
    [36]牛学坤.流向变换催化燃烧空气净化过程的模型化研究[D].北京化工大学,2003.
    [37]洪紫萍.挥发性有机化合物的污染与防治[J].环境污染与防治.1994,16(04):24-26.
    [38]Waki K, Zhao J C, Horikoshi S, et al. Photooxidation mechanism of nitrogen-containing compounds at TiO2/H2O interfaces:an experimental and theoretical examination of hydrazine derivatives[J]. Chemosphere.2000,41(3):337-343.
    [39]Kim S B, Hong S C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst[J]. Applied Catalysis B:Environmental.2002,35(4):305-315.
    [40]朱昕昊,陆永琪,朱天乐等.TiO_2薄膜气相光催化氧化低浓度三氯甲烷和三氯乙烯的研究[J].环境污染治理技术与设备.2003,4(03):26-30.
    [41]Wang S, Ang H, Moses T. Voltile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environment International.2007,33(5):694-705.
    [42]Wu G, Conti B, Leroux A, et al. A high performance biofilter for VOC emission control[J]. Journal of the Air & Waste Management Association.1999,49(2):185-192.
    [43]Qi B, Moe W M, Kinney K A. Treatment of paint spray booth off-gases in a fungal biofilter[J]. Journal of Environmental Engineering.2005,131(2):180-189.
    [44]Gabaldon C, Martinez-Soria V, Martin M, et al. Removal of TEX vapours from air in a peat biofilter: influence of inlet concentraten and inlet lead[J]. Journal of Chemical Technology and Biotechnology.2006, 81(3):322-328.
    [45]耿长君,张春燕,吴丹等.生物过滤法处理炼油污水厂恶臭废气[J].化工学报.2007,58(04):1018-1024.
    [46]华素兰,王丽萍,周敏等.生物滴滤法净化间歇释放印刷覆膜废气[J].中国矿业大学学报.2008,37(01):79-83.
    [47]Langmuir I. Oscillations in ionized gases. Proceedings of the National Academy of Sciences of the United States of America[J].1928,14(8):627-637.
    [48]赵化侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [49]Kim H H, Prieto G, Takashima K, et al. Performance evaluation of discharge plasma process for gaseous pollutant removal[J]. Journal of Electrostatics.2002,55(1):25-41.
    [50]Zhou Y X, Yan P, Cheng Z X, et al. Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash[J]. Powder Technology.2003,135-136(2):345-353.
    [51]Song Y, Kim S, Choi K, et al. Effects of adsorption and temperature on a nonthermal plasma process for removing VOCs[J]. Journal of Electrostatics.2002,55(2):189-201.
    [52]Chang J S. Recent development of plasma pollution control technology:a critical review[J]. Science and Technology of Advance Materials.2001,2(3-4):571-576.
    [53]Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal[J]. Journal of Molecular Catalysis A:Chemical.2007, 263(1-2):128-136.
    [54]Ostapczuk A, Chmielewski A G, Honkonen V, et al. Preliminary test in decomposition of styrene by electron beam treatment[J], Radiation Physics and Chemistry.1999,56(3):369-371.
    [55]Sun Y X, Chmielewski A G, Bulka S, et al. Influence of base gas mixture on decomposition of 1,4-dichlorobenzene in an electron beam generated plasma reactor[J]. Plasma Chemistry and Plasma Processing.2006,26(4):347-359.
    [56]Yan K P. Corona plasma generate[D]. Holland:Eindhoven University of Technology,2001.
    [57]Chang J S, Lawless P A, Yamamoto T. Corona discharge processes[J]. IEEE Transactions on Plasma Science.1991,19(6):1152-1166.
    [58]Sano N, Nagamoto T, Tamon H, et al. Removal of Acetaldehyde and Skatole in Gas by a Corona-Discharge Reactor[J]. Industrial & Engineering Chemistry Research.1997,36(9):3783-3791.
    [59]Van Durme J, Dewulf J, Sysmans W, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemosphere.2007,68(10):1821-1829.
    [60]吴祖良,高翔,李济吾等.非热平衡等离子体过程苯的降解[J].化工学报.2007,58(08):2075-2080.
    [61]袁学远,陶冶,刘培英.直流电晕放电降解甲苯的特性研究[J].环境污染治理技术与设备.2006,7(08):120-123.
    [62]Sano N, Fukuoka M, Kanki T, et al. Temperature effect on removal of sulfur dioxide and benzene in humid air by DC corona discbarge[J]. Chemical Engineering & Techonlogy.2004,27(2):171-175.
    [63]Marotta E, Callea A, Ren X W, et al. DC corona electric discharges for air pollution control,2-ionic intermediates and mechanisms of hydrocarbon processing[J]. Plasma Chemistry and Plasma Processing. 2008,5(2):146-154.
    [64]Marotta E, Callea A, Rea M, et al. DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing[J]. Environmental Science & Technology.2007,41(16): 5862-5868.
    [65]Yamamoto T, Ramanathan K, Lawless P A. Control of volatile organic compounds by an AC energizedferroelectrics pellet reactor and a pulsed corona peactor[J]. IEEE Transactions on Industy Applications.1992,28(3):528-534.
    [66]Nifuku M, Horvath M, Bodnar J, et al. A study on the decomposition of volatile organic compounds by pulse corona[J]. Journal of Electrostatics.1997,40(1):687-692.
    [67]黄立维,林鑫海,顾巧浓等.电晕-吸收法治理甲苯废气实验研究[J].环境科学学报.2006,26(01):17-21.
    [68]黄立维,谭天恩.脉冲电晕法治理甲苯废气实验研究[J].中国环境科学.1997,17(05):449-452.
    [69]黄立维,谭天恩,施耀.高压脉冲电晕法治理有机废气实验研究[J].环境污染与防治.1998,20(01):4-7.
    [70]王银生,季学李,羌宁.脉冲电晕等离子体净化有机污染物甲苯的实验研究[J].同济大学学报(自然科学版).2000,28(06):699-701.
    [71]Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, et al. A combined multistage corona discharge and catalytic system for gaseous benzene removal [J]. Journal of Molecular Catalysis A-Chemical.2007, 263(1-2):128-136.
    [72]Mok Y S, Nam C M, Cho M H, et al. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes[J]. IEEE Transactions on Plasma Science.2002,30(1):408-416.
    [73]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社,1996.
    [74]Kogelschatz U. Dielectric-barrier discharges:Their history, discharge physics, and industrial applications [J]. Plsama Chemistry and Plasma Processing.2003,23(1):1-46.
    [75]Evans D, Rosocha L A, Anderson G K, et al. Plasma remediation of trichloroethylene in silent discharge plasmas[J]. Journal of Applied Physics.1993,74(9):5378-5386.
    [76]Lee H M, Chang M B. Abatement of gas-phase p-xylene via dielectric barrier discharges [J]. Plasma Chemistry and Plasma Processing.2003,23(3):541-558.
    [77]Chang M B, Lee C C. Destruction of formaldethyde with dielectric barrier discharge plasmas[J]. Environmental Science & Technology.1995,29(1):181-186.
    [78]郑光云,侯健,蒋洁敏等.非平稳态等离子体降解流动态低浓度甲苯气体的研究[J].复旦大学学报(自然科学版).2001,40(04):364-367.
    [79]蒋洁敏,侯健,郑光云等.介质阻挡放电常压分解苯、二甲苯[J].中国环境科学.2001,21(06):531-534.
    [80]Kim H H, Kobara H, Ogata A, et al. Comparative assessment of different nonthermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene[J]. IEEE Transactions on Industy Applications.2005,41(1):206-214.
    [81]李锻,刘江江,吴彦等.针-板式流光放电结合脉冲电源降解甲苯[J].北京理工大学学报.2005,25(S1):230-233.
    [82]李锻,刘明辉,吴彦等.双极性脉冲高压介质阻挡放电降解氯苯和甲苯[J].中国环境科学.2006,26(S1):23-26.
    [83]李锻,刘明辉,吴彦等.单极性脉冲电源结合介质阻挡放电降解VOCs[J].北京理工大学学报.2005,25(S1):201-204.
    [84]Snyder H R, Anderson S K. Effect of air and oxygen content on the dielectric barrier discharge decomposition of chlorobenzene[J]. IEEE Transactions on Plasma Science.1998,26(6):1695-1699.
    [85]Magureanu M, Mandache N B, Parvulescu V I, et al. Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene:Optimization of the reactor geometry and introduction of catalytic electrode[J]. Applied Catalysis B:Environmental.2007,74(3-4):270-277.
    [86]Oda T, Yamashita R, Tanaka K, et al. Analysis of low-temperature surface discharge plasma products from gaseous organic compounds[J]. IEEE Transactions on Industy Applications.1996,32(5):1044-1050.
    [87]Oda T, Yamashita R, Haga I, et al. Decomposition of gaseous organic contaminants by surface discharge induced plasma chemical processing SPCP[J]. IEEE Transactions on Industy Applications.1996, 32(1):118-124.
    [88]Lee H M, Chang M B. Removal of gaseous acetaldehyde via a silent discharge reactor packed with A12O3 beads[J]. Journal of Advance Oxidation Technologies.2003,6(1):48-54.
    [89]Chang C L, Bai H L, Lu S J. Destruction of styrene in an air stream by packed dielectric barrier discharge reactors[J]. Plasma Chemistry and Plasma Processing.2005,25(6):641-657.
    [90]Chang C L, Lin T S. Decomposition of toluene and acetone in packed dielectric barrier discharge reactors[J]. Plasma Chemistry and Plasma Processing.2005,25(3):227-243.
    [91]Ogata A, Shintani N, Mizuno K, et al. Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets[J]. IEEE Transactions on Industy Applications.1999,35(4):753-759.
    [92]Ogata A, Ito D, Mizuno K, et al. Effect of coexisting components on aromatic decomposition in a packed-bed plasma reactor[J]. Applied Catalysis A:General.2002,236(1-2):9-15.
    [93]Ding H X, Zhu A M, Yang X F, et al. Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas[J]. Journal of Physics D:Applied physics.2005,38(23):4160-4167.
    [94]Van Durme J, Dewulf J, Leys C, et al. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment:A review[J]. Applied Catalysis B:Environmental.2008,78(3-4):324-333.
    [95]Ighigeanu D, Calinescu I, Martin D, et al. A new hybrid technique for the volatile organic compounds removal by combined use of electron beams, microwaves and catalysts[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2008,266(10): 2524-2528.
    [96]Zhu X, Cheng D, Kuai P. Catalytic Decomposition of Methane over Ni/Al2O3 Catalysts:Effect of Plasma Treatment on Carbon Formation[J]. Energy & Fuels.2008,22(3):1480-1484.
    [97]Guo Y, Ye D, Chen K, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis Today.2007,126(3-4):328-337.
    [98]Wallis A E, Whitehead J C, Zhang K. The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis[J]. Applied Catalysis B:Environmental.2007,74(1-2): 111-116.
    [99]Ban J, Son Y, Kang M, et al. Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS)[J]. Applied Surface Science.2006,253(2):535-542.
    [100]Wu C C, Lee G W M. Oxidation of volatile organic compounds by negative air ions[J]. Atmospheric Environment.2004,38(37):6287-6295.
    [101]Li D, Yakushiji D, Kanazawa S, et al. Decomposition of toluene by streamer corona discharge with catalyst[J]. Journal of Electrostatics.2002,55(3-4):311-319.
    [102]Kim H H, Ogata A, Futamura S. Effect of different catalysts on the decomposition of VOCS using flow-type plasma-driven catalysis[J]. IEEE Transactions on Plasma Science.2006,34(3):984-995.
    [103]Subrahmanyam C, Renken A, Kiwi-Minsker L. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma:Part Ⅱ. Optimized catalytic electrode and operating conditions [J]. Applied Catalysis B:Environmental.2006,65(1-2):157-162.
    [104]Subrahmanyam C, Renken A, Kiwi-Minsker L. Novel catalytic non-thermal plasma reactor for the abatement of VOCs[J]. Chemical Engineering Journal.2007,134(1):78-83.
    [105]Oda T. Non-thermal plasma processing for environmental protection:decomposition of dilute VOCs in air[J]. Journal of Electrostatics.2003,57(3-4):293-311.
    [106]Oda T, Takahahshi T, Yamaji K. Nonthermal plasma processing for dilute VOCs decomposition[J]. IEEE Transactions on Industy Applications.2002,38(3):873-878.
    [107]Han S B, Oda T, Ono R. Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process[J]. IEEE Transactions on Industy Applications. 2005,41(5):1343-1349.
    [108]Han S B, Oda T. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process[J]. Plasma Chemistry and Plasma Processing.2007,16(2): 413-421.
    [109]Demidiouk V, Moon S I, Chae J O. Toluene and butyl acetate removal from air by plasma-catalytic system[J]. Catalysis Communications.2003,4(2):51-56.
    [110]Demidiouk V, Moon S I, Chae J O, et al. Application of a plasma-catalytic system for decomposition of volatile organic compounds[J]. Journal of the Koren physical society.2003,42:966-970.
    [111]Demidiouk V, Chae J O. Decomposition of volatile organic compounds in plasma-catalytic system[J]. IEEE Transactions on Plasma science.2005,33(1):157-161.
    [112]李坚,李洁,梁文俊等.等离子体法去除甲醛的实验研究[J].高电压技术.2007,33(02):171-173.
    [113]Hackam R, Aklyama H. Air pollution control by electrical discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation.2000,7(5):654-683.
    [114]李坚,薛红弟,梁文俊等.等离子体法去除HCHO的实验研究[J].北京工业大学学报.2006,32(06):534-537.
    [115]竹涛,李坚,梁文俊等.高频介质阻挡放电降解甲苯的实验研究[J].高电压技术.2009,35(02):359-363.
    [116]Yamamoto T. VOC decomposition by nonthermal plasma processing-A new approach[J]. Journal of Electrostatics.1997,42(1-2):227-238.
    [117]Sugasawa M, Annadurai G, Futamura S. Nonthermal plasma chemical processing of mixed VOCs[C]. Hong Kong:IEEE Industry Applications Conference, Fortieth IAS Annual Meeting,2005.
    [118]赵文华,张旭东.反应器特征参数对介质阻挡放电去除NO的影响[J].清华大学学报(自然科学版).2003,43(11):1515-1518.
    [119]杜长明,李俊岭,严建华.滑动弧放电等离子体去除甲苯的实验研究[J].高电压技术.2008,34(03):512-516.
    [120]史喜成,李静,白书培等.单双介质阻挡放电降解苯的对比研究[J].环境化学.2009,28(02): 196-201.
    [121]吴玉萍,赵之骏,张建良等.介质阻挡放电降解苯乙烯的研究[J].中国环境科学.2003,23(06):653-656.
    [122]Rubio S J, Quintero M C, Rodero A, et al. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure[J]. Journal of Hazardous Materials.2007,148(1-2):419-427.
    [123]Mizuno A, Kisanuki Y, Noguchi M, et al. Indoor air cleaning using a pulsed discharge plasma[J]. IEEE Transactions on Industy Applications.1999,35(6):1284-1288.
    [124]Young S M, Chang M N, Moo H C, et al. Decomposition of volatile organic compounds and nitric oxide by nonthermal plasma discharge processes[J]. IEEE Transactions on Plasma Science.2002,30(1): 408-416.
    [125]李坚,马广大.电晕法处理VOCs的机理分析与实验[J].西安建筑科技大学学报(自然科学版).2000,32(01):24-27.
    [126]李胜利,汪晓熙,吴健婷等.放电等离子体方法处理二甲苯废气的实验研究[J].环境科学与技术.2006,29(02):1-2.
    [127]李坚,马广大.电晕法处理易挥发性有机物(VOCs)的实验研究[J].环境工程.1999,17(03):30-32.
    [128]Masuda S, Hosokawa S, Tu X, et al. Novel plasma chemical technologies-PPCP and SPCP for control of gaseous pollutants and air toxics[J]. Journal of Electrostatics.1995,34(3):415-438.
    [129]李国锋,吴彦,王宁会.脉冲电晕放电特性研究[J].大连理工大学学报.1999,39(06):157-160.
    [130]李国锋,吴彦,王宁会.脉冲电晕脱硫脱硝反应器电极配置研究[J].大连理工大学学报.1999,39(01):45-49.
    [131]李国锋,吴彦,王宁会.线—板式脉冲电晕放电系统研究[J].高电压技术.1999,25(01):2368-2374.
    [132]赵文华,张旭东.电极尺寸对介质阻挡放电冷等离子体去除NO的影响[J].环境污染治理技术与设备.2004,5(01):51-53.
    [133]Bo Z, Yan J, Li X, et al. Scale-up analysis and development of gliding arc discharge facility for volatile organic compounds decomposition[J]. Journal of Hazardous Materials.2008,155(3):494-501.
    [134]Kohno H, Tamura M, Honda S, et al. Generaten of aerosol particles in the process of xylene, and TCE decomposition from air stream by a ferroelectric packed-bed barrier discharge reactor[J]. Journal of Aerosol Science.1997,28(S1):413-414.
    [135]Koutsospyros A D, Yin S M, Christodoulatos C, et al. Plasmochemical Degradation of Volatile Organic Compounds (VOC) in a Capillary Discharge Plasma Reactor[J]. IEEE Transactions on Plasma Science.2005,33(1):42-49.
    [136]Savinov S Y, Lee H, Song H K, et al. Decomposition of Methane and Carbon Dioxide in a Radio-Frequency Discharge[J]. Industrial & Engineering Chemistry Research.1999,38(7):2540-2547.
    [137]Tsai C, Kuo Z. Effects of additives on the selectivity of byproducts and dry removal of fluorine for abating tetrafluoromethane in a discharge reactor[J]. Journal of Hzazrdous Materials.2009,161(2-3): 1478-1483.
    [138]Satoh K, Matsuzawa T, Itoh H. Decomposition of benzene in a corona discharge at atmospheric pressure[J]. Thin Solid Films.2008,516(13):4423-4429.
    [139]Futamura S, Sugasawa M. Additive effect on energy efficiency and byproduct distribution in VOC decomposition with nonthermal plasma[J]. IEEE Transactions on Plasma Science.2008,44(1):40-45.
    [140]竹涛,李坚,梁文俊等.非平衡等离子体联合技术降解甲苯气体[J].环境科学学报.2008,28(11):2299-2304.
    [141]邱作志,叶代启.放电等离子体驱动光催化降解甲苯研究[J].工业催化.2008,16(06):70-74.
    [142]黄碧纯,杨岳,张晓明等.介质阻挡放电-光催化降解甲苯的实验研究[J].华南理工大学学报(自然科学版).2008,36(12):56-60.
    [143]Thevenet F, Guaitella O, Puzenat E, et al. Oxidation of acetylene by photocatalysis coupled with dielectric barrier discharge[J]. Catalysis Today.2007,122(1-2):186-194.
    [144]Chen H L, Lee H M, Chen S H, et al. Removal of Volatile Organic Compounds by Single-Stage and Two-Stage Plasma Catalysis Systems:A Review of the Performance Enhancement Mechanisms, Current Status, and Suitable Applications[J]. Environmental Science & Technology.2009,43(7):2216-2227.
    [145]Kim H, Ogata A, Futamura S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental.2008,79(4):356-367.
    [146]Kim H, Oh S, Ogata A, et al. Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst[J]. Applied Catalysis B:Environmental.2005,56(3):213-220.
    [147]Subrahmanyam C, Magureanu M, Renken A, et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode[J]. Applied Catalysis B:Environmental.2006,65(1-2):157-162.
    [148]Roland U, Holzer F, Kopinke E D. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds Part 2. Ozone decomposition and deactivation of gamma-Al2O3[J]. Applied Catalysis B:Environmental.2005,58(3-4):217-226.
    [149]Futamura S, Einaga H, Kabashima H, et al. Synergistic effect of silent discharge plasma and catalysts on benzene decomposition[J]. Catalysis Today.2004,89(1-2):89-95.
    [150]Huang H, Ye D, Guan X. The simultaneous catalytic removal of VOCs and O3 in a post-plasma[J]. Catalysis Today.2008,139(1-2):43-48.
    [151]Futamura S, Gurusamy A. Synergy of nonthermal plasma and catalysts in the decomposition of fluorinated hydrocarbons[J]. Journal of Electrostatics.2005,63(6-10):949-954.
    [152]Magureanu M, Mandache N B, Hu J, et al. Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts[J]. Applied Catalysis B: Environmental.2007,76(3-4):275-281.
    [153]Delagrange S, Pinard L, Tatibouat J. Combination of a non-thermal plasma and a catalyst for toluene removal from air:Manganese based oxide catalysts[J]. Applied Catalysis B:Environmental.2006,68(3): 92-98.
    [154]Delimaris D, Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B:Environmental.2009,89(1):295-302.
    [155]Delimaris D, Ioannides T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Applied Catalysis B:Environmental.2008,84(1):303-312.
    [156]Scirh S, Minicr S, Crisafulli C, et al. Catalytic combustion of volatile organic compounds over group IB metal catalysts on Fe2O3[J]. Catalysis Communications.2001,2(6):229-232.
    [157]Jarrige J, Vervisch P. Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst[J]. Applied Catalysis B:Environmental.2009,90(1):74-82.
    [158]Radhakrishnan R, Oyama S T, Chen J G, et al. Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide[J]. Journal of Physical Chemistry B.2001,105(19):4245-4253.
    [159]Subrahmanyam C, Magureanu M, Renken A, et al. Catalytic abatement of volatile organic compounds assisted by non-thermal plasma:Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode[J]. Applied Catalysis B:Environmental.2006,65(1-2):150-156.
    [160]Van Durme J, Dewulf J, Sysmans W, et al. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system[J]. Applied Catalysis B:Environmental.2007,74(1-2):161-169.
    [161]Van Durme J, Dewulf J, Demeestere K, et al. Post-plasma catalytic technology for the removal of toluene from indoor air:Effect of humidity[J]. Applied Catalysis B:Environmental.2009,87(1-2):78-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700