用户名: 密码: 验证码:
中华绒螯蟹(Eriocheir Sinensis)Peroxiredoxin 6和Thioredoxin 1基因的克隆及表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华绒螯蟹是我国重要的水产经济动物,近年来养殖规模不断扩大,产量持续增加。但是,伴随着养殖规模的扩大,养殖环境也日益恶化并导致了大量疾病的发生,严重制约了中华绒螯蟹养殖业的健康发展。因此,疾病预防和控制对中华绒螯蟹养殖业的可持续发展具有举足轻重的作用。与其他无脊椎动物一样,中华绒螯蟹的免疫系统没有免疫球蛋白和淋巴细胞,而是依靠由细胞免疫和体液免疫构成的固有免疫系统来对病原进行识别和清除。中华绒螯蟹的固有免疫机制的研究有助于推动中华绒螯蟹病害防治工作的开展。
     本研究采用大规模EST测序方法,结合末端快速扩增(rapid amplification of cDNA ends,RACE)技术从中华绒螯蟹血淋巴中克隆到了过氧化物还原酶(peroxiredoxin,EsPrx6)和硫氧还蛋白(thioredoxin,EsTrx1)基因的cDNA全长序列;采用实时荧光定量PCR技术检测了这两个基因在健康个体中表达的组织分布情况以及鳗弧菌刺激后血淋巴细胞中的时序表达规律;同时,将这两个基因的编码区克隆到pET系列载体,并在大肠杆菌中实现了重组表达,并进行了体外活性检测。
     过氧化物还原酶是一个抗氧化蛋白超家族,在保护机体免受活性氧(reactive oxygen species,ROS)的伤害中发挥着重要作用。中华绒螯蟹Prx6(EsPrx6)基因的cDNA全长为1076 bp,5` UTR(untranslated region,UTR)为69 bp,3` UTR为347 bp,开放阅读框(open reading frame,ORF)为660 bp,编码219个氨基酸的蛋白。mRNA 3`-端具有多聚腺苷酸加尾信号(polyadenylation signal)AATAAA和polyA尾巴。EsPrx6的预测分子量为24 kDa,理论等电点为6.21,具有一个保守的Prx结构域、一个AhpC结构域和过氧化物酶催化活性中心PVCTTE,表明EsPrx6属于1-Cys型Prx。在所检测的组织中均有EsPrx6的表达,其中以肝胰腺表达量最高,为血淋巴细胞中表达量的17.4倍。鳗弧菌刺激后,血淋巴细胞中EsPrx6的表达下降,到12 h时,实验组显著低于对照组(P<0.05);随时间推移,表达水平逐渐回升,但在整个实验期间,都没有恢复到起始水平。将EsPrx6进行体外重组并在大肠杆菌E. coli BL21(DE3)中实现表达,重组EsPrx6具有预期的抗氧化活性和过氧化物酶活性,其中抗氧化活力为14.69 U/mg蛋白,高于相同条件下GSH的抗氧化力(P<0.05),过氧化物酶活力为23.46 U/mg蛋白。结果表明,EsPrx6作为一种重要的抗氧化剂,在中华绒螯蟹抵御ROS可能引起的氧化损伤方面具有重要作用。
     硫氧还蛋白是广泛存在于生物体内的一种具有硫醇依赖性的具有还原活性的蛋白。中华绒螯蟹Trx1(EsTrx1)基因的cDNA全长为641 bp,5` UTR为17 bp,3` UTR为306 bp,开放阅读框为318 bp,编码105个氨基酸。EsTrx1的预测分子量为12.2 kDa,理论等电点为4.8。EsTrx1不含信号肽,其氨基酸序列与其他动物的Trx1s具有高度相似性,如与地中海黄蝎的Trx1相似度达到73%;而与其他物种Trx2的同源性很低,相似度仅为14.3-22.8%,表明EsTrx1属于Trx1亚族。实时荧光定量PCR检测发现,EsTrx1在鳃、性腺、肝胰腺、肌肉、心脏和血淋巴细胞中都有表达。血淋巴细胞中EsTrx1 mRNA的表达量在菌刺激后上升,刺激后6 h,实验组表达量显著高于对照组和空白组(P<0.05),然后逐渐恢复到刺激前水平。为进一步探讨其生物学功能,将EsTrx1进行体外重组并在大肠杆菌E. coli BL21(DE3)得到表达,重组EsTrx1具有预期的氧化还原调节活性,抗氧化活力为3.06 U/mg,且抗氧化活力高于GSH(P<0.05)。rEsTrx1的二硫键还原活力为5.03,低于凡纳滨对虾的二硫键还原活力(10.44),接近于大肠杆菌(4.93),小牛胸腺(6.50)和小牛肝脏(5.09),而高于鲍鱼Trx2(1.83)活力。结果表明,EsTrx1在生理条件下能够作为一种重要的抗氧化剂,参与对细菌感染的免疫应答反应。
The Chinese mitten crab Eriocheir sinensis is one of the most commercially important native species for aquaculture industry in China. With the development of intensive culture and environmental deterioration, various diseases caused by bacteria, viruses and rickettsia-like organisms had frequently occurred in cultured E. sinensis populations, which resulted in enormous losses to the crab aquaculture. Like other invertebrates, E.sinensis has no memory effectors such as immunoglobulins and lymphoid cells in the immune response system, and depends on the humoral and cellular components of the innate immunity system to eliminate foreign invaders. Better understanding of the knowledge on the immune defense system of crab will be beneficial to the development of health management and diseases control in crab aquaculture.
     In the present study, peroxiredoxins 6 (designated EsPrx6) and thioredoxin (designated EsTrx1) were cloned from E.sinensis by using rapid amplification of cDNA ends (RACE) approaches. Quantitative real-time RT-PCR was employed to assess the mRNA expression of EsPrx6 and EsTrx1 in various tissues and their temporal expression in haemocytes of crabs challenged with Listonella anguillarum. In order to elucidate its biological functions, EsTrx1 and were recombined and expressed in E. coli BL21 (DE3).
     Peroxiredoxin is a superfamily of antioxidative proteins that play important roles in protecting organisms against the toxicity of reactive oxygen species (ROS). The full-length cDNA of EsPrx6 was of 1076 bp, containing a 5` untranslated region (UTR) of 69 bp, a 3`UTR of 347 bp with a poly (A) tail, and an open reading frame (ORF) of 660 bp encoding a polypeptide of 219 amino acids with the predicted molecular weight of 24 kDa. The conserved Prx domain, AhpC domain and the signature of peroxidase catalytic center identified in EsPrx6 strongly suggested that EsPrx6 belonged to the 1-Cys Prx subgroup. The mRNA transcript of EsPrx6 could be detected in all the examined tissues with highest expression level in hepatopancreas. The expression level of EsPrx6 in haemocytes was down-regulated after bacterial challenge and significantly decreased compared to the control group at 12 h. As time progressed, the expression level began to increase but did not recover to the original level during the experiment. The results suggested the involvement of EsPrx6 in responses against bacterial infection and further highlighted its functional importance in the immune system of E. sinensis. The rEsPrx6 possess peroxidase activity of 23.46 U/mg protein and antioxidant activity of 14.69 U/mg. The antioxidant capacity was higher than that of GSH. All these indicated that Prx6 could function as an important antioxidant to protect crab from oxidative stress.
     Thioredoxin, with a redox-active disulfide/dithiol in the active site, is the major ubiquitous disulfide reductase responsible for maintaining proteins in their reduced state. The full-length cDNA of EsTrx1 was of 641 bp, containing a 5` untranslated region (UTR) of 17 bp, a 3` UTR of 306 bp with a poly (A) tail, and an open reading frame (ORF) of 318 bp encoding a polypeptide of 105 amino acids with the predicted molecular weight of 12.2 kDa. The high similarity of EsTrx1 with Trx1s from other animals indicated that EsTrx1 should be a new member of the Trx1 sub-family. Quantitative real-time PCR analysis revealed the presence of EsTrx1 transcripts in gill, gonad, hepatopancreas, muscle, heart and haemocytes. The expression of EsTrx1 mRNA in haemocytes was up-regulated after Listonella anguillarum challenge, reached the maximum level at 6 h post stimulation, and then dropped back to the original level gradually. The rEsTrx1 was demonstrated to possess the expected redox activity in enzymatic analysis, and to be more potent than GSH in antioxidant capacity. The antioxidant capacity of rEsTrx1 was 3.06 U/mg, wich was stronger than that of GSH. The dithiol-reducing enzymatic activity (5.03) of rEsTrx1 was lower than that of Trx1 in shrimp Litopenaeus vannamei (10.44) , comparable to the specific activity of Trx1 from E. coli (4.93), calf thymus (6.50) and calf liver (5.09), and much larger than the mitochondrial Trx2 from abalone (1.83). These results together indicated that EsTrx1 could function as an important antioxidant in physiological state, and perhaps involved in the responses to bacterial challenge.
引文
[1]黄雷,王成辉,李思发.中华绒螯蟹长江天然群体遗传差异的AFLP初步分析.上海水产大学学报2008;17:385-389.
    [2]王成辉,李思发,刘至治,等. 3种中华绒螯蟹群体线粒体COⅡ基因序列测定与进化分析.水产学报2008;32:8-12.
    [3]马贵华,陈道印,钟青.中华绒螯蟹的免疫学研究现状与前景展望.江西农业学报2006;18:141-144.
    [4]徐镇,姚鹃,陈昌福,等.免疫多糖(酵母细胞壁)对中华绒螯蟹抗病力的增强效果.华中农业大学学报2005;24:383-386.
    [5]吴霆,顾伟,王文.中华绒螯蟹颤抖病药物治疗的初步研究.水产科学2008;27:325-329.
    [6] D. P.安德森著,张寿山,华鼎可,译.鱼类免疫学. 1974:1-27.
    [7] Mydlarz LD, Jones LE, Harvell CD. Innate Immunity, Environmental Drivers, and Disease Ecology of Marine and Freshwater Invertebrates. Annual Review of Ecology, Evolution, and Systematics 2006;37:251-288.
    [8]洪美玲,陈立侨,顾顺樟,等.氨氮胁迫对中华绒螯蟹免疫指标及肝胰腺组织结构的影响.中国水产科学2007;14:412-417.
    [9]洪美玲,陈立侨,顾顺樟,等.不同温度胁迫方式对中华绒螯蟹免疫化学指标的影响.应用与环境生物学报2007;13:818-22.
    [10]常国亮,成永旭,吴旭干,等.中华绒螯蟹白化症、正常肝胰腺组织结构及脂肪酸组成的比较研究.水生生物学报2008;32:687-692.
    [11] Tang J, Yang X-l, Zheng Z-l, Yu W-j, Hu K, Yu H-j. Pharmacokinetics and the active metabolite of enrofloxacin in Chinese mitten-handed crab (Eriocheir sinensis). Aquaculture 2006;260:69-76.
    [12]陈翠珍,房海,张晓君,等.中华绒螯蟹病原鳗利斯顿氏菌生物学特性.湖泊科学2006;18:293-298.
    [13]王文,朱宁宁,李正荣,等.类立克次体(RLO)侵染中华绒螯蟹神经组织的光镜和电镜观察.动物学研究2001:24-28.
    [14]王文,顾志峰,朱宁宁,等.患颤抖病中华绒螯蟹体内类立克次体侵染的光镜和电镜观察.中国水产科学2001;8:32-35.
    [15]宋林生,苏建国,崔朝霞,等.中华绒螯蟹(Eriocheir sinensis)幼蟹上岸病的免疫学研究.海洋与湖沼2003;33:657-662.
    [16] Wang W, Gu Z. Rickettsia-like organism associated with tremor disease and mortality of the Chinese mitten crab Eriocheir sinensis. Dis Aquat Organ 2002;48:149-53.
    [17] Wang W, Zhu N, Gu Z, Du K, Xu Z. Study on the transmission of tremor disease (TD) in the Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda). J Invertebr Pathol 2002;81:202-4.
    [18]顾志峰,王文,杜开河,等.中华绒螯蟹“颤抖病”病原、病理学初步研究.湖泊科学2000;12:367-372.
    [19]方敏,金卫中,宋林生,等.中华绒螯蟹颤抖病组织病理学研究.海洋与湖沼2003;34.
    [20]艾春香,陈立侨,刘晓玲,等.维生素C对中华绒螯蟹非特异性免疫的影响.水产学报2008;32:249-256.
    [21]沈锦玉,刘问,曹铮,等.免疫增强剂对中华绒螯蟹免疫功能的影响[J].浙江农业学报2004;16:25-29.
    [22]艾春香,陈立侨,刘晓玲,等.维生素E对中华绒螯蟹(Eriocheir sinensis)酚氧化酶、抗菌力和溶菌酶活性的影响.海洋与湖沼2008;39:119-123.
    [23]袁春营,崔青曼.β-胡萝卜素对中华绒螯蟹卵巢发育及免疫学指标的影响.海洋科学2007;31:25-28.
    [24] Li C, Zhao J, Song L, Mu C, Zhang H, Gai Y , et al. Molecular cloning, genomic organization and functional analysis of an anti-lipopolysaccharide factor from Chinese mitten crab Eriocheir sinensis. Developmental & Comparative Immunology 2008;32:784-794.
    [25] Gai Y, Zhao J, Song L, Li C, Zheng P, Qiu L , et al. Aprophenoloxidase from the Chinese mitten crab Eriocheir sinensis: gene cloning, expression and activity analysis. Fish Shellfish Immunol 2008;24:156-67.
    [26] Gai Y, Wang L, Song L, Zhao J, Qiu L, Wang B , et al. cDNA cloning, characterization and mRNA expression of a pacifastin light chain gene from the Chinese mitten crab Eriocheir sinensis. Fish & Shellfish Immunology 2008;25:657-663.
    [27] Lee SY, Soderhall K. Early events in crustacean innate immunity. Fish Shellfish Immunol 2002;12:421-37.
    [28]陈政良,朱锡华.天然免疫系统的“分子模式识别作用”及其免疫生物学意义.免疫学杂志2000;16:161-165.
    [29] Beutler B. Innate immunity: an overview. Mol Immunol 2004;40:845-59.
    [30] Little TJ, Hultmark D, Read AF. Invertebrate immunity and the limits of mechanistic immunology. Nat Immunol 2005;6:651-4.
    [31] Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313-8.
    [32]徐海圣,徐步进.甲壳动物细胞及体液免疫机理的研究进展[J].大连水产学院学报2001;16:49-56.
    [33] Tincu JA, Taylor SW. Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 2004;48:3645-54.
    [34] Taylor SW, Kammerer B, Bayer E. New perspectives in the chemistry and biochemistry of the tunichromes and related compounds. Chem Rev 1997;97:333-346.
    [35] S?derh?ll K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 1998;10:23-8.
    [36] Cerenius L, Soderhall K. The prophenoloxidase-activating system in invertebrates. Immunol Rev 2004;198:116-26.
    [37]王金星.无脊椎动物免疫研究新进展.国际学术动态2003;4:28-31.
    [38] Johansson MW, Soderhall K. The prophenoloxidase activating system and associated proteins in invertebrates. Prog Mol Subcell Biol 1996;15:46-66.
    [39] Biggar WD, Sturgess JM. Role of lysozyme in the microbicidal activity of rat alveolar macrophages. Infect Immun 1977;16:974-82.
    [40] Cheng TC, Rodrick GE. Lysosomal and other enzymes in the hemolymph of Crassostrea virginica and Mercenaria mercenaria. Comp Biochem Physiol B 1975;52:443-7.
    [41] Chalk R, Townson H, Natori S, Desmond H, Ham PJ. Purification of an insect defensin from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 1994;24:403-10.
    [42] Patrzykat A, Zhang L, Mendoza V, Iwama GK, Hancock RE. Synergy of histone-derived peptides of coho salmon with lysozyme and flounder pleurocidin. Antimicrob Agents Chemother 2001;45:1337-42.
    [43] During K, Porsch P, Mahn A, Brinkmann O, Gieffers W. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 1999;449:93-100.
    [44] Ibrahim HR, Matsuzaki T, Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett 2001;506:27-32.
    [45] Masschalck B, Michiels CW. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol 2003;29:191-214.
    [46] Mine Y, Ma F, Lauriau S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J Agric Food Chem 2004;52:1088-94.
    [47] Hunter HN, Jing W, Schibli DJ, Trinh T, Park IY, Kim SC , et al. The interactions of antimicrobial peptides derived from lysozyme with model membrane systems. Biochim Biophys Acta 2005;1668:175-89.
    [48] Jollès P. From the discovery of lysozyme to the characterization ofseveral lysozyme families. EXS 1996;75:3-5.
    [49] Qasba PK, Kumar S. Molecular divergence of lysozymes and alpha-lactalbumin. Crit Rev Biochem Mol Biol 1997;32:255-306.
    [50] Jollès J, Jollès P. The losozyme from Asterias rubens. Eur J Biochem 1975;54:19-23.
    [51] Nilsen IW, Myrnes B. The gene of chlamysin, a marine invertebrate-type lysozyme, is organized similar to vertebrate but different from invertebrate chicken-type lysozyme genes. Gene 2001;269:27-32.
    [52] Zhao J, Song L, Li C, Zou H, Ni D, Wang W , et al. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Molecular Immunology 2007;44:1198-1208.
    [53] Lee WJ, Brey PT. Isolation and characterization of the lysozyme-encoding gene from the silkworm Bombyx mori. Gene 1995;161:199-203.
    [54] Sotelo-Mundo RR, Islas-Osuna MA, de-la-Re-Vega E, Hernandez-Lopez J, Vargas-Albores F, Yepiz-Plascencia G. cDNA cloning of the lysozyme of the white shrimp Penaeus vannamei. Fish Shellfish Immunol 2003;15:325-31.
    [55] Chen MY, Hu KY, Huang CC, Song YL. More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Dev Comp Immunol 2005;29:1003-16.
    [56] Hall M, Wang R, van Antwerpen R, Sottrup-Jensen L, Soderhall K. The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Proc Natl Acad Sci U S A 1999;96:1965-70.
    [57] Liu Y-C, Li F-H, Wang B, Dong B, Zhang Q-L, Luan W , et al. A transglutaminase from Chinese shrimp (Fenneropenaeus chinensis),full-length cDNA cloning, tissue localization and expression profile after challenge. Fish & Shellfish Immunology 2007;22:576-588.
    [58] Kopácek P, Grubhoffer L, Soderhall K. Isolation and characterization of a hemagglutinin with affinity for lipopolysaccharides from plasma of the crayfish Pacifastacus leniusculus. Dev Comp Immunol 1993;17:407-18.
    [59] Kawabata S, Tokunaga F, Kugi Y, Motoyama S, Miura Y, Hirata M , et al. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Lett 1996;398:146-50.
    [60] Iwanaga S. The limulus clotting reaction. Curr Opin Immunol 1993;5:74-82.
    [61] Folk JE. Transglutaminases. Annu Rev Biochem 1980;49:517-31.
    [62] Iwanaga S, Miyata T, Tokunaga F, Muta T. Molecular mechanism of hemolymph clotting system in Limulus. Thromb Res 1992;68:1-32.
    [63] Samakovlis C, Kylsten P, Kimbrell DA, Engstrom A, Hultmark D. The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster. EMBO J 1991;10:163-9.
    [64] Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995;13:61-92.
    [65] Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981;292:246-8.
    [66] Bulet P, Stocklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 2004;198:169-84.
    [67] Richman AM, Bulet P, Hetru C, Barillas-Mury C, Hoffmann JA, Kafalos FC. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect Mol Biol 1996;5:203-10.
    [68] Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Muller HM , et al. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 2000;9:75-84.
    [69] Kang C-J, Xue J-F, Liu N, Zhao X-F, Wang J-X. Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from Fenneropenaeus chinensis. Molecular Immunology 2007;44:1535-1543.
    [70] Amparyup P, Kondo H, Hirono I, Aoki T, Tassanakajon A. Molecular cloning, genomic organization and recombinant expression of a crustin-like antimicrobial peptide from black tiger shrimp Penaeus monodon. Molecular Immunology 2008;45:1085-1093.
    [71] Hu S-Y, Huang J-H, Huang W-T, Yeh Y-H, Chen MH-C, Gong H-Y , et al. Structure and function of antimicrobial peptide penaeidin-5 from the black tiger shrimp Penaeus monodon. Aquaculture 2006;260:61-68.
    [72] Battison AL, Summerfield R, Patrzykat A. Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish & Shellfish Immunology 2008;25:181-187.
    [73] Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM , et al. A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S A 2001;98:15119-24.
    [74] De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 2001;98:12590-5.
    [75] Lazzaro BP, Clark AG. Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol Biol Evol 2003;20:914-23.
    [76] Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G , et al. A novel inducible antibacterial peptide of Drosophila carries anO-glycosylated substitution. J Biol Chem 1993;268:14893-7.
    [77] ?sling B, Dushay MS, Hultmark D. Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 1995;25:511-8.
    [78] Dimarcq JL, Hoffmann D, Meister M, Bulet P, Lanot R, Reichhart JM , et al. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 1994;221:201-9.
    [79] Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 1995;233:694-700.
    [80] Wicker C, Reichhart JM, Hoffmann D, Hultmark D, Samakovlis C, Hoffmann JA. Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 1990;265:22493-8.
    [81] Samakovlis C, Kimbrell DA, Kylsten P, Engstrom A, Hultmark D. The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J 1990;9:2969-76.
    [82] Boman HG, Hultmark D. Cell-free immunity in insects. Annu Rev Microbiol 1987;41:103-26.
    [83] Auffret M, Oubella R. Hemocyte aggregation in the oyster Crassostrea gigas: In vitro measurement and experimental modulation by xenobiotics. Comparative Biochemistry and Physiology Part A: Physiology 1997;118:705-712.
    [84] Kenneth S?derh?lla, Cerenius L. Crustacean immunity. Annual Review of Fish Diseases 1992;2:3-23.
    [85]邓欢,陈俅,刘卫东,等.中国对虾血细胞包掩作用的超微结构和组织化学观察.应用与环境生物学报1999;5:296-299.
    [86] Cheng TC. Functional morphology and biochemistry of molluscan phagocytes. Ann N Y Acad Sci 1975;266:343-79.
    [87] Pipe RK. Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Dev Comp Immunol 1992;16:111-22.
    [88] Dikkeboom R, van der Knaap WP, van den Bovenkamp W, Tijnagel JM, Bayne CJ. The production of toxic oxygen metabolites by hemocytes of different snail species. Dev Comp Immunol 1988;12:509-20.
    [89] Nakamura M, Mori K, Inooka S, Nomura T. In vitro production of hydrogen peroxide by the amoebocytes of the scallop, Patinopecten yessoensis (Jay). Dev Comp Immunol 1985;9:407-17.
    [90] Franchini A, Fontanili P, Ottaviani E. Invertebrate immunocytes: relationship between phagocytosis and nitric oxide production. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 1995;110:403-407.
    [91]马洪明,麦康森.贝类血细胞的吞噬作用和非我识别.海洋科学2003;27:16-18.
    [92] Crozatier M, Meister M. Drosophila haematopoiesis. Cell Microbiol 2007;9:1117-26.
    [93] Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P. The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. Dev Biol 2008;316:538-47.
    [94] Hégaret H, Wikfors GH, Soudant P. Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation: II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. Journal of Experimental Marine Biology and Ecology 2003;293:249-265.
    [95] Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P.Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish & Shellfish Immunology 1998;8:621-629.
    [96]张峰,李光友.贝类血细胞活性氧体内防御作用的研究进展.海洋科学1999;2:16-19.
    [97] Pech LL, Strand MR. Granular cells are required for encapsulation of foreign targets by insect haemocytes. J Cell Sci 1996;109 ( Pt 8):2053-60.
    [98] Kurata O, Nakabayashi M, Hatai K. In vitro leukocyte-encapsulation model in rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol 2008;32:726-34.
    [99] Wootton EC, Dyrynda EA, Ratcliffe NA. Interaction between non-specific electrostatic forces and humoral factors in haemocyte attachment and encapsulation in the edible cockle, Cerastoderma edule. J Exp Biol 2006;209:1326-35.
    [100] Martin GG, Kay J, Poole C. In vitro nodule formation in the ridgeback, Sicyonia ingentis, and the American lobster, Homarus amerianus. Invertebrate biology 1998;117:155-168.
    [101]李雷.天然免疫识别的机制与途径.国外医学免疫学分册20O2;25:272-275.
    [102] Tzou P, De Gregorio E, Lemaitre B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol 2002;5:102-10.
    [103] Drevet JR. The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 2006;250:70-9.
    [104] Bartosz G. Reactive oxygen species: Destroyers or messengers? Biochemical Pharmacology 2009;77:1303-1315.
    [105] Nicholas S. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 1993;125:27-58.
    [106] Sanlioglu S, Williams CM, Samavati L, Butler NS, Wang G, McCrayPB, Jr. , et al. Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-alpha secretion through IKK regulation of NF-kappa B. J Biol Chem 2001;276:30188-98.
    [107] Rhee SG, Bae YS, Lee SR, Kwon J. Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000;2000:PE1.
    [108] Moon EY, Lee JH, Oh SY, Ryu SK, Kim HM, Kwak HS , et al. Reactive oxygen species augment B-cell-activating factor expression. Free Radic Biol Med 2006;40:2103-11.
    [109] Archana Jaiswal McEligot SY, Frank L. Meyskens Jr. Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Annu. Rev. Nutr. 2005;25:261-295.
    [110] Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972;128:617-30.
    [111] Rice-Evans C, Burdon R. Free radical-lipid interactions and their pathological consequences. Prog Lipid Res 1993;32:71-110.
    [112] McEligot AJ, Yang S, Meyskens FL, Jr. Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Annu Rev Nutr 2005;25:261-95.
    [113] Cimen MY. Free radical metabolism in human erythrocytes. Clin Chim Acta 2008;390:1-11.
    [114] Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997;15:351-69.
    [115] Dietz KJ. Plant peroxiredoxins. Annu Rev Plant Biol 2003;54:93-107.
    [116] Aispuro-Hernandez E, Garcia-Orozco KD, Muhlia-Almazan A, Del-Toro-Sanchez L, Robles-Sanchez RM, Hernandez J , et al. Shrimp thioredoxin is a potent antioxidant protein. Comp Biochem Physiol C Toxicol Pharmacol 2008;148:94-9.
    [117] Fridovich I. Superoxide dismutases. An adaptation to a paramagneticgas. J Biol Chem 1989;264:7761-4.
    [118] Kamata H, Manabe T, Oka S, Kamata K, Hirata H. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 2002;519:231-7.
    [119] Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82:291-5.
    [120] Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 1998;39:1529-42.
    [121] Chaudiere J, Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 1999;37:949-62.
    [122] Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2000;54:439-61.
    [123] Winston GW, DiGiulio RT. Prooxidant and antioxidant mechanisms in aquaticorganisms. Aquat.Toxicol. 1991;19:137-161.
    [124] Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004;44:239-67.
    [125] Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 2006;68:253-78.
    [126]王镜岩,朱圣庚,徐长法,主编.生物化学(上册).第三版2002;高等教育出版社:157-196.
    [127] Traber MG, Packer L. Vitamin E: beyond antioxidant function. Am J Clin Nutr 1995;62:1501S-1509S.
    [128]刘翔,康伯棣.类胡萝卜素在体内外的抗氧化活性.食品工业科技2008;29:279-282.
    [129] Polyakov NE, Leshina TV, Konovalova TA, Kispert LD. Carotenoids as scavengers of free radicals in a Fenton reaction: antioxidants or pro-oxidants? Free Radic Biol Med 2001;31:398-404.
    [130] Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem1989;58:79-110.
    [131] Tagaya Y, Maeda Y, Mitsui A, Kondo N, Matsui H, Hamuro J , et al. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 1989;8:757-64.
    [132] Makino Y, Okamoto K, Yoshikawa N, Aoshima M, Hirota K, Yodoi J , et al. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest 1996;98:2469-77.
    [133] Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol 2001;41:261-95.
    [134] Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000;267:6102-9.
    [135] Laurent TC, Moore EC, Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli B. J Biol Chem 1964;239:3436-44.
    [136] Maulik N, Das DK. Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta 2008;1780:1368-82.
    [137] Holmgren A, Johansson C, Berndt C, Lonn ME, Hudemann C, Lillig CH. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 2005;33:1375-7.
    [138] Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP. Thioredoxin and its role in toxicology. Toxicol Sci 2004;78:3-14.
    [139] Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem 1997;272:2936-41.
    [140] Miranda-Vizuete A, Ljung J, Damdimopoulos AE, Gustafsson JA, OkoR, Pelto-Huikko M , et al. Characterization of Sptrx, a novel member of the thioredoxin family specifically expressed in human spermatozoa. J Biol Chem 2001;276:31567-74.
    [141] Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287-312.
    [142] Nakamura H, Matsuda M, Furuke K, Kitaoka Y, Iwata S, Toda K , et al. Adult T cell leukemia-derived factor/human thioredoxin protects endothelial F-2 cell injury caused by activated neutrophils or hydrogen peroxide. Immunol Lett 1994;42:75-80.
    [143] Tomimoto H, Akiguchi I, Wakita H, Kimura J, Hori K, Yodoi J. Astroglial expression of ATL-derived factor, a human thioredoxin homologue, in the gerbil brain after transient global ischemia. Brain Res 1993;625:1-8.
    [144] Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol 1995;252:199-208.
    [145] Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem 1999;32:595-603.
    [146] Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 1997;272:18515-7.
    [147] Miller AF. Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 2004;8:162-8.
    [148] Maroney MJ, Bryngelson PA, Pinkham JL, DeCourcy PR, Arobo SE. NiSOD: A new mechanism for removing superoxide, or a Strep. tease? Journal of Inorganic Biochemistry 2003;96:47-47.
    [149] Valentine JS, Doucette PA, Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem 2005;74:563-93.
    [150] Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 1986;58:61-97.
    [151] Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A 1989;86:2761-5.
    [152] Ishii N, Takahashi K, Tomita S, Keino T, Honda S, Yoshino K , et al. A methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat Res 1990;237:165-71.
    [153] Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF , et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996;13:43-7.
    [154] Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL , et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11:376-81.
    [155] Lebovitz RM, Zhang H, Vogel H, Cartwright J, Jr., Dionne L, Lu N , et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 1996;93:9782-7.
    [156] McClung CR. Regulation of catalases in Arabidopsis. Free Radic Biol Med 1997;23:489-96.
    [157] Mackay WJ, Bewley GC. The genetics of catalase in Drosophila melanogaster: isolation and characterization of acatalasemic mutants. Genetics 1989;122:643-52.
    [158] Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121-6.
    [159]刘冰,梁婵娟.生物过氧化氢酶研究进展.中国农业通报2005;21.
    [160] Zamocky M, Koller F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 1999;72:19-66.
    [161] Goldberg I, Hochman A. Three different types of catalases inKlebsiella pneumoniae. Archives of Biochemistry and Biophysics 1989;268:124-128.
    [162]王志华,沈良.锰过氧化氢酶及其模拟物的研究进展.杭州师范学院学报(自然科学版) 2006;5:465-468.
    [163] Fukuhara R, Kageyama T. Structure, gene expression, and evolution of primate glutathione peroxidases. Comp Biochem Physiol B Biochem Mol Biol 2005;141:428-36.
    [164] Herbette S, Roeckel-Drevet P, Drevet JR. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers. FEBS J 2007;274:2163-80.
    [165] Kutlu M, Susuz F. Biochemical properties of glutathione peroxidase in Gammarus pulex. Bull Environ Contam Toxicol 2004;73:432-6.
    [166] Faucher K, Rabinovitch-Chable H, Barriere G, Cook-Moreau J, Rigaud M. Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie 2003;85:611-7.
    [167] Arthur JR. The glutathione peroxidases. Cell Mol Life Sci 2000;57:1825-35.
    [168] Chu FF, Esworthy RS, Doroshow JH. Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic Biol Med 2004;36:1481-95.
    [169] Serfass RE, Ganther HE. Defective microbicidal activity in glutathione peroxidase-deficient neutrophils of selenium-deficient rats. Nature 1975;255:640-1.
    [170] Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973;179:588-90.
    [171] Chu FF, Doroshow JH, Esworthy RS. Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 1993;268:2571-6.
    [172] Avissar N, Finkelstein JN, Horowitz S, Willey JC, Coy E, Frampton MW , et al. Extracellular glutathione peroxidase in human lung epithelial lining fluid and in lung cells. Am J Physiol 1996;270:L173-82.
    [173] Maiorino M, Chu FF, Ursini F, Davies KJ, Doroshow JH, Esworthy RS. Phospholipid hydroperoxide glutathione peroxidase is the 18-kDa selenoprotein expressed in human tumor cell lines. J Biol Chem 1991;266:7728-32.
    [174] Georgiou G, Masip L. Biochemistry. An overoxidation journey with a return ticket. Science 2003;300:592-4.
    [175] Hofmann B, Hecht HJ, Flohe L. Peroxiredoxins. Biol Chem 2002;383:347-64.
    [176] Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 2003;28:32-40.
    [177] Loumaye E, Andersen AC, Clippe A, Degand H, Dubuisson M, Zal F , et al. Cloning and characterization of Arenicola marina peroxiredoxin 6, an annelid two-cysteine peroxiredoxin highly homologous to mammalian one-cysteine peroxiredoxins. Free Radic Biol Med 2008;45:482-93.
    [178] Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005;38:1543-52.
    [179] Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE. Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol 1998;5:400-6.
    [180] Wong CM, Siu KL, Jin DY. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 2004;279:23207-13.
    [181] Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, amultifunctional, mammalian redox protein. Redox Rep 2002;7:123-30.
    [182] Radyuk SN, Klichko VI, Spinola B, Sohal RS, Orr WC. The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med 2001;31:1090-100.
    [183] Leyens G, Donnay I, Knoops B. Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp Biochem Physiol B Biochem Mol Biol 2003;136:943-55.
    [184] Smeets A, Loumaye E, Clippe A, Rees JF, Knoops B, Declercq JP. The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers. Protein Sci 2008;17:700-10.
    [185] Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 1994;91:7017-21.
    [186] Roise D, Schatz G. Mitochondrial presequences. J Biol Chem 1988;263:4509-11.
    [187] Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 1994;269:27670-8.
    [188] Kang SW, Baines IC, Rhee SG. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 1998;273:6303-11.
    [189] Manevich Y, Fisher AB. Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med 2005;38:1422-32.
    [190] Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003;300:650-3.
    [191] Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K , et al. Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 2001;276:29826-32.
    [192] Fisher AB, Dodia C, Manevich Y, Chen JW, Feinstein SI. Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 1999;274:21326-34.
    [193] Manevich Y, Feinstein SI, Fisher AB. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci U S A 2004;101:3780-5.
    [194] Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003;15:247-54.
    [195] Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY , et al. Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 2005;435:347-53.
    [196] Finkel T. Redox-dependent signal transduction. FEBS Lett 2000;476:52-4.
    [197] Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB , et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 2003;101:5033-8.
    [198] Moon EY, Han YH, Lee DS, Han YM, Yu DY. Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus. Eur J Immunol 2004;34:2119-28.
    [199] Sanchez-Font MF, Sebastia J, Sanfeliu C, Cristofol R, Marfany G, Gonzalez-Duarte R. Peroxiredoxin 2 (PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Cell Mol Life Sci 2003;60:1513-23.
    [200] Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific "protector" protein which inhibits enzymeinactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J. Biol. Chem. 1988;263:4704-4711.
    [201] Chae HZ, Kim IH, Kim K, Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 1993;268:16815-21.
    [202] Zhang Q, Li F, Zhang J, Wang B, Gao H, Huang B , et al. Molecular cloning, expression of a peroxiredoxin gene in Chinese shrimp Fenneropenaeus chinensis and the antioxidant activity of its recombinant protein. Mol Immunol 2007;44:3501-9.
    [203] Bacano Maningas MB, Koyama T, Kondo H, Hirono I, Aoki T. A peroxiredoxin from kuruma shrimp, Marsupenaeus japonicus, inhibited by peptidoglycan. Dev Comp Immunol 2008;32:198-203.
    [204] Kim I, Lee KS, Hwang JS, Ahn MY, Li J, Sohn HD , et al. Molecular cloning and characterization of a peroxiredoxin gene from the mole cricket, Gryllotalpa orientalis. Comp Biochem Physiol B Biochem Mol Biol 2005;140:579-87.
    [205] Tsuji N, Kamio T, Isobe T, Fujisaki K. Molecular characterization of a peroxiredoxin from the hard tick Haemaphysalis longicornis. Insect Mol Biol 2001;10:121-9.
    [206] Krapfenbauer K, Engidawork E, Cairns N, Fountoulakis M, Lubec G. Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res 2003;967:152-60.
    [207] Krapfenbauer K, Yoo BC, Fountoulakis M, Mitrova E, Lubec G. Expression patterns of antioxidant proteins in brains of patients with sporadic Creutzfeldt-Jacob disease. Electrophoresis 2002;23:2541-7.
    [208] Power JH, Shannon JM, Blumbergs PC, Gai WP. Nonselenium glutathione peroxidase in human brain : elevated levels in Parkinson's disease and dementia with lewy bodies. Am J Pathol 2002;161:885-94.
    [209] Kinnula VL, Lehtonen S, Sormunen R, Kaarteenaho-Wiik R, Kang SW, Rhee SG , et al. Overexpression of peroxiredoxins I, II, III, V, and VIin malignant mesothelioma. J Pathol 2002;196:316-23.
    [210] Frank S, Munz B, Werner S. The human homologue of a bovine non-selenium glutathione peroxidase is a novel keratinocyte growth factor-regulated gene. Oncogene 1997;14:915-21.
    [211] Munz B, Frank S, Hubner G, Olsen E, Werner S. A novel type of glutathione peroxidase: expression and regulation during wound repair. Biochem J 1997;326 ( Pt 2):579-85.
    [212] Pak JH, Kim TI, Joon Kim M, Yong Kim J, Choi HJ, Kim SA , et al. Reduced expression of 1-cys peroxiredoxin in oxidative stress-induced cataracts. Exp Eye Res 2006;82:899-906.
    [213] Gallagher BM, Phelan SA. Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radic Biol Med 2007;42:1270-7.
    [214] David E, Tanguy A, Moraga D. Peroxiredoxin 6 gene: a new physiological and genetic indicator of multiple environmental stress response in Pacific oyster Crassostrea gigas. Aquat Toxicol 2007;84:389-98.
    [215] Wang Q, Chen K, Yao Q, Zhao Y, Li Y, Shen H , et al. Identification and characterization of a novel 1-Cys peroxiredoxin from silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2008;149:176-82.
    [216] Sritunyalucksana K, S?derh?ll K. The proPO and clotting system in crustaceans. Aquaculture 2000;191:53-69.
    [217] Rodriguez J, Boulo V, Mialhe E, E B. Characterisation of shrimp haemocytes and plasma components by monoclonal antibodies. J Cell Sci 1995;108:1043-1050.
    [218]胡松年.基因表达序列标签(EST)数据分析手册. 2005;浙江大学出版社.
    [219] Okeke CN, Tsuboi R, Kawai M, Yamazaki M, Reangchainam S, Ogawa H. Reverse transcription - 3' rapid amplification of cDNA ends-nested PCR of ACT1 and SAP2 mRNA as a means of detectingviable Candida albicans in an in vitro cutaneous candidiasis model. J Invest Dermatol 2000;114:95-100.
    [220] Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 1997;10:1-6.
    [221] Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 1998;6:122-30.
    [222] Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381-5.
    [223] Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006;22:195-201.
    [224] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997;18:2714-23.
    [225] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W , et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402.
    [226] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82.
    [227] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 2004;5:150-63.
    [228] Kumar S, Nei M, Dudley J, Tamura K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008;9:299-306.
    [229] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8.
    [230] J.萨姆布鲁克, E.F.弗里奇, T.曼尼阿蒂斯著,金冬雁,黎孟枫等译.分子克隆实验指南.科学出版社2002:880-887.
    [231] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
    [232] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
    [233] Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 1979;254:9627-32.
    [234] Holmgren A, Luthman M. Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 1978;17:4071-7.
    [235] Holmgren A. Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J Biol Chem 1979;254:9113-9.
    [236] Plows LD, Cook RT, Davies AJ, Walker AJ. Phagocytosis by Lymnaea stagnalis haemocytes: A potential role for phosphatidylinositol 3-kinase but not protein kinase A. Journal of Invertebrate Pathology 2006;91:74-77.
    [237] Chang C-C, Wu Z-R, Kuo C-M, Cheng W. Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish & Shellfish Immunology 2007;23:24-33.
    [238] Hong M, Chen L, Sun X, Gu S, Zhang L, Chen Y. Metabolic and immune responses in Chinese mitten-handed crab (Eriocheir sinensis) juveniles exposed to elevated ambient ammonia. Comp Biochem Physiol C Toxicol Pharmacol 2007;145:363-9.
    [239] Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K , et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003;300:653-6.
    [240] Choi MH, Sajed D, Poole L, Hirata K, Herdman S, Torian BE , et al. An unusual surface peroxiredoxin protects invasive Entamoeba histolytica from oxidant attack. Mol Biochem Parasitol 2005;143:80-9.
    [241] Yang CS, Lee DS, Song CH, An SJ, Li S, Kim JM , et al. Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med 2007;204:583-94.
    [242] Wang X, Phelan SA, Petros C, Taylor EF, Ledinski G, Jurgens G , et al. Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis 2004;177:61-70.
    [243] Bianchini A, Monserrat JM. Effects of methyl parathion on Chasmagnathus granulatus hepatopancreas: protective role of sesamol. Ecotoxicol Environ Saf 2007;67:100-8.
    [244] Myers JM, Antholine WE, Myers CR. Hexavalent chromium causes the oxidation of thioredoxin in human bronchial epithelial cells. Toxicology 2008;246:222-33.
    [245] Nkabyo YS, Ziegler TR, Gu LH, Watson WH, Jones DP. Glutathione and thioredoxin redox during differentiation in human colon epithelial (Caco-2) cells. Am J Physiol Gastrointest Liver Physiol 2002;283:G1352-9.
    [246] Weichsel A, Gasdaska JR, Powis G, Montfort WR. Crystal structures of reduced, oxidized, and mutated human thioredoxins: evidence for a regulatory homodimer. Structure 1996;4:735-51.
    [247] Han S. Molecular dynamics simulations of thioredoxin with S-glutathiolated cysteine-73. Biochem Biophys Res Commun 2007;362:532-7.
    [248] Wahl MC, Irmler A, Hecker B, Schirmer RH, Becker K. Comparative structural analysis of oxidized and reduced thioredoxin from Drosophila melanogaster. J Mol Biol 2005;345:1119-30.
    [249] Andersen JF, Sanders DA, Gasdaska JR, Weichsel A, Powis G, Montfort WR. Human thioredoxin homodimers: regulation by pH, role of aspartate 60, and crystal structure of the aspartate 60 --> asparagine mutant. Biochemistry 1997;36:13979-88.
    [250] Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7-10.
    [251] Lillig CH, Holmgren A. Thioredoxin and related molecules--from biology to health and disease. Antioxid Redox Signal 2007;9:25-47.
    [252] Alday-Sanz V, Roque A, Turnbull JF. Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Dis Aquat Organ 2002;48:91-9.
    [253] Sachi Y, Hirota K, Masutani H, Toda K, Okamoto T, Takigawa M , et al. Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol Lett 1995;44:189-93.
    [254] Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H , et al. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest 1998;78:957-66.
    [255] Saito I, Shimuta M, Terauchi K, Tsubota K, Yodoi J, Miyasaka N. Increased expression of human thioredoxin/adult T cell leukemia-derived factor in Sjogren's syndrome. Arthritis Rheum 1996;39:773-82.
    [256] Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J Biol Chem 2000;275:40180-6.
    [257] Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J , et al. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science2001;291:643-6.
    [258] Ejima K, Koji T, Nanri H, Kashimura M, Ikeda M. Expression of thioredoxin and thioredoxin reductase in placentae of pregnant mice exposed to lipopolysaccharide. Placenta 1999;20:561-6.
    [259] Segal A. How neutrophils kill microbes. Annu Rev Immunol 2005;23:197-223.
    [260] Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect 2003;5:1307-15.
    [261] Sies H. Strategies of antioxidant defense. Eur J Biochem 1993;215:213-9.
    [262] Fridovich I. The biology of oxygen radicals. Science 1978;201:875-80.
    [263] Trotter EW, Grant CM. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep 2003;4:184-8.
    [264] Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989;264:13963-6.
    [265] Buchanan BB, Balmer Y. Redox regulation: a broadening horizon. Annu Rev Plant Biol 2005;56:187-220.
    [266] De Zoysa M, Pushpamali WA, Whang I, Kim SJ, Lee J. Mitochondrial thioredoxin-2 from disk abalone (Haliotis discus discus): molecular characterization, tissue expression and DNA protection activity of its recombinant protein. Comp Biochem Physiol B Biochem Mol Biol 2008;149:630-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700