用户名: 密码: 验证码:
神经元混沌、同步与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经元在中枢神经系统信息处理过程中起着关键的作用,神经元信息的产生和传输体现了丰富的非线性特征。因此,单神经元与耦合多神经元的非线性动力学研究具有重要意义。研究发现,神经元在外部刺激下会产生不同的放电模式,如拟周期、混沌放电以及神经元同步放电现象。
     本文首先建立了外电场作用下柱状细胞的电缆模型。在模型中,引入了Fitzhugh-Nagumo(FHN)模型的恢复变量来描述动作电位的慢变过程;然后,详细分析了不同频率外部电场作用下神经元的非线性动力学规律。通过数值分析发现了包括极限环、拟周期振荡和混沌在内的复杂的非线性行为,应用Lyapunov指数、功率谱以及相平面等方法证明了混沌存在。
     细胞间的信号同步行为在神经系统信号传输中扮演了非常重要的角色,间隙耦合的神经元同步问题是本文主要研究内容之一。本文基于单神经元模型,首次提出了间隙耦合的两个和多个神经元的模型,分析了细胞间隙耦合强度对神经元同步的影响,给出了神经元之间达到同步的充分条件。
     时滞是影响神经元之间信号传递的一个主要因素,本文研究了时滞耦合神经元之间的同步问题。建立了时滞耦合的多神经元模型,分析了神经元之间的时滞时间和耦合强度对神经元同步的影响,得到了与时滞大小和耦合强度均有关的耦合神经元同步的条件。
     神经元的混沌是某些神经系统疾病与疾病改善的体现。外部刺激可以改变神经元的同步特性。本文首次提出了Lyapunov控制、Backstepping控制和变论域自适应模糊控制来实现神经元的同步。由于神经元的参数和外部条件的非线性特性,本文采用模糊逼近和H_∞控制保证系统的鲁棒性。
     通过数值仿真,证明了上述理论的正确性和控制算法的有效性。
     以上研究内容为脑科学、针灸的量化分析以及一些神经系统疾病的治疗提供了理论支持。
The neurons are believed to be the key elements in the signal processing of neural system.The generation and transmitting of neural information are nonlinear, so the dynamic performances of individual or coupled neurons get the main focus in the neuroscience research. It was found that the neurons can fire in different patterns, such as chaos and quasi-period, and coupled neurons can fire synchrously under external stimulation.
     Firstly in this dissertation, the cable model of a cylindrical cell in external electrical stimulation is established and the recovery variable based on the Fitzhugh-Nagumo (FHN) model is introduced to describe the slow process of firing. Then, the dynamic performances of single neuron under external electrical stimulation with varied frequency have been analyzed in detail. The complex nonlinear phenomenons such as limit cycle, quasi-period oscillation and chaos were found in the simulation, and the chaos of active potential is demonstrated by Lyapunov exponent, power spectra and phase plane.
     The synchronization of coupled neurons plays the main role in the process of neural informations tansmiting, so the research on the synchronization of neurons coupled with gap junction is one of the main contents of this dissertation. The model of two or more neurons coupled with gap junction is established on the base of single neuron model to study the influence of the coupling strength of gap junction on the synchronization and the sufficient condition of synchronization is given.
     Time delay is the main fator to affect the informations transmitting among neurons, so this dissertation is also dedicated to study the synchronization of time-delay coupled neurons. The model of time-delay coupled neurons has been established to study the effects of time delay and the coupling strength on the synchronization and the sufficient condition of delay coupled neurons synchronization which relates to the time delay and coupling strength is given.
     The chaotic synchronization in neurons may imply some neural diseases or the improvement of these diseases. As the external stimulation can change the sysnchronization in neurons, in this dissertation, the Lyapunov control, Backstepping control and variable universe adaptive fuzzy control have been applied to synchronize the neurons. The parameters of neuron model and the external condition of neuron are nonlinear, so the fuzzy approximation and H_∞control are employed to guarantee the robustness of the system.
     The results of simulation demonstrated the validity of the theoretic analysis and control algorithms refered to above.
     The conclusions of this dissertation can benefit the researches on the brain, the quantitative analyze of acupuncture and the treatment of some neural disease.
引文
[1] E. W. Lorenz. Deterministic non-periodic flow. J. Atomos Sci. 1963, 20: 130~141.
    [2] D. Ruelle and F. Takens. On the nature of turbulence. Commun. Math. Phys. 1971, 20: 167~192; 23: 343~344.
    [3] T. Y. Li and J. A. Yorke. Period three implies chaos. Am. Math. Mothly. 1975, 82:985~992.
    [4] L Glass and Mc. Mackey. From clocks to chaos: The rhythm of life. Princeton University Press, Princeton, NJ, 1988.
    [5] A. T. Winfree. Sudden cardiac death: a problem in topology. Sci. Am. 1983, 248: 144~161.
    [6] A.L.Goldberger. Chaos and fractals in physiology and medical. Laurel, MD;EMBS/Sigma Xi workshop on the Biomedical implications of Chaos Theory, Laurel, MD, October, 1988,8.
    [7] A.L.Goldberger, L.J.Findley, M. R. Blackburn, A. J. Mandell. Nonlinear dynamics in heart failure: implications of long-wavelength cardiopulmonary oscillations. Am Heart Journ. 1984, 107(3): 612~615.
    [8] A. L. Goldberger, B. J. West. Fractals in physiology and medicine. Yale J Biol Med. 1987, 60: 421~435.
    [9] A.L.Goldberger, D.R.Rigney. Defending against sudden dearth: Fractal mechanisms of cardiac stability. Proc 9th IEEE/EMBS Conf, 1987, 1: 313~314.
    [10] M. R. Guevara, L.Glass, A.Shrier. Phase locking, period-doubling bifurcation, and irregular dynamics in periodically stimulated cardiac cell. Science. 1981, 214: 1350~1353.
    [11] A.Babloyantz, et al. Is the normal heart a periodic oscillator? Biol Cybern. 1988, 58: 203~211.
    [12] P. Y. Muller, et al. Fractal Dimension On ECG. IEEE/EMBS Pro.1992: 977~978.
    [13] J.P.Zbilut, et al. Bifurcations and intrinsic chaotic and 1/f dynamics in an isolated perfused rat heart. Biol Cybern. 1989, 61: 371~378.
    [14] A.L.Goldberge. IEEE Med Biol Eng. 1992, 11: 47~52.
    [15] B.Omer Spectral Analysis Of Simulated Qrs Complex Using A Model Of The Heart's Ventricles With A Fractal Conduction System. IEEE/EMBS Proc.1992: 973~974.
    [16] A.C.K.Soong, et al.. Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram. Biol Cybern. 1989, 62: 55~62.
    [17] J. Roscchke, et. al. The dimensionality of human’s electroencephalogram during sleep. Biol Cybern. 1991, 64: 307~313.
    [18] D.Gallez, et al. Predictability of human EEG: a dynamical approach. Biol Cybern. 1991, 64: 381~391.
    [19] L. Pezard, et al. Nonlinear Forecasting And Correlation Dimension Of Brain Dynamics : A Multichannel Study Nonlinear Forecasting And Correlation Dimension Of Brain Dynamics : A Multichannel Study. IEEE/EMBS Proc. 1992: 979~998.
    [20] K.Aihara, G. Matsumoto and M. Ichikawa. An alternating periodic-chaotic sequence observed in neural oscillators. Physics Letters A. 1985,111: 251~255.
    [21] Gen Matsumoto, et al. Chaos and phase locking in normal squid axons. Physics Letter. 1987, 123: 162~166.
    [22] L. Class. Synchronization and rhythmic processes in physiology. Nature. 2001, 410: 277~284.
    [23] M. I. Rabinovich, D. I. Abarbanel. The role of chaos in neural systems. Neuroscience .1998, 87: 5~14.
    [24] P. Reinagel, R. C. Reid. Temporal coding of visual information in the thalamus. J Neurosci. 2000, 20: 5392~5400.
    [25] S. J. Schiff, K. Jerger, D. H. Duong, et al. Controlling chaos in the brain. Nature. 1994, 370: 615~620.
    [26] K. Lehnertz, R. G. Andrzejak, J. Arnhold, et al. Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention. J Clin Neurophysiol. 2001, 18: 209~222.
    [27] D. Sigeti, et al. High-frequency power spectra for system subject to noise. Phys Rev A. 1987, 35: 2276~2282.
    [28] Alan WOLF, Jack B. SWIFT, Harry L. SWINNEY and John A. VASTANO. Determining Lyapunov exponents from a time series. Physica D. 1985, 16: 285~317.
    [29] H. S. Greenside, et al. Impraticality of box-counting algorithm for calculating the dimensionality of strange attractor. Phys Rev A. 1982, 25: 3453~3457.
    [30] P. Grassberger and I. Procaccia. Physica D. 1983, 9: 189~196.
    [31] D. S. Broomhead, et al. Extracting qualitative dynamics from experimental data.Physica D. 1986, 20: 217~236.
    [32] M. Bauer, et al. Characterization of spatiotemporal chaos from time series. Phys Rev Lett. 1993, 71: 521~524.
    [33] Xie yong, Xu Jian-Xue, Yang Hong-Jun and Hu San-Jue. Phase-space reconstruction of EcoG time sequences and extraction of nonlinear characteristic quantities. Acta Physica Sinica. 2002, 2: 205~214.
    [34] Wang Ning, Liu Bingzheng. Nonlinear dynamical analysis of EGG.. Acta Biophysica sinica. 1996, 4: 675~680.
    [35] A.L.Hodgkin and A.F.Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J.Physiol. 1952,117:500~544.
    [36] W.Rall. Core conductor theory and cable properties of neurons, in Handbook of Physiology, the Nervous System, Vol.1, Section 1, E.R.Kandel, ed., American Physiological Society, Bethesda. 1977.
    [37] James Keener and James Sneyd. Mathematical Physiology, New York: Springer-Verlag New Yor Berlin Heidelberg,1998. 33~153.
    [38] H.C. Tuckwell. Introduction to Theoretical Neurobiology:Vols1 &2. Cambridge Univerdity Press, Cambridge 1983.
    [39] R. Fitzhugh. Impulses and physiological states in theoretical states in theoretical models of nerve membrane. Bioghys. J. 1961,1:445~466.
    [40] J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 1962,50:2061~2070.
    [41] J.D.Murray. Mathematical Biology, Berlin Heidelberg NewYork: Springer-Verlag, 1993. 140~175.
    [42] K.Aihara and G. Matsumoto. Chaotic oscillations and bifurcations in squid giant axons. In Chaos, A. Holden, ed., Manchester University Press, Manchester, UK, 1986 : 257~269.
    [43] Terada Kazuko, Yoshizawa Shuji and Nishimura Chiaki. Dynamical behavior of Hodgkin-Huxley equations for muscles. IEEE, 1999 : 371~376.
    [44] F. Fumihiro. Shoji and Hee-Hyol Lee. On a response characteristics in the Hodgkin-Huxley model and muscle fiber to a periodic stimulation. IEEE,2000: 485~491.
    [45] C. J. Thompson, D. C. Bardos, Y. S. Yang and K. H. Joyner. Nonlinear cable models for cells exposed to electric fields I. General theory and space –clampedsolutions. Chaos. Solutions & Fractals,. 1999 ,10:1825~1842.
    [46] Shunsuke Sato and Shinji Doi. Response Characteristics of the BVP neuron model to periodic pulse inputs. Mathematical Biosciences. 1992, 112: 243~259.
    [47] Shinji Doi and Shunsuke Sato. The global bifurcation structure of the BVP neuronal model driven by periodic pulse trains. Mathematical Biosciences. 1995, 125: 229~250.
    [48] Stephen Baigent, Jaroslav Stark and Anne Warner. Modeling the effect of gap junction nonlinearites in systems of coupled cells. J. Theor. Biol. 1997, 186: 223~239.
    [49] Tetsuya Yoshinaga, Yasuhiko Sano and Hiroshi Kawakami. A method to calculate bifurcations in synaptically coupled Hodgkin-Huxley equations. International Journal of Bifurcation and chaos. 1999, 7: 1451~1458.
    [50] Kunichika Tsumoto, Tetsuya Yoshinaga, Kazuyuki Aihara and Hiroshi Kawakami. Bifurcation in synaptically coupled Hodgkin-Huxley neurons with a periodic input. International Journal of Bifurcation and chaos. 2003, 13: 653~666.
    [51] P.Varona, J.J.Torres, H.D.I. Abarbanel, M.I.Rabinovich, R.C.Elson Dynamics of two electrically coupled chaotic neurons: Experimental obserbations and model anylysis. Biol. Cybern. 2001, 84: 91~101.
    [52] H. Kitajima and H. Kaw akam. Bifurcation and chaos observed in coupled BVP neurons with external impulsive forces. IEEE. 2000: 2048~2053.
    [53] H.Kitajima and H.Kaw akam. Bifurcation in coupled BVP neurons with external impulsive forces. IEEE. 2001: 285~288.
    [54] J.J.Struijk.Magnetic peripheral nerve stimulation: axial versus transverse fields[C]. Atalanta: American Institution of Medical and Biological Engineering. 1999: 469.
    [55] J. L. Dialecii, M. G. Krein. Stability of differential equations in banach space. In: Translation of Math Monographs 43. New York: AMS. 1974.
    [56] 曹建福,韩崇昭,方洋旺,非线性系统理论及其应用,西安:西安交通大学出版社,2001.
    [57] 郝柏林,从抛物线谈起——混沌动力学引论,上海:上海科技教育出版社,1992.
    [58] 谢应齐,曹杰,非线性动力学数学方法,北京:气象出版社,2001.
    [59] 何振亚, 认知科学中若干重要问题的研究,攀登计划项目,长沙:湖南科学出版社,1996.
    [60] Tsuda Ichiro. Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind. World Futures, 1991, 32:167-184.
    [61] W. J. Freeman. A proposed name for a periodic brain activity: stochastic chaos, Neural Networks, 2000, 11~13.
    [62] W. J. Freeman, Y. Yao, C. B. Burke, Central pattern generating and recognizing in olfactory bulb: A correlation learning rule. Neural Networks ,1988,1:277~288.
    [63] W. J. Freeman. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics, 1987, 56: 139~150.
    [64] W. J. Freeman. Tutorial on neurobiology: from single neurons to brain chaos, International Journal of Bifurcation and Chaos, 1992, 2: 451~482.
    [65] L. Glass, M. C. Mackey. From Clocks to Chaos, 1st ed. Princeton University Press, 1988.
    [66] L. J. Defelice, A. Isaac, Chaotic states in a random world: relationships between the nonlinear equations of excitability and the stochastic properties of ion channels, J. Stat. Phys. 1993,70: 339~354.
    [67] J. B. Bassingthwaighte, L. S. Liebovitvh, B. J. West, Fractal Physiology, Oxford University Press, New York, 1994.
    [68] D. H. Perkel, T. H. Bullock, Neural coding, Neurosci. Res. Progr. Bull. 1968 ,6(3): 221~347.
    [69] D. Perkel. Spike trains as carriers of information, in: F. Schmitt(Ed.), The Neurosciences Second Study Program, The Rockefeller University Press, 1970, 587~596.
    [70] L. Andrey, Analytical proof of chaos in single neurons and consequences, in: K. Lehnertz, J. Arnhold, P. Grassberger, C.Elger(Eds.), Chaos in Brain?, World scientific, 1999, 247~250.
    [71] A. I. Selverston, J. P. Miller, M. Wadepuhl, Cooperative mechanisms for the production of rhythmic movements, in: A. Roberts, B. Roberts(Eds.), Neural Origin of Rhythmic movements, Cambridge University Press, London, 1983, 55~88.
    [72] V. Makarenko, R.R.Llinas, Experimentally determined chaotic phase synchronization in a neuronal system, Proc. Natl Acad. Sci. USA 1998, 95:15747~15752.
    [73] R. C. Elson, A. I. Selverston, R. Huerta, N. Rulkov, M. I. Rabinovich, H. D. I. Abarbanel.Synchronous behavior of two coupled biological neurons, Phys. Rev. Lett. 1998,81:5692~5695.
    [74] A. Szucs, P. Varona, A. R. Volkovskii, H. D. Abarbanel, M. I. Rabinovich, A. I. Selverston. Interacting biological and electronic neurons generate realistic oscillatory rhythms. NeuroReport. 2000,11: 563~569.
    [75] M. I. Rabinovich, P. Varona, H. D. Abarbanel. Nonlinear cooperative dynamics of living neurons. Int. J. Bifurc. Chaos 2000,10: 913~933.
    [76] V. P. Zhigulin, M. I. Rabinovich, R. Huerta, H. Abarbanel. Robustness and enhancement of neural synchronization by activity-dependent coupling. Phys, Rev. Lett. E 2003 ,67: 021901~021905.
    [77] M. I. Rabinovich, H. D. I. Abarbanel, R. Huerta. R. Elson, A. I. Selverston. Self-regularization of chaos in neural systems: Experimental and theoretical results.IEEE Trans. Circuits and Systems: Fundamental Theory and Applications 1997,44: 997~1005.
    [78] M. I. Rabinovich, H. D. I. Abarbane. The role of chaos in neural systems, Neuroscience. 1998, 87: 5~14.
    [79] Tsuda Ichiro. Dynamic link of memory-chaotic map in nonequilibrium neural networks. Neural Networks. 1992, 5:313~328.
    [80] Tsuda Ichiro, Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems.Behavioral and Brain Sciences, 2001, 24(4):575~628.
    [81] Tsuda Ichiro, Knihiko Kaneko, Complex Systems: Chaos and Beyond-A Constructive Approach with Application in Life Sciences. Springer-Verlag, 2001
    [82] K.Y.R. Billah, M.Shinosuka.. Stabilization of a nonlinear system by multiplicative noise. Phys Rev A, 1991, 44: 4779~4781.
    [83] J. J.Collins, C. Chow Carson, C. Capela Ann, et al. A periodic stochastic resonance. Physical Review E, 1996, 54(5): 5575~5584.
    [84] J. J. Collins, C.Chow Carson, T.Imhoff Tomas. A periodic stochastic resonance in excitable systems. Physical Review E, 1995, 52(4):3321~3324.
    [85] G. Buzsaki, R. Llinas, W. Singer, A. Berthoz. Temporal Coding in the Brain, Research and Perspectives in Neurosciences-Foundation IPSEN, Springer-Verlag, 1994.
    [86] H. Fujii, H. Ito, K. Aihara, N. Ichinose, M. Tsukada. Dynamical cell assembly hypothesis-Theoretical possibility of spatio temporal coding in the cortex. Neural Networks. 1996,9: 1303~1350.
    [87] J.J.Eggermont. Is there a neural code?, Neurosci., Biobehav. Rev. 1998,22: 355~370.
    [88] K. Pyragas. Weak and strong synchronization of chaos. Phys. Rev. E.1996,54: R504~R508.
    [89] L. M. Pecora, T. L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett. 1990,64: 821~824.
    [90] L. M. Pecora, T. L. Carroll. Driving systems with chaotic signals. Phys. Rev. A 1991, 44: 2374~2377.
    [91] L. Kocarev, U. Parlitz. General Approach for Chaotic Synchronization with Applications to Communication. Phys. Rev. Lett. 1995, 74:5028~5032.
    [92] M. G. Rosemblum, A. S. Pikovsky, J. Kurths. Phase Synchronization of Chaotic Oscillators. Phys. Rev. Lett. 1996, 76: 1804~1808.
    [93] M. A. Zaks, E. H. Park, M. G. Rosenblum, J. Kurths. Alternating Locking Ratios in Imperfect Phase Synchronization. Phys. Rev. Lett. 1999, 82: 4228~4232.
    [94] M. G. Roscnblm, A. S. Pikovsky, J. Kurths. From Phase to Lag Synchronization in Coupled Chaotic Oscillators. Phys. Rev. Lett. 1997, 78: 4193~4197.
    [95] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 1995, 51: 980~984.
    [96] S. Boccaletti, J. Bragard, J. Kurths, D. Maza, H. Mancini. Synchronization of chaotic structurally nonequivalent systems. Phys. Rev. E. 2000, 61:3712~3716.
    [97] Z. F. Mainen, T. J. Sejnowski. Reliability of spike timing in neocortical neurons Science,1995, 268: 1503~1506.
    [98] A. Maritan, J. R. Banavar. Chaos, noise and synchronization. Phys. Rev. Lett, 1994, 72(9): 1451~1454.
    [99] C. S. Zhou, J. Kurths, Noise-induced phase synchronization and synchronization transitions in chaotic oscillators, Phys. Rev. Lett, submitted for publication.
    [100] C.S.Zhou,J.Kurths,I.Z.Kiss, J.L.Hudson. Noise enhanced phase synchronization of chaotic oscillators. Phys.Rev. Lett., submitted for publication.
    [101] C. Sch?fer, M. G. Rosenblum, J. Kurths, H. H. Abel, Nature 392 (1998) 239.
    [102] C. Sch?fer, M. G. Rosenblum, H. H. Abel, J. Kurths. Synchronization in the human cardiorespiratory system. Phys. Rev. E. 1999, 60:857~860.
    [103] R. Mrowka, A. Patzak, M. G. Rosenblum. Quantitative Analysis of Cardiorespiratory Synchronization in Infants. Int. J. Bifurcation. Chaos. ,2000,10 :2479~2488.
    [104] A. Stefanovska, H. Haken, P. V. E. McClintock, M. Hozic, F. Bajrovic, S. Ribaric. Reversible Transitions between Synchronization States of the Cardiorespiratory System .Phys. Rev.Lett. 2000, 85: 4831~4834.
    [105] A.Stefanovska, M. Hozic. Spatial Synchronization in the Human Cardiovascular System. Prog. Theor. Phys. Suppl. 2000, 139: 270~282.
    [106] V.S.Anishchenko, A.G. Balanov, N. B. Janson, N. B. lgosheva, G. V. Bordyugov. Entrainment Between Heart Rate and Weak Noninvasive Forcing. Int, J. Bifurc. Chaos, 2000,10: 2339~2348.
    [107] P. Tass, M. G. Rosenblum, M. G. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A Schnitzler, H. J. Freud. Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography. Phys.Rev. Lett. 1998, 81: 3291~3294.
    [108] M. Koskinen, T. Seppanen, J. Tuukkanen, A. Yli-Hnkala, V. Jnatti, Clin. Neurophysiol, 2001, 112 :386~397..
    [109] J. Bhattacharya, H. Petschen, U. Feldmann, B. Rescher. EEG gamma-band phase synchronization between posterior and frontal cortex during mental rotation in humans. Neurosci. Lett. 2001, 311:29~32.
    [110] J. Bhattacharya, H. Petschen. Musicians and the gamma band: a secret affair? Neuroreport, 2001,12: 371~374.
    [111] F. Mormann, K. Lehnertz, P. David, C. E. Elger. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D ,2000,144: 358~369.
    [112] A. Neiman, X. Pei, D. Russell, W. Wojtenek, L. Wikens, F. Moss, H. A. Braun, M. T. Huber, K. Voigt. Synchronization of the Noisy Electrosensitive Cells in the Paddlefish. Phys. Rev. Lett. 1999, 82 :660~663.
    [113] 董向辉,戴汝为,从系统科学和系统复杂性的角度看中医理论,系统仿真学报,2002, 14(11):1458~1463.
    [114] 孙锦平,尹岭, 田淑君, 母义明, 针刺足三里穴对冷应激性溃疡大鼠下丘脑与肾上腺NOS表达的影响, 中华物理医学与康复杂志, 2005,27(5):272~277.
    [115] 孙锦平 ,尹岭, 朱克, 针刺的中枢调节机制研究进展, 针刺研究,2003,28(2):151~156..
    [116] 金香兰, 尹岭, 刘买利, 张许, 吴义根, 姚斌, 朱克, 针刺大鼠后三里穴脑fMRI成像的初步研究, 中国康复医学杂志,Vol. 18, No. 12, 2003,18(12):715~718.
    [117] T. L. Liao, Observer-based approach for controlling chaotic systems, Phys. Rev.E, 1998, 57(2):1604~1610.
    [118] T. L. Liao, N. S. Huang, Control and synchronization of discrete-time chaotic systems via variable structure control technique, Phys. Lett. A, 1997, 234(4): 262~268.
    [119] C. C. Fuh, P. C. Tung, Controlling chaos using differential geometric method, Phys. Rev. Lett, 1995, 75(16): 2952~2955.
    [120] Y. M. Liaw, P. C. Tung. Application of differential geometric method to control a noisy chaotic system via dither smoothing, Phys. Lett. A, 1998, 239(1):51~58.
    [121] T. H. Yeap, N. U. Ahmed. Feedback control of chaotic system. Dynamics and Control, 1994, 4(1): 97~114.
    [122] C. W. Wu, L. O. Chua, Synchronization in a array of linearly coupled dynamical systems. IEEE trans. Circuits Syst. I, 1995, 42(8):430~447.
    [123] O. Morgul, E. Solak. Observer based synchronization of chaotic systems. Phys. Rev. E, 1996, 54(5): 4803~4811.
    [124] S. Boccaletti, A. Farini, F. T. Arecchi. Adaptive synchronization of chaos for secure communication. Phys. Rev. E, 1997, 55(5):4979~4981.
    [125] 郭爱克,计算神经科学,上海:上海科技教育出版社,2000.
    [126] 郭爱克,陆惠民,脑的复杂性和神经动力学,科学,1994,4:22~24.
    [127] 杜艳梅, 彭建华, 刘延柱, FitzHugh-Nagumo神经元网络的同步振荡与联想记忆, 力学季刊,2005,26(1): 66~71.
    [128] 彭建华, 于洪洁, 刘延柱, FitzHugh_Nagumo神经元网络的联想记忆与分割, 计算物理,2005, 22(4):337~343.
    [129] G. M. Spepherd, Neurobiology ,Oxford University Press, New York, 1983.
    [130] J. D. Murray, Mathematical Biology ,Springer, New York, 1990.
    [131] T.MORI, H.KOKAME, Stability of x& (t )= Ax(t)+Bx(t?τ). IEEE Transactions on Automatic Control, 1989; 34:460-461.
    [132] Nijmeijer H, Mareels IMY. An observer looks at synchronization.IEEE Trans Circuits Syst. I .1997, 44: 882~8890.
    [133] Morgul O, Solak E. On the synchronization of chaotic systems by using state obserbers. Int. J Bif & Chaos, 1997, 7: 1307~1322.
    [134] Huang L, Feng R, Wang M. Synchronization of chaotic systems via nonlinear control. Phys Lett A ,2004 ,320: 271~275.
    [135] Ho MC, Hung YC. Synchronization two different systems by using generalized active control. Phys Lett A, 2002,301:424~428.
    [136] Chen SH, Lu J. Synchronization of an uncertain unified system via adaptive control. Chaos, Solitons & Fractals ,2002,14: 643~647.
    [137] F.M. Moukam Kakmeni, S. Bowong and C. Tchawoua. Reduced-order synchronization of uncertain chaotic systems via adaptive control. Communications in Nonlinear Science and Numerical Simulation, 2006, 11(7):810-830.
    [138] Li H. Variable universe adaptive fuzzy controller. Science in China, Ser. E., 2002,45: 213~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700