用户名: 密码: 验证码:
心肌肥厚和TRP通道基因表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌肥厚是多种心脏疾病共同的病理过程。其病理变化包括心肌细胞肥大、心肌间质细胞增殖以及心脏细胞外基质改建等多方面的改变,即心肌重构。心肌肥厚时心肌细胞蛋白合成增加、体积增大、直径增宽或长度增加,肌节数量增多并伴有纤维组织增生。心肌肥厚是引起多种心血管疾病的重要危险因素。早期的心肌肥厚可能是心肌细胞对外界的刺激的一种适应性的改变,有一定的代偿意义,有利于维持心输出量,以满足机体的需要,但是长期的心肌肥厚最终会导致心力衰竭,甚至会猝死。在心肌肥厚发生发展过程中,细胞内钙内流都起到了至关重要的作用。当压力负荷作用与心脏或者是某些神经体液因子(AngⅡ、ET-1和PE等)刺激时,可以导致细胞膜上钙库调控的钙通道(SOC)、受体调控的钙通道(ROC)或者电压依赖的钙通道(VDCC)等通道开放,使钙离子内流,细胞内钙会和钙调素(CaM)结合,继而激活钙调磷酸酶(CaN),CaN的活化,又作用于NFAT通路,导致肥大基因的表达升高,进而引起心肌肥厚。
     TRP通道是存在与细胞膜上一种重要的阳离子通道,与众多的疾病的发生发展有重要的关系,TRP通道几乎存在与机体的各个组织。在心脏中主要是表达的是TRPC通道,也表达部分TRPM和TRPV通道。大多数的TRP通道都可以使钙通过。此外ROC、VDCC和SOC的开放,也可以导致钙内流。而TRPC通道的部分亚型被认为是组成ROC或者SOC的分子基础。ROC和SOC等都与钙内流有关,与心肌肥厚的发生密切相关。因而TRPC通道和心肌肥厚的发生有很重要的关系。但是,目前为止,对于TRP通道和心肌肥厚的关系,TRPC通道的报道较多,其他的TRP通道的亚型报道较少,其在心肌肥厚的发生发展中是否发挥作用尚未知晓,有待于进一步研究。
     本实验利用Real-Time PCR的方法去研究TRPC、TRPV、TRPM、STIM1和Orai1在正常成年大鼠、新生期大鼠和心肌肥厚模型组大鼠的心肌组织中表达水平。通过与正常成年大鼠心肌组织的表达水平的比较,研究这些通道和心肌肥厚发生发展的关系;另外,通过新生期大鼠和正常成年大鼠和心肌肥厚模型大鼠的比较,也可以了解心脏发育与心肌肥厚的关系。
     第一部分大鼠心肌肥厚模型的制备和心脏功能和组织学评价
     目的:制备异丙肾上腺素(Iso)诱导和腹主动脉缩窄(AAC)诱导的心肌肥厚模型。
     方法:Iso诱导心肌肥厚模型:Iso 5mg/(kg·d),背部皮下注射,连续七天,可以诱导大鼠心肌肥厚模型;AAC诱导的心肌肥厚模型:大鼠常规1%戊巴比妥钠腹腔注射麻醉,左侧卧位,切开皮肤、筋膜和肌肉,游离出一段腹主动脉,然后用4#缝合线将自制的弯曲的8#针头和该段腹主动脉一起结扎,再缓慢的抽出针头,造成腹主动脉在结扎点处内径缩窄,然后依次复位各脏器,缝合腹壁。关笼饲养,常规给予16万U青霉素抗炎一周。饲养十二周成模。
     结果:血流动力学:与空白对照组比较,Iso模型组和AAC组LVEDP明显升高(P<0.01),而LVSP和±dp/dtmax明显下降(P<0.01)。Iso组和AAC组两组相比,LVEDP、LVSP、±dp/dtmax则无明显差异(P>0.05)。心脏重量指数(HWI):与空白对照组比较,Iso模型组和AAC组心脏重量及HWI明显升高(P<0.01);病理学检查:光镜下可见,空白对照组大鼠心肌纤维排列整齐,横纹明显,胞核结构清晰,无细胞肿胀;Iso组和AAC组心肌细胞显著肥大,核大浓染,肌纤维排列紊乱,呈旋涡状或簇状,肌原纤维走向不一,互相交错排列。
     结论:经过Iso处理和AAC处理的大鼠均能成功诱导出心肌肥厚,其中Iso造模方法相对简单,成模率高;AAC模型类似临床负荷性心肌肥厚的病理生理学过程。两种方法诱导的心肌肥厚模型成功制备下一步的实验打下基础。
     第二部分心肌肥厚与TRP离子通道基因表达水平的研究
     目的:研究正常成年大鼠、新生期大鼠、心肌肥厚模型组大鼠心肌组织中TRP通道、STIM1和Orai1 mRNA的表达水平。
     方法:严格按照Promega total RNA Isolation Syetem的方法分别提取正常成年大鼠、新生期大鼠和模型组大鼠的心肌组织的总RNA;然后根据Promega Reverse Transcription System的方法合成cDNA的第一链;最后根据Takara SYBR Premix Ex TaqTM荧光试剂盒的说明和cDNA的量,进行Real-Time PCR。数据分析所用的方法为2-ΔCt,其中﹣ΔCt为不同组间PCR扩增进入指数增长期的循环数的差值。
     结果:
     1. BNP是心肌肥厚的标记分子之一,与正常成年鼠相比,在Iso诱导的心肌肥厚和AAC诱导的心肌肥厚模型的心肌组织中,BNP的mRNA表达水平分别升高了7.80±0.33倍和8.11±0.37倍(P<0.01),而新生期大鼠的心肌组织中BNP的表达水平升高了8.08±0.39倍(P<0.01)。
     2. TRPC1、TRPC3和TRPC6通道mRNA在心肌肥厚模型和新生期大鼠的心肌组织中表达水平均升高(P<0.01,数据未列出,详见第二部分Table3和Table4)。上述三个通道在Iso诱导心肌肥厚模型和AAC诱导的心肌肥厚模型的表达水平无差异(P>0.05)。TRPC2、TRPC4和TRPC5通道在三组中的表达水平无明显差异(P>0.05)。TRPC7在新生期大鼠的表达水平要高于其他三组(P<0.01)。正常成年大鼠和模型组大鼠TRPC7的表达水平无明显差异(P>0.05)。
     3.在正常成年大鼠组、新生期大鼠组和心肌肥厚模型组大鼠的心肌组织中只探测到了TRPM4和TRPM7有表达,其他的TRPM通道均未探测到。其中TRPM4在新生期大鼠组和心肌肥厚模型组的表达水平要高于正常成年大鼠组(P<0.01,详见第二部分Table5和Table6)。在所有组的心肌组织中TRPM7表达水平无明显差异。
     4.在正常成年大鼠组、新生期大鼠组和心肌肥厚模型组大鼠组的心肌组织中只探测到了TRPV2和TRPV6有表达,其他的TRPV通道均未探测到。TRPV2和TRPV6主要在心肌成纤维细胞上有表达。和正常成年大鼠组相比,心肌肥厚模型组的TRPV2和TRPV6表达水平均升高(P<0.01,详见第二部分Table5和Table6)。正常成年大鼠和新生期的大鼠表达水平则无差异。
     5.与正常成年大鼠相比,新生期大鼠和心肌肥厚模型组大鼠的心肌组织中STIM1和Orai1的表达水平均升高(P<0.01,详见第二部分Table1和Table2)。
     结论:在心肌肥厚的发生发展过程中,TRP通道的亚家族的某些亚型可能起到了重要的作用,具体表现在其在心肌组织的表达水平升高。此外,在新生期大鼠的心肌组织TRP通道表达谱有与心肌肥厚模型组心肌组织的TRP通道表达谱有某些相似之处。其中,新生期大鼠和心肌肥厚模型组的心肌组织的BNP、TRPC1、TRPC3、TRPC6、TRPM4、STIM1和Orai1的表达水平比正常成年大鼠高。本实验结果提示TRP通道有作为治疗心肌肥厚药物的作用靶点的潜能。
Cardiac hypertrophy is the common pathology of a variety of cardiovascular diseases. The pathological changes include myocardial hypertrophy,?myocardial interstitial cell proliferation and extracellular matrix modification, namely myocardial remodeling. Characters of cardiac hypertrophy include increase myocardial protein synthesis, increased size of cardiac myocytes with larger dimeter or increased length, accompanied by an increase in fibrous tissue hyperplasia. Cardiac hypertrophy is caused by a variety of risk factors for cardiovascular disease. Although hypertrophy is initially a compensatory mechanism that helps sustain cardiac output, prolonged hypertrophy will inevitably give rise to heart failure and even sudden death. The increase in intracellular Ca2+ ([Ca2+]i) plays an important role in the development of hypertrophy. Hypertrophic stimulation by pressure overload and neurohormonal factors(including AngⅡ, ET-1 and PE et al) lead to the SOC (store-operated calcium channels), ROC (receptor-operated calcium channels) or VDCC (voltage-dependent calcium channels) opening. These Ca2+-entry channels induce a prolonged, low-amplitude rise in Ca2+. This sustained Ca2+ entry dominantly activates the calcineurin/NFAT pathway. The calcineurin/ NFAT pathway produces long-term hypertrophic changes in cardiac myocytes and subsequent cardiac hypertrophy.
     TRP channels are plasma membrane cation channels. They are expressed in almost every tissue, including the heart and vasculature. In the heart, evidences are accumulating that TRPC channels, and possibly TRPM and TRPV, are present and functional, Most TRP channels are Ca2+ permeable, Moreover, some of the Ca2+ channels such as ROC and SOC may have molecular basis related to some TRPC channel subtypes. ROC and SOC are believed to play important role for Ca2+ influx during cardiac hypertrophy, As thus, TRPC channels may also be important for occurrence of cardiac hypertrophy. Indeed some TRPC channels have been indicated in cardiac hypertrophy. However, little is known about other role of TRP channels subtypes play in cardiac hypertrophy.
     In this experiment, we use the Real Time PCR method to study expression profiles of the subtypes of TRPC, TRPV snd TRPM channels, as well as STIM1 and Orai1 in myocardial tissue from normal adult rats, neonatal rats and rats with cardiac hypertrophy. Such a comparion between the normal and hypertrophic heart will give us indications which of these TRP channels are possibly involved in cardiac hypertrophy development. And moreover, comparison between neonatal rats and normal adult rat and hypertrophyic rats would also shed light on relationship between cardiac development and hypertrophy.
     Part 1 Establishment of rat cardiac hypertrophy model and evaluation of cardiac function and histology
     Object: To establish rat cardiac hypertrophy models by means of isoproterenol injection and abdominal aorta coarctation. Method: Isoproterenol (Iso)-induced cardiac hypertrophy model: Iso 5mg/(kg·d), back subcutaneous injection for consecutive seven days, was used to induce cardiac hypertrophy; Abdominal aorta coarctation (AAC)-induced cardiac hypertrophy model: intraperitoneal injection of 1% sodium pentobarbital was used to anesthetize rats. The anetsthetized rats were laid in a left-lateral position. Abdominal was cut open to expose abdominal aorta. A 4# suture was used to tight the abdominal aorta together with a self-made 8# cured injection needle, causing abdominal aorta coarctation. After this operation, abdominal fascia and skin were sutured. Intraperitoneal injection of benzylpenicillin potassium (16U, a week) was applied to prevent infection. After 12 weeks rat cardiac hypertrophy were established.
     Results: Hemodynamic parameters: compare with the control group, LVEDP was significantly higher (P<0.01), whereas LVSP and±dp/dtmax were significantly decreased in model groups (P<0.01). However, LVSP, LVEDP and±dp/dtmax were not significantly different within two model groups (P>0.05). Heart weght index (HWI): compare with control group, HWI was significantly higher in model groups (P<0.01). Histopathological examination: the myocardial structure in the normal rat group was clearly evident; myofibrils are the main components of cytoplasm, and they appeared orderly, with bright and dark areas clearly evident; In Iso group and the AAC group, myocardial cells appeared hypertrophy, with an increase in cell size and deposition of fibrous tissue.
     Conclusion: Isoproterenel injection and abdominal aorta coarctation successfully induced rat cardiac hypertrophy. The Isoproteronel method is relatively simple and had high successful rate. AAC method mimics better the pathophysiology of clinical cardiac hypertrophy with overload. Both models can be used for further study.
     Part 2 Study of the relationship between cardiac hypertrophy and TRP channel mRNA expression levels.
     Object: To Study the mRNA expression levels of the TRP channels, STIM1 and Orai1 in rat myocardium of normal adult rats, neonatal rat and cardiac hypertrophy model rats.
     Method: Using Promega total RNA Isolation Syetem method to isolate total RNA from myocardial tissues of normal adult rats, neonatal rats and model rats. Using Promega Reverse Transcription System to synthesize single-strandea cDNA from total RNA. Using Takara SYBR Premix Ex TaqTM to perform Real-Time PCR from synthesized cDNA. The difference in amount of original cDNA from different experimental rat groups were calculated using expression of 2-ΔCt; -ΔCt is the difference of PCR circle number in threshold between different groups.
     Results:
     1. Compared with normal adult rats, the BNP mRNA expression levels in the Iso-induced cardiac hypertrophy and AAC-induced cardiac hypertrophy models were increased by 7.80±0.33-fold and 8.11±0.37-fold, respectively (P<0.01), and the neonatal rat mRNA expression level was increased by 8.08±0.39-fold (P<0.01).
     2. Compared with normal adult rats, TRPC1, TRPC3 and TRPC6 channel mRNA expression levels in the cardiac hypertrophy model rats and neonatal rats were higher (P<0.01, For detailed data, see the Part 2 Table3 and Table4). However, there was no significant difference in mRNA expression levels (TRPC1, TRPC3 and TRPC6) between model rats and neonatal rats. The mRNA expression levels of TRPC2, TRPC4 and TRPC5 in all groups were not significantly different (P>0.05). TRPC7 mRNA expression level in neonatal rats was higher than other groups (P<0.01), and the normal adult rats groups and model groups were not significantly different (P>0.05).
     3. Among all TRPM family members, only TRPM4 and TRPM7 expression were detected. The mRNA expression level of TRPM4 in neonatal rats group and model rats group was higher than normal rats group (P<0.01, for detailed data, see Part 2 Table5 and Table6). The TRPM7 channel mRNA expression level was not significant different in all groups.
     4. Among all TRPV family members, only TRPV2 and TRPV6 expression were detected. The mRNA expression levels of TRPV2 and TRPV6 in cardiac hypertrophy model rats group were higher than normal rats group and neonatal rats groups (P<0.01, for detailed data, see Part 2 Table5 and Table6). There was no significant difference between hypertrophy model groups.
     5. Compared with normal adult rats, mRNA expression levels of STIM1 and Orai1 in neonatal rats group and cardiac hypertrophy model rats group were significantly higher (P<0.01, for detailed data, see part 2 Table1 and Table2).
     Conclusion: Expression levels of some TRP channels subtypes were selectively increased in cardiac hypertrophy of rats. These data suggest that these TRP channels may play an important role in the occurrence and development of cardiac hypertrophy. Furthermore, general expression profile of TRP channels in myocardial tissue from neonatal rats is similar to that from cardiac hypertrophy models rats. Thus, compared with normal rats groups, the expression levels of BNP, TRPC1, TRPC3, TRPC6, TRPM4, STIM1 and Orai1 in neonatal rats and cardiac hypertrophy model rats were increased. The results of this study indicate that TRP channels may represent an important therapeutic target for the treatment of cardiac hypertrophy.
引文
1吴扬,谈世进,潘敬运。血管紧张素Ⅱ诱导心肌肥厚的作用及其机理探讨。南通医学院学报,1996,6(4): 468~471
    2 Black FM, Packer SE, Parker TG, et al The vascular smoothmuscle alpha -actin gene is reactivated during cardiac hypertrophy provoked by load. J Clin Invest, 1991, 88(5): 1581~1588
    3 Parker TG, Chow KL, Schwartz RJ, et al Differential regulation of skeletal alpha-actin transcription in cardiac muscle by two fibroblast growth factors. Proc Natl Acad Sci USA, 1990, 87(18): 7066~7070
    4 Lips DJ, deWindt LJ, van Kraaij DJ, et al Molecular determinants of myocardial hypertrophy and failure:alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J, 2003, 24(10): 883~896
    5 Bos R, Mougenot N, Findji L, et al Inhibition of catecholamine-induced cardiac fibrosis by an aldosterrone antagonist.Cardiovasc Pharmacol, 2005, 45(1): 8~13
    6 Ocaranza MP, Díaz-Araya G, Chiong M, et al Isoproterenol and angiotensin I-converting enzyme in lung, left ventricle, and plasma during myocardial hypertrophy and fibrosis. J Cardiovasc Pharmacol, 2002, 40(2): 246~254
    7 Gallego M, Espina L, Vegas L, et al Spironolactone and captopril attenuates isoproterenol-induced cardiac remodelling in rats. Pharmacol Res, 2006, 44(4): 311~315
    8 Leenen FH, White R, Yuan B. Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin-angiotensin system. Am J Physiol Heart Circ Physiol, 2001, 281(6): 2410~2416
    9 Boluyt MO, Robinson KG, Meredith AL, et al Heart failureafter long-term supravalvular aortic constriction in rats. Am J Hypertens, 2005, 18: 202~212
    10 Esposito G, Rapacciuolo A, Naga Prasad SV, et al Genetic alter-ationsthat inhibit in vivo pressure-overload hypertrophy prevent cardiacdysfunction despite increased wall stress. Circulation , 2002, 105: 85~92
    11 Morgan HE, Baker KM. Cardiac hypertrophy:mechanical neuraland endocrine dependence. Circulation, 1991, 83: 13~25
    12 Geenen DL, Ashwani M, James S. AngiotensionⅡincreases cardiac protein gynthesis in adult rat heart. Am J Physiol, 1993, 265: H238~H243
    1 Ito H, Hirata Y, Adachi S, et al Endothelin-1 is an autocrine/ paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest, 1993, 92: 398~403
    2 Frey N, Katus HA, Olson EN, et al Hypertrophy of the heart: a new therapeutic target? Circulation, 1993, 109: 1580~1589
    3 Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol, 2003, 65: 45~79
    4 Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol, 2006, 68: 619~647
    5 Clapham DE, JuliusD, MontellC, et al Nomenclature and structure -function relationships of transient receptor potential channels. PharmacolRev, 2005, 57: 427~450
    6 Clapham DE. TRP channels as cellular sensors. Nature, 2003, 426: 517~524
    7 Huang CL. The transient receptor potential superfamily of ion channels. JAm Soc Nephrol, 2004, 15: 1690~1699
    8 Inoue R, Jensen LJ, Shi J, et al Transient receptor potential channels in cardiovascular function and disease. Circ Res, 2006, 99: 119~131
    9 Guinamard R, Bois,P. Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta, 2007, 1772: 885~894
    10 Bush EW, Hood DB, Papst PJ, et al Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem , 2006, 281: 33487 ~33496
    11 Kuwahara K, Wang Y, McAnally J, et al TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest, 2006, 116: 3114~3126
    12 Onohara N, Nishida M, Inoue, et al TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J, 2006,25: 5305~5316
    13 Ohba T, Watanabe H, Murakami, et al Upregulation of TRPC1 in thedevelopment of cardiac hypertrophy. J Mol Cell Cardiol, 2007, 42: 498~507
    14 BehramiAP, Urbanek K, Kajstura J, et al Evidence that human cardiac myocytes divide after myocardial infarction. N Engl JMed, 2001, 344 (23): 1750~1757
    15 Hiroyuki W, Manabu M, Ohba T, et al The Pathological Role of Transient Receptor Potential Channels in Heart Disease. Circ J, 2009, 73: 419~427
    16 Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol, 1997, 59: 551~571
    17 Nishida M, Hara Y, Yoshida T, et al TRP channels: moleculer diversity and physiological function. Microcirculation, 2006, 13: 535~550
    18 Satoh S, Tanaka H, Ueda Y, et al Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem, 2007, 294: 205~215
    19 Nishida M, Kurose H. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedeberg’s Arch Pharmacol, 2008, 378: 395~406
    20 Watanabe H, Murakami M, Ohba T, et al The pathological Role of Transient Receptor Potential Channels in Heart Disease. Circ J, 2009, 73: 419~427
    21 Takahashi Y, Watanabe H, Murakami M, et al Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2007, 361: 934~940
    22 Li-Ping He, Thamara Hewavitharana, Jonathan Soboloff, et al A Functional Link between Store-operated and TRPC Channels Revealed by the 3,5-Bis(trifluoromethyl)pyrazole Derivative, BTP2*. J Biol Chem, 2005, Vol. 280, No. 12, Issue of March 25, pp. 10997~11006
    23 Kiyonaka S, Kato K, Nishada M, et al Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. PNAS, 2009, Vol 106, no 13, 5400~5405
    1 McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol, 2007, 34: 255~262
    2 Sadoshima J, Izumo S. The cellular and molecularresponse of cardiac myocytes to mechanical stress. Annu Rev Physiol, 1997, 59: 551~571
    3 Timmerman LA, Clipstone NA, Ho SN, et al Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature, 1996, 383: 837~840
    4 Dolmetsch RE, Lewis RS, Goodnow CC, et al Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature, 1997, 386: 855~858
    5 Gwack Y, Feske S, Srikanth S, et al Signaling to transcription: Store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium , 2007, 42: 145~156
    6 Nishida M, Hara Y, Yoshida T, et al TRP channels: molecular diversity and physiological function. Microcirculation, 2006, 13: 535~550
    7 Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature, 1969, 224: 285~287
    8 Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989, Apr; 2(4): 1313~1323
    9 Hardie RC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 1992, 8: 643~651
    10 Petersen CC, Berridge MJ, Borgese MF, et al Putative capacitative calcium entry channels: expression of Drosophila trp and evidence for the existence vertebrate homologues. The Biochemical J, 1995, 311(Pt1): 41~44
    11 Wes PD, Chevesich J, Jeromin A, et al TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA, 1995, 92:9652~9656
    12 Montell C, Birnbaumer L, Flockerzi V, et al A unified nomenclature for the superfamily of TRP cation channels. Mol cell, 2002, 9: 229~231
    13 Inoue R, Jensen LJ, Shi J, et al Transient receptor potential channels in cardiovascular function and disease. Circ Res, 2006, 99: 119~131
    14 Guinamard R, Bois P. Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta, 2007, 1772, 885~894
    15 Hofmann T, Obukhov AG, Schaefer M, et al Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature, 1999, 397: 259~263
    16 Vazquez G, Bird GS, Mori Y, et al Native TRPC7 channel activation by an inositol trisphosphate receptor-dependent mechanism. J Biol Chem 2006, 281: 25250~25258
    17 Hofmann T, Schaefer M, Schultz G, et al Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA, 2002, 99: 7461~7466
    18 Poteser M, Graziani A, Rosker C, et al TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4-heteromeric channels in endothelial cells. J Biol Chem, 2006, 281: 13588~13595
    19 Strübing C, Krapivinsky G, Krapvinsky L, et al Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem, 2003, 278: 39014~39019
    20 Ohba T, Watanabe H, Murakami M, et al Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol, 2007, 42:498~507
    21 Mori Y, Wakamori M, Miyakawa T, et al Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J Exp Med , 2002, 18: 673~681
    22 Maroto R, Raso A, Wood TG,et al TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol , 2005, 7: 179~185
    23 Bush EW, Hood DB, Papst PJ, et al Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem, 2006, 281: 33487~33496
    24 Nakayama H, Wilkin BJ, Bodi I, et al Calcineurindependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J, 2006, 20: 1660~1670
    25 Brenner JS, Dolmetsch RE. TrpC3 regulates hypertrophy associated gene expression without affecting myocyte beating or cell size. PLoS One , 2007, 2(8): e802
    26 Ver Heyen M, Heymans S, Antoons G, et al Replacement of the musclespecific sarcoplasmic reticulum Ca2+-ATPase isoform SERCA2 by the nonmuscle SERCA2b homologue causes mild concentric hypertrophy and impairs contraction-relaxation of the heart. Circ Res, 2001, 89: 838~846
    27 Seth M, Sumbilla C, Mullen SP, et al Sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 2004, 101: 16683~16688
    28 Kuwahara K, Wang Y, McAnally J, et al TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac Remodeling. J Clin Invest, 2006, 116: 3114~3126
    29 Onohara N, Mishida M, Inoue R, et al TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO, 2006, J25: 5305~5316
    30 Large WA. Receptor-operated Ca2+-permeable nonselective cation channels in vascular smooth muscle: A physiologic perspective. J Cardiovas Electrophysiol, 2002, 13: 493~501
    31 Winn MP, Conlon PJ, Lynn KL, et al A mutation of TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science, 2005, 308: 1801~1804
    32 Nishida M, Sugimoto K, Hara Y, et al Amplification of receptor signaling by Ca2+ entrymediate translocation and activation of phospholipase Cγ2inB lymphocytes. EMBO , 2003, J22: 4677~4688
    33 Nishida M, Kurose H. Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedeberg’s Arch Pharmacol 2008, 378: 395~406
    34 Nishida M, Onohara N, Sato Y, et al Gα12/13-mediated up-regulation of TRPC6 negatively regulates endothelin-1-induced cardiac myofibrob- last formation and collagen synthesis through nuclear factor of activated T cells activation. J Biol Chem, 2007, 282: 23117~23128
    35 Arai K, Maruyama Y, Nishida M, et al Differential requirement of Gα12, Gα13, Gαq, and Gβγfor endothelin-1-induced c-Jun NH2-ter- minal kinase and extracellular signal-regulated kinase activation. Mol Pharmacol, 2003, 63: 478~488
    36 Nishida M, Tanabe S, Maruyama Y, et al Gα12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J Biol Chem, 2005, 280: 18434 ~ 18441
    37 Maruyama Y, Nishida M, Sugimoto Y, et al Gα12/13 mediatesα1-adrenergic receptor-induced cardiac hypertrophy. Cir Res, 2002, 91: 961~969
    38 Satoh S, Tanaka H, Ueda Y, et al Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem 2007, 294: 205~215
    39 Ohba T, Watanabe H, Takahashi Y, et al Regulatory role of neuron restrictive silencing factor in expression of TRPC1. Biochem Biophys Res Commun , 2006, 351: 764~770
    40 Paria BC, Bair AM, Xue J, et al Ca2+ influx induced by protease-activated receptor-1 activates feedforward mechanism of TRPC1 expression via nuclear factor-κB activation in endothelial cells. J Biol Chem, 2006, 281: 20715~20727
    41 Paria BC, Malik AB, Kwiatek AM, et al Tumor necrosis factor-αinduces nuclear factor-κB-dependent TRPC1 expression in endothelial cells. J Biol Chem, 2003, 278: 37195~37203
    42 Wang J, Weigand L, Lu W, et al Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res, 2006, 98: 1528~1537
    43 Dalrymple A, Mahn K, Poston L, et al Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod, 2007, 13: 171~179
    44 Zhang S, Patel HH, Murray F, et al Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol, 2007, 292: L1202~L1210
    45 Hiroyuki W, Manabu M, Takayoshi O, et al The Pathological Role of Transient Receptor Potential Channels in Heart Disease. Circ J , 2009, 73: 419~427

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700