用户名: 密码: 验证码:
时滞随机微分系统的动力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着自然科学的不断发展,人们对现实世界的认识越来越贴近本质,因此,现实系统中不可避免的随机和非线性因素已成为众多数学家和其他领域科学家关注的焦点,特别是,近年来物理学、生命科学、工程技术、经济金融等诸多领域中推导得出大量的非线性随机模型,进一步促使了人们对非线性随机微分动力系统的理论和应用的深入研究.与确定常微分方程所描述的非线性微分动力系统比较,非线性随机微分动力系统的研究刚刚起步,目前的数学理论和方法远未成熟,特别是在随机分岔、随机极限环和随机混沌等基本概念、理论和应用方面存在大量悬而未决的科学理论问题,其理论体系很不完备,有待进一步澄清和探讨.以至于德国学者Arnold教授认为对该领域的研究还处于“Infancy”阶段.因此,进一步深入研究非线性随机微分动力系统的复杂动力学性质不仅是必要的,而且具有重要的理论意义和应用价值.
     本论文主要研究具有时滞的非线性随机微分系统的随机稳定性、随机分岔和随机混沌等问题,具体的研究工作如下:
     第一章为绪论,主要简述了时滞随机微分动力系统发展概况及随机稳定性、随机分岔和随机混沌的研究进展,并介绍了本文问题产生的背景和一些相关的预备基本知识.
     第二章,主要考虑具有时滞的二维随机微分系统的随机稳定性和随机分岔问题.首先利用时滞退化原理、一阶或二阶标准随机平均法分别给出具有时滞的一般二维随机微分系统所对应的随机平均方程的具体表达式.其次,将所得随机平均方程的相应表达式与奇异边界值和遍历性中的相关理论有机结合,获得了随机平均方程的随机稳定性条件,严格地证明了随机平均方程的随机分岔的存在性,进一步建立了具有时滞的一般二维随机微分系统的随机稳定性与随机分岔的解析判据.然后,将所得到的理论结果应用到随机海洋结构模型.
     第三章,主要考虑具有两个不同时滞的随机拟不可积Hamilton系统的动力学性质.运用随机拟不可积平均法、遍历性和奇异边界值中的相关理论,获得了时滞随机拟不可积Rayleigh-van der Pol振子和耦合Rayleigh-van der Pol振子的随机稳定性、随机分岔与随机极限环存在性的判据.所用方法与以往不同,所得的结果推广和改进了最近文献中的相关结果.
     第四章,主要考虑时滞随机拟可积Hamilton系统和拟部分可积Hamilton系统的动力学行为.首先,基于随机中心流形理论、遍历性、随机拟可积平均法,获得了时滞随机拟可积Du?ng-van der Pol振子的随机稳定性、随机分岔与随机极限环存在性的解析判据.其次,运用随机拟部分可积平均法、遍历性、共振和非共振相关理论,得到具有四个自由度的时滞随机拟部分可积振子在共振和非共振情形下的随机稳定性和随机分岔的一些判据.改进和推广了已有的相关结果.
     第五章,主要研究具有随机扰动的三类经典系统(包括二维Kolmogorov生态系统、Josephson系统和Lorenz系统)的随机分岔与混沌的复杂动力学性质.首先,应用随机Melnikov函数,获得四种不同类型随机Kolmogorov生态系统存在随机混沌的一些解析判据.其次,应用随机Melnikov函数和非光滑微分系统相关理论,给出随机Josephson系统存在随机混沌的判据.最后,基于广义随机Hamilton系统相关理论、摄动法和广义随机Melnikov函数,获得了随机Lorenz系统发生音叉分岔和存在随机混沌的定理.
With the continuous development of natural science, people realize the nature of thereal world more and more, therefore, many mathematicians and other scientists concernedthe inevitable random and non-linear factors of the reality system, in particular, in recentyears, a large number of nonlinear stochastic systems in physics, life sciences, engineering,and many other areas of economy and finance are derived, the theory and application ofnonlinear stochastic dynamical systems are more studied. And described by the ordinarydi?erential equations to the nonlinear dynamic systems compared, the research of nonlin-ear stochastic di?erential dynamical systems has just started, and mathematical theoryand methods are far from mature , especially, in the basic concepts and applied theories ofstochastic bifurcation and stochastic chaos aspect, there exist lots of outstanding issues,the theoretical system not complete, we pending further to clarify and discuss. Germanscholar, Arnold prof. even think that the theory of stochastic bifurcation and chaos is stillin its infancy. Therefore, we further understand and study that the complexity of nonlin-ear stochastic di?erential dynamical system is not only necessary but also significance ofthe theory and application.
     In the paper, stochastic stability, stochastic bifurcation and stochastic chaos of thedelayed stochastic di?erential dynamical system are studied extensively. The main re-search work are as follows.
     In Chapter 1, we give a survey to the developments of stochastic stability, stochas-tic bifurcation and stochastic chaos for delayed stochastic di?erential dynamical system.Then we introduce the background of problem and important basics knowledge.
     In Chapter 2, we mainly consider stochastic stability and stochastic bifurcations of thegeneral two-dimensional stochastic di?erential systems with delay. Firstly, using reducedprinciple and first、second-order standard stochastic averaging method, we obtain thegeneral form of stochastic averaging equation for the general two-dimensional stochasticdi?erential systems with delay. Secondly, based on singular boundary theory and ergodictheory, some stability conditions for stochastic averaging equation are obtained, and werigorously prove the existence of three types stochastic bifurcation for stochastic averagingequation, some analytic criterions of stochastic stability and stochastic bifurcation for theoriginal two-dimensional stochastic di?erential systems with delay are established. Ourconclusion are applied to stochastic ocean structure model, our study shows that thetheoretical results very well consistent with the results of case study.
     In Chapter 3, we mainly consider the stochastic stability and stochastic bifurcation ofthe delayed non-integrable stochastic Hamilton system. By non-integrable stochastic av-eraging method, ergodic theory and singular boundary theory, etc., we obtain the stochas-tic stability, stochastic bifurcation and random limit cycles for the delay non-integrablestochastic Rayleigh-van der Pol oscillator and the delay non-integrable coupled nonlinearstochastic Rayleigh-van der Pol oscillator. We generalize and improve the correspondingresults in recent literature.
     In Chapter 4, we mainly consider stochastic stability and stochastic bifurcation of thedelayed integrable stochastic Hamilton system and part integrable stochastic Hamiltonsystem. Firstly, by stochastic center manifold theory, ergodic theory, integrable stochasticaveraging method, etc., some analytic criterions of stochastic stability, stochastic bifur-cation for the delayed integrable stochastic Du?ng-van der Pol oscillator are obtained.Secondly, through partly integrable stochastic averaging method, ergodic theory, reso-nance and non-resonance theory, ect., we obtain su?cient conditions of the stochasticstability and stochastic bifurcation for the resonance and non-resonant case of the de-lays four freedom degrees partly integrable stochastic oscillator. We improve and extendexisting relevant results.
     In Chapter 5, we mainly study the stochastic bifurcation and chaos of three typesof classical system (Kolmogorov ecosystems, Josephson systems and Lorenz systems).Firstly, through using stochastic Melnikov function, etc., we prove the existence of stochas-tic chaos for four di?erent types stochastic Kolmogorov ecosystems. Secondly, accordingto non-smooth dynamical systems theory and stochastic Melnikov function, etc., we ob-tained the related su?cient conditions of chaos for the stochastic Josephson systems.Thirdly, using generalized stochastic Hamilton system, perturbation theory and gener-alized stochastic Melnikov function, etc., we obtain su?cient conditions of stochasticbifurcation and chaos for stochastic Lorenz systems.
引文
[1] Arnold L. Random Dynamical Systems[M]. Springer-Verlag, New York, 1998
    [2]朱位秋.非线性随机动力学与控制[M].北京:科学出版社, 2004
    [3] Lin Y.K., Cai G.Q. Probabilistic Structure Dynamics, Adanced Theory and applica-tion[M]. New York: McGraw-Hill, 1995
    [4] Roberts J., Spanos D. Rnadom Vibration and Statistical Linearization[M]. NewYork:Wile, 1990
    [5] Chueshov I. Monotone Random Systems Theory and Application[M]. Springer-Verlag, Berlin, 2002
    [6] Prato G.D., Zabczyk J. Stochastic Equation in Inˉnite Dimensions[M]. CambridgeUniversity Press, 1992
    [7] Mao X.R. Stochastic Di?erential Equations and Their Applications[M]. HorwoodPublishing Chichester. 1997
    [8] Mao X.R. Exponential Stability of Stochastic Di?erential Equations[M]. New York:Marcel Dekker Inc., 1994
    [9] Ikesa N., Watanabe S. Stochastic Di?erential Equations and Di?usion Processes[M].North-Holland-Kodansha, 1989
    [10] Khasminskii R.Z. Stochastic Stability of Di?erential Equations[M]. Alphen aan denRijn, The Netherlands: Sijtho? & Noordho?, 1980
    [11] Gihman I.I., Skorohod A.V. The Theory of Stochastic Processes I, II, III[M]. Springer-Verlag, New York, 1979
    [12] Meyn S., Tweedie R. Markov Chains and Stochastic Stability[M]. Springer-Verlag,Berlin, 1983
    [13] Anishchenko V.S., Neiman A.B. Nonlinear Dynamics of Chaotic and Stochastic Sys-tems[M]. Springer-Verlag, New York, 2006
    [14] Soize C. The fokke-planek equation for stochastic dynamical systems and its explieitsteady state solution[J]. Series on Advances in Mathematics for Applied Sciences,1994, 17(1): 340-350
    [15] Namachchivaya N.S., Lin Y.K. Nonlinear Stochastic Dynamics[M]. Proe. IUATMSymp, Dordreeht: Kluwer Aeademic Publishers, 2003
    [16] Crauel H., Gundlach M. Stochastic Dynamics[M]. Springer-Verlag, Berlin, 1998
    [17] Stratonovich R.L. Topics in The Theory of Random Noise[M]. New York: GordonBreach, 1963
    [18] Horsthemkr W., Lefever R. Noie-induced Transitions[M]. Springer-Verlag, New York,1984
    [19] Nguyen D.C. Topological Dynamics of Random Dynamical Systems[M]. Oxford Un-versity Press, 1997
    [20] Bernardo M., Bbudd C. Piecewise-Smooth Dynamical Systems[M]. Springer-Verlag,Londan, 2008
    [21] Hale J.K., Lunel S.V. Theory of Functional Di?erential Equations[M]. Springer-Verlag, New York, 1977
    [22] Hale J.K., Lunel S.V. Introduction to Functional Di?erential Equations[M]. Springer-Verlag, New York, 1993
    [23] Agrarwal R.P. Di?erence Equations and Inequalities[M]. New York: Marcel Dekker,2000
    [24] Chow S.N., Hale J.K. Methods of Bifurcation Theory[M]. Springer-Verlag, New York,1982
    [25] Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifur-cations of Vector Fields[M]. Springer-Verlag, New York, 1983
    [26] Kuznetsv Y.A. Elements of Applied Bifurcation Theory[M]. Springer-Verlag, NewYork, 1995
    [27]尤里¢阿¢库兹涅佐夫著.应用分支理论基础[M].金成桴.北京:科学出版社, 2009
    [28]韩茂安.动力系统的周期解与分支理论[M].科学出版社, 2002
    [29]廖晓听.动力系统的稳定性理论和应用[M].国防工业出版社, 2000
    [30]张芷芬,丁同仁,黄文灶,董镇喜.微分方程定性理论[M].北京:科学出版社, 1997
    [31]张锦炎,冯贝叶.常微分方程几何理论与分支理论[M].北京大学出版社, 2000
    [32] Kielh?ofer H. Bifurcation Theory: An Introduction with Applications to PDEs[M].Springer-Verlag, New York, 2004
    [33] Hassard B.D., Kazarino? N.D., Wan Y.H. Theory and Applications of Hopf Bifurca-tion[M]. Cambrige University Press, Cambrige, 1981
    [34] Podlubny I. Fractional Di?erential Equations[M]. Academic Press, 1999
    [35] Kilbas A., Srivastava H., Trujillo J. Theory and Applications of Fractional Di?erentialEquations[M]. Elsevier B.V., 2006
    [36] Arino O., Hbid M.L., Dads E.A. Delay Di?erential Equations and Application[M].Springer-Verlag, New York, 2006.
    [37] Wu J.H. Theory and Appications of Partial Funcational Di?erential Equations[M].Springer-Verlag, New York, 1996
    [38] Diekmann O., Diekmann O., Gils S.A.V. Delay Equations Funetional-, Comple-, andNonlinear Analysis[M]. Springer-Verlag, NewYork, 1995
    [39] Fe·ekan M. Topological Degree Approach to Bifurcation Problems[M]. Springer-Verlag, New York, 2008
    [40] Grigoriu M. Control of time delay linear system with Gaussian white noise[J]. Prob-abilistic Engineering Mechanics, 1997, 12(2): 89-96
    [41] Poala M., Piorrtta A. Time delay induced e?ects on control of linear systems underrandom excitation[J]. Probabilistic Engineering Mechanics, 2001, 16(1): 43-51
    [42] Fonafa M.S. Asymptotic stability of stochastic delay equation[J]. Probabilistic Engi-neering Mechanics, 2002, 17(4): 385-392
    [43] Chow P.L. Stochastic Partial Di?erential Equations[M]. Chapman & Hall/CRC, 2007
    [44]龚光鲁.随机微分方程引论[M].北京大学出版社, 2000
    [45] Arnold L., Craul H., Eckmann J.P. Lyapunov Expoenents[M]. Springer-Verlag,Berlin, 1991
    [46] Biagini F., Hu Y., ;ksendal B., Sulem A. Stochastic Calculus for Fractional BrownianMotion and Applications[M]. Springer-Verlag, Londan, 2006
    [47] Mishura Y. Stochastic Calculus for Fractional Brownian Motion and Related Pro-cesses[M]. Springer-Verlag, Berlin, 2008
    [48] Baxendale P.H. Stochastic averaging and asymptotic behavior of the stochasticDu±ng-van der Pol equation[J]. Stochastic Processes and their Applications, 2004,113(2): 235-272
    [49] Huang Z.L, Zhu W.Q. Stochastic averaging of quasi-generalized Hamiltonians ys-tems[J]. International Journal of Non-Linear Mechanics, 2009, 44(1): 71-80
    [50] Jahanipur R. Stochastic functional evolution equations with monotone nonlinearity:Existence and stability of the mild solutions[J]. Journal of Di?erential Equations,2008, 248(5): 1230-1255
    [51] Huang Z.L., Jin X.L., Zhu W.Q. Lyapunov functions for quasi-Hamiltonian sys-tems[J]. Probabilistic Engineering Mechanics, 2009, 24(3): 374-381
    [52] Taniguchi T., Liu K., Truman A. Existence, uniqueness, and asymptotic behaviorof mild solutions to stochastic functional di?erential equations in Hilbert spaces[J].Journal of Di?erential Equations, 2002, 181(1): 72-91
    [53] Lu K.N., Schmalfu? B. Invariant manifolds for stochastic wave equations[J]. Journalof Di?erential Equations, 2007, 236(2): 460-492
    [54] Shen Z.W., Zhou S.F., Shen W.X. One-dimensional random attractor and rotationnumber of the stochastic damped sine-Gordon equation[J]. Journal of Di?erentialEquations, 2010, 248(6): 1432-1457
    [55] Li Y.R., Guo B.L. Random attractors for quasi-continuous random dynamical sys-tems and applications to stochastic reaction-di?usion equations[J]. Journal of Di?er-ential Equations, 2008, 245(7): 1775-1800
    [56] Bates P.W., Lu K.N. , Wang B.X. Random attractors for stochastic reaction-di?usionequations on unbounded domains[J]. Journal of Di?erential Equations, 2009, 246(2):845-869
    [57] Kunze M. Non-Smooth Dynamical Systems[M]. Springer-Verlag, Berlin, 2000
    [58] Zhusubaliyev Z.T., Mosekilde E.G. Bifurcations and Chaos in Piecewise{SmoothDynamical Systems[M]. World Scientiˉc Publishing, 2003
    [59] Baxendale P.H. A stochastic Hopf bifurcation[J]. Probability Theory and RelatedFields, 1994, 99(4): 581-616
    [60] Crauel H., Flandoli F. Attractors for random dynamical systems[J]. Probability The-ory and Related Fields, 1994, 100(3): 365-393
    [61] Schenk-Hopp?e K.R. Deterministic and stochastic Du±ng-van der Pol oscillators arenon-explosive[J]. Zeitschrift F?ur angewandte Mathematik und physik, 1996, 47: 740-759
    [62] Schmalfu? B. The random attractor of the stochastic Lorenz system[J]. ZeitschriftF?ur angewandte Mathematik und physik, 1997, 48(6): 951-975
    [63] Keller H. Attractors and bifurcations of the stochastic Lorenz system[M]. TechnicalReport 389, Institut f?ur Dynamische Systeme, Universit?at Bremen, 1996
    [64] Leng X.L., Wu C.L., Ma X.P. Bifurcation and chaos analysis of stochastic Du±ngsystem under harmonic excitations[J]. Nonlinear Dynamics, 2005, 42(2): 85-198
    [65] Ma S.J., Xu W., Fang T. Analysis of period-doubling bifurcation in double-wellstochastic Du±ng system via Laguerre polynomial approximation[J]. Nonlinear Dy-namics, 2008, 52(3): 289-299
    [66] Zhang Y., Xu W., Fang T. Stochastic Hopf bifurcation and chaos of stochasticBonhoe?er-van der Pol system via Chebyshev polynomial approximation[J]. AppliedMathematics and Computation, 2007, 190(2): 1225-1236
    [67] Arnold L., Sir Namachchivaya N.R., Shenk-Hopp?e K.R. Toward an understanding ofstochastic Hopf bifurcation: a case study[J]. International Journal of Bifurcation andChaos, 1996, 6(11): 1945-1975.
    [68] Coullet P.H., Elphick C., Tirapegui E. Normal form of a Hopf bifurcation withnoise[J]. Physics Letters A, 1985, 111(6): 277-282
    [69] Crauel H., Flandoli F. Additive noise destroys a pitchfork bifurcation[J]. Journal ofDynamics and Di?erential Equations, 1998, 10(2): 259-274
    [70] Cundlach V. Random homoclinic orbrits[J]. Random and Computational Dynamics,1995, 3: 1-33
    [71] Shenk-Hopp?e K.R. Bifurcation scenarios of the noisy Du±ng-van der Pol oscillator[J].Nonlinear Dynamics, 1996, 11(3): 255-272
    [72] Shenk-Hopp?e K.R. The stochastic Du±ng-van der Pol equation[D]. PhD thesis, In-stitut f?ur Dynamische Systeme, Universit?at Bremen, 1996
    [73] Shenk-Hopp?e K.R. Stochastic Hopf bifurcation: an example[J]. International Journalof Non-Linear Mechanics, 1996, 31(5): 685-692
    [74] Sir Namachchivaya N.K. Stochastic bifurcation[J]. Computational and Applied Math-ematics, 1990, 38(2): 101-159
    [75] Sir Namachchivaya N.K., Lin Y.K. Methods of stochastic normal forms[J]. Interna-tional Journal of Non-Linear Mechanics, 1991, 26(6): 931-943
    [76] To C.W.S, Li D.M., Huang K. L. Largest Lyapunov exponents and bifurcation ofstochastic nonlinear systems[J]. Journal of Shock and Vibration, 1996, 3(1): 313-320
    [77] To C.W.S, Li D.M. Supercritical and subcritical Hopf bifurcation in a stochasticallyexcited system[J]. Journal of Shock and Vibration, 1997, 201(5): 648-656
    [78] Zhu W.Q., Huang Z.L. Stochastic Hopf bifurcation of quasi-nonintegrable Hamilto-nian systems [J]. International Journal of Non-Linear Mechanics, 1999, 34(3): 437-447
    [79] Zhu W.Q., Lu Q.M., Wu Q.T. Stochastic jump and bifurcation of a Du±ng oscillatorunder narrow-band excitation[J]. Journal of Shock and Vibration, 1993, 165(2): 285-304
    [80] Gan C.B. Stochastic Hopf bifurcation in quasi-integrable Hamiltonian systems[J].Acta Mechanica Sinica, 2004, 20(5): 558-566
    [81] Sowers R.B. Stochastic averaging near a homoclinic orbit with multiplicative noise[J].Stochastics and Dynamics, 2003, 3(3): 299-391
    [82] Sowers R.B. Stochastic averaging near a long homoclinic orbit[J]. Stochastics andDynamics, 2007, 7(2): 187-228
    [83] Liu Z.H., Zhu W.Q. Stochastic Hopf bifurcation of quasi-integrable Hamiltonian sys-tem with time-delayed feedback[J]. Journal of Theoretical and Applied Mechanics,2008, 46(3): 531-550
    [84] Huang Z.L., Zhu W.Q. Stochastic averaging of quasi-integrable Hamiltonian systemsunder combined harmonic and white noise excitations[J]. International Journal ofNon-Linear Mechanics, 2004, 39(9): 1421-1434
    [85] Huang D.W., Wang H.L. Hopf bifurcation of the stochastic model on HAB nonlinearstochastic dynamics[J]. Chaos, Solitons & Fractals, 2006, 27(4): 1072-1079.
    [86] Lee B.H., Ibrahim R.A. Stochastic bifurcation in non-linear structural systems near1:1 internal resonance[J]. Probabilistic Engineering Mechanics, 1994, 9(1): 23-32
    [87] Li W., Xu W. Zh J.F. et al. Stochastic stability and bifurcation in a macroeconomicmodel[J]. Chaos, Solitons & Fractals, 2007, 31(3): 702-711
    [88] Hasegawa H. Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected toadditive and/or multiplicative noises[J]. Physica D, 2008, 237(2): 137-155
    [89] Feng, J.Q, Xu W. Analysis of bifurcations for non-linear stochastic non-smooth vibro-impact system via top Lyapunov exponent[J]. Applied Mathematics and Computa-tion, 2009, 213(2): 577-586
    [90] Leung H. K. Stochastic Hopf bifurcation in a biased van der Pol model[J]. PhysicaA, 1998, 254(1): 146-155
    [91] Zhang Y., Xu W., Fang T. Stochastic Hopf bifurcation and chaos of stochasticBonhoe?er-van der Pol system via Chebyshev polynomial approximation[J]. AppliedMathematics and Computation, 2007, 190(2): 1225-1236
    [92] Diks C.G.H, Wagener F.O.O, A bifurcation theory for a class of discrete time Marko-vian stochastic systems[J]. Physica D, 2008, 237(24): 3297-3306
    [93] Chiarella C., He X.Z, Wang D., Zheng M. The stochastic bifurcation behaviour ofspeculativeˉnancial markets[J]. Physica A, 2008, 238(15): 3837-3846
    [94] W. Xu, He Q., Fang T., Rong H.W. Stochastic bifurcation in Du±ng system subjectto harmonic excitation and in presence of random noise[J]. International Journal ofNon-Linear Mechanics, 2004, 39(9): 1473-1479
    [95] He Q., Xu W., Rong H.W, Fang T. Stochastic bifurcation in Du±ng-van der Poloscillators[J]. Physica A, 2004, 338(3): 319-334
    [96] Janeczko S., Wajnry E. Bifurcations in stochastic dynamical systems with simplesingularities[J]. Stochastic Processes and their Applications, 1989, 31(1): 71-88
    [97] Liu X.B., Liew K.M. Maximal Lyapunov exponent of a co-dimension two bifurcationsystem excited by a white noise[J]. International Journal of Non-Linear Mechanics,2005, 40(5): 653-668
    [98] Liu X.B., Liew K.M. On the almost-sure stability condition for a co-dimension two-bifurcation system under the parametric excitation of a real noise[J]. Journal of Soundand Vibration, 2004, 272(1): 85-107
    [99] Liu Z.H, Zhu W.Q. Homoclinic bifurcation and chaos in simple pendulum underbounded noise excitation[J]. Chaos, Solitons & Fractals, 2004, 20(3): 593-607
    [100] Liu X.B., Liew K.M. The Lyapunov exponent for a codimension two bifurcation sys-tem that is driven by a real noise[J]. International Journal of Non-Linear Mechanics,2003, 38(10): 1495-1511
    [101] Huang Z.T, Yang Q.G., Cao J.F. Stochastic stability and bifurcation analysis onHopf neural networks with noise[J]. Expert Systems with Applications, 2011, 38(8):10437-10445
    [102] Liu K. Stochastic of Inˉnite Dimensional Stochastic Di?erential Equations withApplications[M]. Chapman & Hall/CRC, 2006
    [103] Kapitaniak T. Chaos in System with Noise[M]. Singapore: World Science, 1988
    [104] Kapitanika T. Chaotic distribution of non-linear systems perturbed by randomnoise[J]. Physics Letters A, 1986, 116(6): 251-254
    [105] Jung P., H?anggi P. Invariant measure of a drive nonlinear oscillator with externalnoise[J]. Physical Review Letters, 1990, 65(27): 3365-3368
    [106] Sehieve W.C., Bulsara A.R. Multiplieative noise and homoclinic crossing: chaos[J].Physical Review A, 1990, 41(2): 1172-1174
    [107] Freeman W.J. A proposed name for a periodic brain activity: stochastic chaos[J].Neural Networks, 2000, 13: 11-13
    [108] Xie W.C. E?ect of noise on chaotic motion of buckled column under periodic exci-tation[J]. ASME, Nonlinear and Stochastic Dynamics, 1994, 192(73): 215-225
    [109] Frey M., Simiu E. Noise-induced chaos and phase space°ux[J]. Physica D, 1993,63(3): 321-340
    [110] Lin H., Yims S.C.S. Analysis of a nonlinear system exhibiting chaotic, noisy chaoticand random behaviors[J]. ASME Journal of Applied Mechanics, 1996, 63(2): 509-516
    [111] Bulsara A.R., Rsehieve W.C., Jacobs E.W. Homoclinic chaos in systems perturbedby weak Langevin in noise[J]. Physical Review A, 1990, 41(2): 668-681
    [112] Choi S.Y., Lee E.K. Scaling behavior at the onset of chaos in the logistic map drivenby colored noise[J]. Physics Letters A, 1995, 205(2): 173-178
    [113]刘曾荣.混沌研究中的解析方法[M].上海大学出版社, 2000
    [114] Wei J.G., Leng G. Lyapunov exponent and chaos of Du±ng equation perturbed bywhite noise[J]. Applied Mathematics and Computation, 1997, 88(1): 77-93
    [115] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York: Springer-verlga, 1990
    [116] Simiu E. Chaotic Transitions in Deterministic and Stochastic Dynamical System[M].Princeton University Press, 2002
    [117] Xu W., He Q., Fang T., Rong H.W. Global analysis of stochastic bifurcation in Du?-ing system[J]. International Journal of Bifurcation and Chaos, 2003, 13(10): 3115-3123
    [118] Hover F.S., Triantafyllou M.S. Application of polynomial chaos in stability andcontrol[J]. Automatica, 2006, 42(5): 789-79
    [119] Oberst S., Lai J.C.S. Chaos in brake squeal noise[J]. Journal of Sound and Vibration,2011, 330(5): 955-975
    [120] Lu K.N., Wang Q. Chaos in di?erential equation driven by a nonautomous force[J].Nonlinearity, 2010, 23(11): 2935-2975
    [121]刘中华.拟可积Hamilton系统在有界噪声激励下的随机混沌与概率为1渐近稳定性及时滞反馈控制下的响应[D]. PhD.浙江大学. 2005
    [122] Leng X.L., Wu C.L., Ma X.P., et al. Bifurcation and chaos analysis of stochasticDu±ng system under harmonic excitations[J]. Nonlinear Dynamics, 2005, 42(2): 185-198
    [123]李杰,陈建兵主编.随机振动理论与应用新进展[M].同济大学出版社, 2009
    [124] Rmaesh M., Naraynanas R. Chaos control by nonfeedback methods in the presenceof noise[J]. Chaos, Solitons & Fractals, 1999, 10(9): 1473-148
    [125] Kantz H., Olbrich E. The transition from deterministic chaos to a stochastic pro-cess[J]. Physica A, 1998, 253(1): 105-117
    [126] Banek T. Chaos expansion for the solution of stochastic di?erential equations[J]Systems and Control Letters, 1999, 36(5): 351-358
    [127] Inoue J., Doi S., Kumagai S. Numerical analysis of spectra of the Frobenius-Perronoperator of a noisy one-dimensional mapping: toward a theory of stochastic bifurca-tions[J]. Physical Review E, 2001, 64(5): 056219
    [128] Ma S.J., Xu W., Fang T. Analysis of period-doubling bifurcation in double-wellstochastic Du±ng system via Laguerre polynomial approximation[J]. Nonlinear Dy-namics, 2008, 52(3): 289-299
    [129] Wu C.L., Ma X.P., Fang T. A complementary note on Gegenbauer polynomialapproximation for random response problem of stochastic structure[J]. ProbabilisticEngineering Mechanics, 2006, 21(4): 410-419
    [130] Gan C.B. Noise-induced chaos in Du±ng oscillator with double wells[J] . NonlinearDynamics, 2006, 45(3): 305-317
    [131] Khasminskii R.Z. On the averaging principle for It^o stochastic di?erential equa-tions[J]. Journal of Kibernetka(in Russian), 1968, 3: 260-279
    [132] Khasminskii R.Z. A limit theorem for the solutions of di?erential equations withrandom right-hand sides[J]. SIAM, Theory of Probability and Its Applications, 1966,11(3): 390-405
    [133] Hijawi M., Ibrahim R.A, Moshchuk N. Nonlinear random response of ocean struc-tures usingˉrst-and second-order stochastic averaging[J]. Nonlinear Dynamics, 1997,12(2): 155-197
    [134] Hijawi M., Ibrahim R.A, Moshchuk N. Unioˉed second-order stochastic averagingapproach. ASME, Journal of Applied Mechanics, 1997, 64(2): 281-291
    [135] Hopˉeld J.J. Neurons with graded response have collective computational propertieslike those of two-state neurons[J]. Proc Natl Acad Sci USA Biophys, 1984, 81(10):3088-3092
    [136] Huang Z.T., Yang Q.G. Existence and exponential stability of almost periodic solu-tion for stochastic cellular neural networks with delay[J]. Chaos, Solitons & Fractals2009, 42(2): 773-780
    [137] Cushing J.M. Periodic time-dependent prey-predator systems[J]. SIAM. Journal ofApply Mathematical, 1977, 32(1): 82-95
    [138]李继彬,陈兰荪.周期时间制约捕食者-食饵系统的周期解分枝与混沌现象[J].生物数学学报, 1986, 1(2): 88-95
    [139] Liu X., Han M.A. Chaos and Hopf bifurcation analysis for a two species predator-prey system with prey refuge and di?usion[J]. Nonlinear Analysis: Real World Ap-plications, 2011, 12(2): 1047-1061
    [140] Lakshmikanthan v., Bainov D., Simeonov A. Theory of Impulsive Di?erential Equa-tions[M]. Singapore: World Scientiˉc, 1989
    [141] Samoilenko A. Impulsive Di?erential Equation[M]. Singapore: World Scientiˉc,1995
    [142] Du Z.D., Zhang W.N. Melnikov method for homoclinic bifurcation in nonlinearimpact oscillators[J]. Computational and Applied Mathematics, 2005, 50(3): 445-458
    [143] Du Z.D., Zhang W.N. Type I periodic motions for nonlinear impact oscillators[J].Nonlinear Analysis: Theory, Methods & Applications, 2007, 67(5): 1344-1358
    [144] Du Z.D., Zhang W.N. Asymmetric type II periodic motions for nonlinear impactoscillators[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(9):2861-2696
    [145] Zhusubaliyev Z.T., Mosekilde E. Bifurcation and Chaos in Piecewise-Smooth Dy-namical Systems[M]. World Science Publishing 2003
    [146]张伟,胡海岩.非线性动力学理论与应用的最新进展[M].北京:科学出版社, 2008
    [147]李继彬,赵晓华,刘正荣著.广义Hamilton系统理论及其应用[M].北京:科学出版社, 2007
    [148] Yang Q.G., Chen G.R, Zhou T.S. Auniˉed Lorenz-type system and its canonicalform[J]. International Journal of Bifurcation and Chaos, 2006, 16(10): 2855-2871
    [149] Huang Z.L., Zhu W.Q. Stochastic averaging of quasi-generalized Hamiltionian sys-tems[J]. International Journal of Non-Linear Mechanics, 2009, 44(1): 71-80
    [150] Byrd P., Friedman M. Handbook of Elliptic Integrals for Engineers and Physi-cists[M]. Springer-Verlag, Berlin, 1954

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700