用户名: 密码: 验证码:
铅、镉及其复合污染对茶树生理生化及吸收积累特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅(Pb)、镉(Cd)既是环境中的主要重金属污染物,又是公认的毒性最强的“五毒”元素,其在自然界中往往伴随存在。当它们在作物体内累积到一定程度时,不仅会严重影响作物的生长发育、产量和品质,还可通过食物链的传递进入人体,对人类的健康造成巨大危害。因此,本实验选取Pb、Cd作为供试污染物,采用室内溶液培养法,初步研究了Pb、Cd及其复合污染对茶树生理生化及吸收积累特性的影响,以期为揭示重金属对茶树的毒害机制和提高茶叶产品的安全性以及为茶树重金属污染的早期预报和综合防治提供一些理论依据与参考。研究结果表明:
     1、Pb、Cd及其复合污染均可抑制茶树的生长发育并使茶树表现出不同程度的受害症状。单一Pb处理和Pb、Cd复合处理茶树的基本受害症状为:根系逐渐变黑,甚至腐烂,还伴有白色絮凝状物质产生;叶片也失水萎蔫,失绿黄化,焦枯褐变;越冬芽萌发和新梢生长受到严重抑制;茶苗最终死亡。而单一Cd处理的受害症状则表现为:植株中下部叶片轻微失绿黄化和少量脱落,新梢生长也受到抑制,但植株根系却生长正常,并有新根长出,且发芽总数较对照增加明显。Pb、Cd复合污染对茶树的表观毒害程度强于单一Pb、Cd处理。
     2、Pb、Cd及其复合污染均可不同程度的抑制茶树光合作用。随着Pb、Cd及其复合处理浓度的升高,茶树叶绿素a、叶绿素b、叶绿素总量以及叶绿素a/b比值均持续下降,而光合速率(Pn)、蒸腾速率(Tr)、胞间CO2浓度(Ci)及气孔导度(Gs)等光合作用参数也都随之降低,且Gs和Tr的下降幅度更为明显。Pb、Cd复合污染对茶树光合作用的抑制程度强于单一Pb、Cd处理。
     3、Pb、Cd及其复合污染对茶树保护酶活性的影响有所不同。单一Pb处理和Pb、Cd复合处理茶树的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性均随着处理浓度的增加而先升后降,且Pb、Cd复合处理的酶活性变化幅度明显强于单一Pb处理,而单一Cd处理的SOD、POD、CAT活性则呈现持续增加的趋势。同时,各处理茶树叶片的丙二醛(MDA)含量、脯氨酸(Pro)含量和相对电导率也都随着处理浓度的升高而增加,且Pb、Cd复合处理各指标的增加幅度显著高于单一Pb、Cd处理,表明Pb、Cd复合处理对茶树细胞膜的破坏程度明显强于单一处理。
     4、在Pb、Cd及其复合污染处理下,茶树各部位的Pb、Cd含量均随着处理浓度的增加而不同程度的增加。单一污染时,Pb在茶树体内的移动性较弱,其在茶树体内各部位的积累分布顺序为:吸收根>主根>主茎>枝条>成熟叶片>新梢;而Cd在茶树体内的移动性则较强,其在茶树体内各部位的积累分布顺序则为:吸收根>主根>枝条>成熟叶片>主茎>新梢。而复合处理时,Pb在茶树体内的分布次序依旧表现为:吸收根>主根>主茎>枝条>成熟叶片>新梢,但总体而言,Cd的加入促进了树体各部位对Pb的吸收积累,导致了各部位对Pb的吸收富集能力的改变;而Cd在茶树体内的积累分布次序则发生了改变,低浓度处理时表现为:吸收根>主根>主茎>枝条>成熟叶片>新梢,而高浓度处理时则表现为:主根>吸收根>主茎>枝条>成熟叶片>新梢,Pb的加入抑制了吸收根、枝条、成熟叶片和新梢对Cd的吸收积累,而促进了主根、主茎中Cd含量的增加,改变了茶树体各部位对Cd的吸收富集能力。
     5、在Pb、Cd及其复合污染处理下,茶树新梢中的各儿茶素组分和氨基酸组分均发生了不同程度的改变,变化规律较为复杂,但儿茶素总量、咖啡碱含量和氨基酸总量则均随着处理浓度的增加而明显降低,且Pb、Cd复合处理各指标的下降幅度更为明显,表明Pb、Cd及其复合污染导致了茶叶品质明显降低。
Pb and Cd are not only the major heavy metal pollutants in the environment but also the two of the most recognized toxic and harmful environmental elements, they usually concomitantly exist in the nature. When they accumulate to a certain extent in the crops, they will not only seriously affect the growth, yield and quality of the crops, but also can enter the body through the food chain, and cause great harm to the human health. Therefore, this study selected Pb and Cd as the pollutants, the Pb, Cd and their compound pollution on the physiological, biochemical effects and their absorption, accumulation characteristics of tea plants were preliminary studied with indoor solution culture, to provide some theoretical basises and references for revealing the toxicity and patience mechanisms of heavy metals, improving the safety of tea products and the early warning and integrated control of heavy metals. The results show that:
     1、Pb, Cd and their compound pollution could inhibit the growths of tea plants and make tea plants damaged with different degrees of symptoms. The basic symptoms of tea plants under single Pb treatment and Pb, Cd compound pollution were that the roots blacked gradually, and even decayed, accompanied by white flocculate engendered; the leaves withered with losing water, and yellowed, browned, scorched; the winter buds and the growths of the new shoots were seriously inhibited; and finally, the tea plants dead. But the symptoms of single Cd treatment on tea plants were different, they were that the middle and lower parts of tea plant leaves lightly appeared etiolation and bit shed, the length and weight of the new shoots were was also inhibited, but the growth of the roots were normal, and there were some new roots growing, the total number of buds significantly increased compared with the control. The damages of Pb, Cd compound treatment on the symptoms of tea plants were all much stronger than the single Pb, Cd treatment.
     2、Pb, Cd and their compound pollution could significantly reduce the photosynthesis of tea plants. With the concentrations of Pb, Cd and their compound treatment increasing, the contents of chlorophyll a, chlorophyll b, total chlorophyll in tea plants and the ratio of a/b all reduced all the time, while the photosynthetic rate (Pn), transpiration rate (Tr), intercellular CO2 concentration (Ci) and stomatal conductance (Gs) also reduced, even the stomatal conductance (Gs) and transpiration rate (Tr) reduced more. The inhibition leveles of Pb, Cd compound treatment on the photosynthesis of tea plants were much stronger than single Pb, Cd treatment.
     3、The effects of Pb, Cd and their compound pollution on the protective enzymatic activities of tea plants wrer different. With the concentrations of Pb and Pb, Cd compound treatment increasing, the SOD, POD, CAT activities increased at first and then decreased, and the rangeabilities of enzymatic activities under Pb, Cd compound treatment were significantly stronger than single Pb treatment, but the SOD, POD, CAT activities of single Cd treatment increased all the time. In addition, the contents of MDA, proline and the relative conductivity in tea leaves increased obviously with the concentrations of Pb, Cd and their compound treatment increasing, and the increasing number of Pb, Cd compound treatment were more evident, mean that the cell membrane damages of Pb, Cd compound treatment on tea plants were stronger than single Pb, Cd treatment.
     4、Under Pb, Cd and their compound treatment, the contents of Pb and Cd in different parts of tea plants differently increased with the concentrations of Pb, Cd and their compound treatment increasing. Under single treatment, the mobility of Pb in the tea plants was weak, its accumulation and distribution order in the tea parts was absorbing roots> main roots> main stems> tender stems> mature leaves>new shoots; but the mobility of Cd in the tea plants was much stronger, its accumulation and distribution order in the tea parts was absorbing roots> main roots> tender stems> mature leaves> main stems>new shoots. But under Pb, Cd compound treatment, although the accumulation and distribution order of Pb in the tea parts was still absorbing roots> main roots> main stems> tender stems> mature leaves>new shoots, but overall, the accession of Cd promoted the tea parts to absorb and accumulate Pb, and changed the Pb accumulation capacity of tea plants too; however the accumulation and distribution rule of Cd in the tea parts was changed, it was absorbing roots> main roots> main stems> tender stems> mature leaves>new shoots while lower concentrations, but it was main roots> absorbing roots> main stems> tender stems> mature leaves>new shoots while higher concentrations, the accession of Pb suppressed the absorbing roots, tender stems, mature leaves, new shoots to absorb and accumulate Cd, but promoted the contents of Cd in main roots and main stems, and changed the Cd accumulation capacity of tea plants too.
     5、Under Pb, Cd and their compound treatment, the catechins components and amino acids components in new shoots changed differently, but the contents of total catechins, caffeine and amino acids decreased obviously with the concentrations of Pb, Cd and their compound treatment increasing, and the decrease extents of Pb, Cd compound treatment were more obviouser, mean that Pb, Cd and their compound treatment could significantly reduce the quality of tea.
引文
[1]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):598-605
    [2]Singh O V. An overview of metallic ion decontamination from soil [J]. Appl Microbol Biotechnol,2003,61:400-405
    [3]林强.我国的土壤污染现状及其防治对策[J].福建水土保持,2004,16(11):25-28
    [4]杨金凤,卜玉山,邓红艳.镉、铅及其复合污染对油菜部分生理指标的影响[J].生态学杂志,2009,28(7):1284-1287
    [5]赵素达.青岛市化学污染对人体健康的危害[J].生物学通报,1995,4(30):18-20
    [6]韦佩珠.铅的生殖毒性研究进展[J].广西预防医学,2001,7(增刊):127-130
    [7]高永强,马燕.铅对人体的危害[J].内蒙古环境科学,2007,19(3):115-117
    [8]刘秀英,王翔朴,贺全仁.镉对肝、肾毒性与谷胱甘肽含量的关系[J].卫生毒理学杂志,2001,15:31-32
    [9]刘茂生.有害元素镉与人体健康[J].微量元素与健康研究,2005,22(4):66-67
    [10]罗苹,刘亚铭,傅绍清.西南地区绿茶产品质量及其污染状况评价[J].西南农业学报,2000,13(2):110-114
    [11]石元值.我国茶叶中铅含量研究及思考[J].中国茶叶,2001,23(4):18-19
    [12]姜红艳,龚淑英.茶叶中铅含量现状及研究动态[J].茶叶,2004,30(4):210-212
    [13]石元值,金李孟,祝幼松.第一讲:茶叶重金属元素含量现状及累积特点[J].中国茶叶,2007,6:17-19
    [14]Chen Huaiman, Zheng Chunrong, Wang Shenqiang, et al. Combined pollution and pollution index of heavy metals in red soil [J]. Pedosphere,2000,10(2):117-124.
    [15]ETCS (European Topic Centre Soils) 1998 Topic report-Contaminated sites [R]. European Environment Agency, p:142
    [16]孙铁珩,周启星.污染生态学研究的回顾与展望[J].应用生态学报,2002,13:221-223
    [17]石元值,马立峰,韩文炎,等.铅在茶树中的吸收累积特性[J].中国农业科学,2003,36(11):1272-1278
    [18]李晓林.铅、铬对茶树生长的影响及其在茶树体内的吸收累积特性研究[D].四川农业大学,2008
    [19]康孟利.铅在茶树体内累积分布及其对茶树生育、生理影响的研究[D].浙江大学,2004
    [20]骆耀平,康孟利,任明兴.铅污染对茶树生育及相关保护酶活性的影响[J].茶叶,2004,30(4):213-216
    [21]唐茜,李晓林,朱新钰,等.铅、铬胁迫对茶树生育的影响研究[J].西南农业学报,2008,21(1):156-162
    [22]兰海霞,夏建国.川西蒙山茶树中铅、镉元素的吸收累积特性[J].农业环境科学学报,2008,27(3):1077-1083
    [23]兰海霞.Pb、Cd及复合污染对茶树生理生态效应的研究[D].四川农业大学,2008
    [24]Bazzaz, F. A. Differing sensitiveity of corn and soybean photosynthesis and transpiration to Pb contamination [J]. Environ Qual,1974,3(2):156-158
    [25]Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal substituted chlorophylls using the example of water pants [J]. Exp Bot,1996,47(295):259-266
    [26]杜连彩.铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响[J].中国蔬菜,2008,(5):17-19
    [27]林伟,张燕,周娜娜,等.铅污染对黄瓜幼苗脯氨酸及叶绿素含量的影响[J].安徽农学通报,2006,12(11):86-87
    [28]韩豫,曹莹,王绍斌,等.铅胁迫对花生生理生化特性的影响[J].花生学报,2007,36(1):24-27
    [29]郑世英,王丽燕,商学芳,等.铅胁迫对玉米种子萌发及叶片渗透调节物质含量的影响[J].安徽农业科学,2006,34(21):547-547
    [30]李彩霞,张芬琴,王光忠.铅对绿豆幼苗生长的影响[J].植物资源与环境学报,2003,12(2):60-61
    [31]徐应明,李军幸,戴晓华,等.钝化作用对大豆污染土壤铅行为影响的研究[J].农业环境学报,2003,22(6):685-688
    [32]宋勤飞,樊卫国,刘国琴.铅在番茄中的积累及对其生长和生理的影响[J].农业环境科学学报,2006,25(增刊):87-91
    [33]曹莹,韩豫,蒋文春,等.铅胁迫对花生生长与铅积累特性的研究[J].中国油料作物学报,2008,30(2):198-200
    [34]江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学报,2002,28(3):169-174
    [35]韩爱民,蔡继红,屠锦河,等.水稻重金属含量与土壤质量的关系[J].环境监测管理与技术,2002,14(2):27-28,32
    [36]武淑华,朱伊君,顾亚中.小麦重金属含量与土壤质量之间关系研究[J].黑龙江环境通报,2002,26(3):97-100
    [37]韩文炎,杨亚军,梁月荣等.茶树体内铅的吸收累积特性研究[J].茶叶科学,2009,29(3):200-206
    [38]姜红艳.茶树品种对铅的累积比较与龙井茶加工过程中铅污染的研究[D].浙江大学,2005
    [39]谢建治,刘树庆,刘玉柱,等.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护,2002,21(4):325-327
    [40]李素英,王焕校,吴玉树.Pb, Cd, Zn单元素及其不同组合污染对烟草品质的影响[J].中国环境科学,1990,10(6):457-460
    [41]石元值.茶树中铅元素的吸收累积特性及污染来源研究[D].浙江大学,2003
    [42]郑爱珍,刘传平,沈振国.镉对白菜、青菜生长的影响[J].北方园艺,2005(2):42-43
    [43]王云,陈尧,钱亚如,等.镉胁迫对不同品种小麦幼苗生长和生理特性的影响[J].生态学杂志,2008,27(5):767-770
    [44]朱忻钰.砷、镉对茶树生长的影响及其在茶树体内的吸收积累特性研究[D].四川农业大学,2008
    [45]石元值,阮建云,马立峰,等.茶树中镉、砷元素的吸收累积特性[J].生态与农村环境学报,2006,22(3):70-75
    [46]夏建国,兰海霞.镉胁迫对蒙山茶树生长及叶片生理指标的影响[J].茶叶科学,2008,28(1):56-61
    [47]唐茜,朱忻钰,李晓林,等.砷、镉胁迫对茶树生育的影响[J].河南农业科学,2008,3:37-41
    [48]唐茜,叶善蓉,陈能武,等.茶树对铬、镉的吸收积累特性研究[J].茶叶科学,2008,28(5):339-347
    [49]李梦梅,龙明华.植物抗镉胁迫的研究综述[J].广西农业科学,2005,36(4):319-322
    [50]SUZUKI N, KOIZUMI N, SANO H. Screening of Cd-reslponsive genes in Arabidopsis thaliana [J]. Plant Cell Environ,2001,24:1177-1188
    [51]苏金为,王湘平.镉离子对茶叶光合机构及性能的影响[J].茶叶科学,2004,24(1):65-69
    [52]袁祖丽,吴中红,刘秀敏.镉胁迫对烤烟叶片抗氧化系统的影响[J].河南农业科学,2008,7:43-46
    [53]曹莹,李建东,赵天宏,等.镉胁迫对玉米生理生化特性的影响[J].农业环境科学学报,2007,26(增刊):8-11
    [54]江海东,周琴,李娜,等.Cd对油菜幼苗生长发育及生理特性的影响[J].中国油料作物学报,2006,28(1):39-43
    [55]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75
    [56]李子芳,刘惠芬,熊肖霞,等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24(S1):17-20
    [57]仇硕,黄苏珍,王鸿燕.镉胁迫对黄菖蒲幼苗生理特性的影响研究[J].江苏农业科学,2007,(5):242-244,263
    [58]王焕校.污染生态学[M].北京:高等教育出版社,1999:44-68
    [59]肖美秀,林文雄,陈冬梅,等.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响[J].中国生态农业学报,2006,14(4):256-258
    [60]郑世英,王丽燕,张海英.镉胁迫对两个大豆品种抗氧化酶活性及丙二醛含量的影响[J].江苏农业科学,2007,5:53-55
    [61]汪洪,赵士诚,夏文建,等.不同浓度镉胁迫对玉米幼苗光合作用、脂质过氧化和抗氧化酶活性的影响[J].植物营养与肥料学报,2008,14(1):36-42
    [62]苏金为,王湘平.镉诱导的茶树苗膜脂过氧化和细胞程序性死亡[J].植物生理与分子生物学学报,2002,28(4):292-298
    [63]Florijn P J and Van Beusicllem,M L. Uptake and Distribution of Cd in Maze Inbred Line S [J]. Plant and soil,1993,150:25-32
    [64]Arthur. b. Crews, H. Morgan. C. Optimizing plant genetic strategies for minimizing environmen-tal contamination in the food chain [J]. Interna J Phytoremedi,2000,2(1):1-21
    [65]Jansson, G. and Oborn, I. Cd Content of Swedish Carrots and the Influence of Soil Factors [J]. Acta Agric Scand, Sect. B, Soil and Plant Sci,2000,50:49-56
    [66]Cataldo D. A, Garland. T. R, Widung. R. E. Cd distribution and chemical fate in soybean plant [J]. Plant Physiol,1981,68:835-839
    [67]Mench M & Tancogue J et al. Cd bioaviliability to Nicotiana tabacu L. Nicotiana rustica L. and Zea Mavs L. grown in soil amended or not amended or not amended with Cd nitrate [J]. Biol Fert Soils,1989,8:48-53
    [68]Jian. G. L. et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotype [J]. Field crops Research,2003,1-11
    [69]杨倩,庆灵,胡红青.黄棕壤中铅镉复合污染对莴苣生长和品质的影响[J].华中农业大学学报,2006,25(4):389-392
    [70]谢建治,李博文,刘树庆.Cd、 Zn污染对小白菜营养品质的影响[J].华南农业大学学报,2005,26(1):42-45
    [71]郑文娟,邓波儿.铬和镉对作物品质的影响[J].土壤,1993,25(6):324-326
    [72]黎佳佳,胡红青,付庆灵,等.Cd、 Pb单一与复合污染对辣椒生物量及重金属残留的影响[J].农业环境科学学报,2006,25(1):49-53
    [73]王新,梁仁禄,周启星.Cd-Pb复合污染在土壤-水稻系统中生态效应的研究[J].农村生态环境,2001,17(2):41-44
    [74]冯德建,唐茜,叶善蓉,等.Pb2+、Cd2+、Ni2+复合污染对茶树的影响研究[J].四川农业大学 学报,2009,27(2):184-188
    [75]赵菲佚,翟禄新,陈荃,等.Cd、Pb复合处理下2种离子在植物体内的分布及其对植物生理指标的影响[J].西北植物学报,2002,22(3):595-601
    [76]王启明.铅·镉单一及复合胁迫对玉米幼苗生理生化特性的影响[J].安徽农业科学,2006,34(10):2036-2037,2048
    [77]王启明.铅、镉及其复合胁迫对大豆幼苗生理生化特性的影响[J].河南农业科学,2006,7:34-37
    [78]王林,史衍玺.镉、铅及其复合污染对萝卜生理生化特性的影响[J].中国生态农业学报,2008,16(2):411-414
    [79]魏海英,方炎明,尹增芳.Pb、Cd单一及复合污染对弯叶灰藓某些生理特性的影响[J].广西植物,2003,23(1):69-72
    [80]李荣春.镉、铅及其复合污染对烟叶生理生化指标的影响[J].云南农业大学学报,1997,12(1):45-49
    [81]赵菲佚,翟禄新,陈荃,等.Cd、Pb复合处理下对植物膜的伤害初探[J].兰州大学学报(自然科学版),2002,38(2):115-120
    [82]李志豪,王东明,陈兵红,等.Pb2+·Cd2+及其复合污染对云和雪梨树苗生理生化指标的影响[J].安徽农业科学,2008,36(22):9386-9388
    [83]秦天才,吴玉树,王焕校.镉、铅及相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50
    [84]杨金凤,卜玉山,邓红艳.镉、铅及其复合污染对油菜部分生理指标的影响[J].生态学杂志,2009,28(7):1284-1287
    [85]张义贤,李晓科.镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J].植物研究,2008,28(1):43-46
    [86]贾玉华,朱建雯,钱翌,等.铅-镉复合污染对天竺葵生长的影响[J].安徽农业科学,2008,36(7):2649-2650,2760
    [87]董艺婷,崔岩山,王庆仁.单一与复合污染条件下两种敏感性植物对Cd、Zn、Pb的吸收效应[J].生态学报,2003,23(5):1018-1024
    [88]王林.蔬菜对镉铅的吸收累积特征与生理响应研究[D].山东农业大学,2005
    [89]李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,24(2):238-242
    [90]李元,祖艳群,王焕校.镉、铁及其复合污染对烟草叶片氨基酸含量的影响[J].生态学报,1998,18(6):640-647
    [91]童启庆主编.茶树栽培学[M].中国农业出版社,2000:344
    [92]龚志华.衰老茶树更新修剪生理效应的研究[D].湖南农业大学,2000
    [93]熊庆娥主编.植物生理学实验教程[M].成都:四川科学技术出版社,2003
    [94]王晶英主编.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003:82-83
    [95]王三根主编.植物生理研究技术[M].重庆:西南农业大学,2000
    [96]赵世杰等.植物组织中丙二醛测定方法的改进[J].植物生理学讯,1994,26(4):62-65
    [97]邹琦主编.植物生理学实脸指导[M].北京:中国农业出版社,2000
    [98]SN/T2056-2008.进出口茶叶中铅、砷、镉、铜、铁含量的测定电感耦合等离子体原子发射光谱法[S].中华人民共和国出入境检验检疫行业标准,2008
    [99]GB/T 8313-2008.茶叶中茶多酚和儿茶素类含量的检测方法[S]。中华人民共和国国家标准,2008
    [100]王林,史衍玺.镉、铅及其复合污染对辣椒生理生化特性的影响[J].山东农业大学学报(自 然科学版),2005,36(1):107-112
    [101]瓜谷郁三(日本)著.谢国生,李台生译.植物逆境生物化学及分子生物学[M].北京:中国农业出版社,2004:116
    [102]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,6(2):103-108
    [103]刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响[J].植物生理学报,1985,11(1):48-57
    [104]杨居荣,贺建群,张国祥,等.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113-117
    [105]徐勤松,施国新,郝怀庆.Ca、Cr(VI)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响广西植物,21(1):87-90
    [106]Metha S K, Gaur J P. Heavy metal induced praline accumulation and its role in a meliorating metal toxicity in Chlorella vulgaris [J]. New Phytol,1999,143:253-259
    [107]Sugiyama M.Role of cellular antioxidants in metal-induced damage [J]. Cell Biol Toxicol, 1994,10:1-22
    [108]王友保,刘登义.Cu、As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776
    [109]宛晓春主编.茶叶生物化学[M].北京:中国农业出版社,2003
    [110]李远华,江昌俊,宛晓春.茶树咖啡碱合成酶基因mRNA表达的研究[J].茶叶科学,2004,24(1):23-28
    [111]郑毅男,李想,韩立坤,等.乌龙茶减肥作用机制的研究[J].营养学报,2001,23(4):342-345
    [112]林海涛,史衍玺.铅、镉胁迫对茶树根系分泌有机酸的影响[J].山东农业科学,2005,2:32-34
    [113]林海涛.茶树根际铅、镉的动态过程及其机理研究[D].山东农业大学,2005
    [114]唐茜,冯德建,杨华,等.Cr3+和Cr6+胁迫对茶树生理生化特性的影响[J].茶叶科学,2009,29(4):301-308
    [115]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116
    [116]Van Assche F V, Clijster H. Effects of metal Oh enzyme activity in plants [J]. Plant Cell Envion,1990,13:195-206
    [117]唐咏,王萍萍,张宁.植物重金属毒害作用机理研究现状[J].沈阳农业大学学报,2006,37(4):551-555
    [118]Raviv M, Wallach R, Silber A. Substrates and analysis [A]. Sawas D, Passam Hed Hydroponic production of vegetables and ornamentals[C]. Athens, Greece:Embryo Publications,2002,25:101
    [119]Vallee B I, et al. Biochemical efects of mercury, Cd and Pb [J]. Annu Rev Biochem, 1972,41:91-128
    [120]胡彦,陈沁,邓志瑞,等.辣椒光合系统对重金属Cd2+胁迫的响应[J].上海大学学报(自然科学版),2005,11(5):532-534
    [121]朱宇林,曹福亮,汪贵斌,等.Cd、 Pb胁迫对银杏光合特性的影响[J].西北林学院学报,2006,21(1):47-50
    [122]Panla K P,Thompson J E.Evidencef or the accumulation of peroxidized lipids in Membranes of senescing cotyledons [J]. Plant Physiol,1984,75:1152-1157
    [123]Vetanovetz R P, Peterson J C. The fate urea in a sphagnum peat medium affected by lime source and rate [J]. JAmer Soc Hort Sci,1990,115:386-389
    [124]徐勤松,施国新,周红卫,等.Cd、 Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响[J].生态学杂志,2003,22(1):5-8
    [125]张利红,李培军,李雪梅,等.镉胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志,2005,24(4):458-460
    [126]汤章诚。逆境条件下脯氨酸的积累及意义[J].植物生理学通讯,1984,13(1):15-21
    [127]赵福庚,何龙飞,罗庆云著.植物逆境生理生态学[M].北京:化学工业出版社,2004
    [128]吕芝香,乙引.Nacl胁迫对小麦叶片脯氨酸氧化酶活性和游离脯氨酸累积的影响[J].植物生理学报,1991,18(4):376-38
    [129]PRASSAD M N V, FREITAS H. Removal of toxic metals from solution by leaf,stem and root phytomass of quereus ilex L(hollyoak) [J]. Environment Pollution,2000,110:277-283
    [130]刘军,李先恩,王涛,等.药用植物中铅的形成和分布研究[J].农业环境保护,2002,21(2):143-145
    [131]顾淑华,旭军,朱忠精,等.红壤性水稻土铅环境容量研究[J],环境科学学报,1989,9(1):27-36
    [132]李瑛,张桂银,李洪军,等.根际土壤中Cd、 Pb形态转化及其植物效应[J].生态环境,2004,13(3):316-319
    [133]毕淑芹,谢建治,刘树庆,等.土壤重金属污染对植物产量及品质的影响研究(综述)[J].河北农业科学,2006,10(2):107-110
    [134]杨景辉.土壤污染与防治[M].北京:科学技术出版社,1995
    [135]孙光闻,陈日远,刘厚诚,等.镉对植物光合作用及氮代谢影响研究进展[J].中国农学通报,2005,21(9):234-236,251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700