用户名: 密码: 验证码:
霍尔推力器绝缘壁面鞘层动态特性及其对近壁传导的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
霍尔推力器以其体积小,重量轻,比冲高,寿命长等优点广泛应用于小卫星的姿态控制和轨道保持等方面。自从上个世纪七十年代诞生以来,霍尔推力器已经取得了很好的工程化应用。电子近壁传导是影响霍尔推力器工作性能的关键物理过程之一;电子的近壁传导机制决定了通道的电势分布特性,离子的加速特性,并最终影响到推力器的效率、寿命、比冲等性能。与电子的近壁传导行为密切相关的因素是鞘层。鞘层是推力器通道内放电产生的等离子体与绝缘壁面相互作用的自洽产物,鞘层内的电场分布影响电子在近壁面的运动行为,从而影响电子的近壁传导。
     近壁传导、鞘层以及两者之间的关系一直是各国学者关注和讨论的热点问题。然而,由于霍尔推力器工作物理过程的复杂性,当前关于电子近壁传导对电子电流的贡献作用的评估依然没有定论。本文发现这受限于当前对鞘层特性以及近壁传导机制的认识。基于此,本文开展了相关研究工作。
     首先,本文建立了计算鞘层和电子近壁传导行为的二维粒子模拟(Particel-In-Cell, PIC)模型。由于鞘层的小尺度特性,具有众多优势的PIC方法成为本文问题的研究工具。
     其次,通过模拟本文发现了电子温度对鞘层的二维动态特性的影响规律。当电子温度较低时,二次电子发射系数小于1,鞘层具有一维稳态经典鞘层的特性。随着电子温度的升高,二次电子发射系数增大,鞘层开始在时间上周期性振荡,振荡频率为电子等离子体频率量级,然而此时二次电子发射系数仍然小于1。当电子温度继续升高使得二次电子发射系数在1附近时,鞘层开始在空间上出现振荡;此时,鞘层不仅保持着原有的在时域上的振荡,而且鞘层电势在空间上出现起伏,空间周期尺度为电子静电波波长量级。继续提升电子温度使得二次电子发射系数大于1之后,鞘层进入空间电荷饱和状态。
     继而,本文发现鞘层的不同状态对电子的近壁传导有着重要影响。当鞘层还未进入空间振荡状态前,即在经典状态和时域振荡的状态下,模拟发现电子只能通过与壁面碰撞发射二次电子产生传导,这种壁面发射的传导电流大小与古典传导(即电子与重粒子的碰撞传导)电流在同一数量级;因此和众多研究者得到的结论一样:近壁传导率太低,不足以解释实验中发现的大电子电流。然而,当鞘层进入空间振荡状态之后,鞘层电场出现非法向分量,此时不能克服鞘层势垒打到壁面参与传导的电子在鞘层的非法向反射作用下参与了近壁传导。由于这部分电子的数目相当可观,因此近壁传导电流较之古典传导电流增大了一个数量级,这一效应足以解释实验测量的电子电流。目前,鞘层影响近壁传导行为的这一特性还没有被他人提出。
     最后,本文发现无论鞘层处于何种状态,近壁传导电流的大小都与电场强度成正比,与磁场强度的平方成反比,从而进一步验证了近壁传导作为穿越磁场的“碰撞传导”理论的正确性。
Hall thrusters have been used widely in orbit correction and station-keeping of geostationary satellites for the advantage of small size, light weight, high specific impulse, and long life. Engineering applications have achieved since the seventies of last century. The mechanism of electron near wall conduction (NWC) is one of the most important physics problems for thruster performance. The electrons conduction mechanism determines the electric potential distribution in channel, characteristics of ion acceleration, and determines the thruster efficiency, lifetime and specific impulse at last. Sheath was found to be a very influential factor to electronic conduction behavior near the wall. It is produced by the interactions of plasma and insulating wall, the electric field distribution in sheath influence the behavior of electrons near the wall, and influence the near wall conduction further.
     Near wall conduction, sheath, and the relation between them are a hot topic to be concerned and discussed by Scholars. However, due to complexity physical processes of hall thruster, the contribution of near wall conduction of electronic to current is still without any definite conclusion. In this thesis, it is founded that the research is restricted by the understanding of characteristics of sheath and the near wall conduction mechanism, Based on this, this paper carried out research work related.
     First, Two-dimension particle model (Particle-In-Cell,PIC) was built to compute the sheath and near wall conduction. Because of the small size of sheath, the method of PIC with many advantages become the Research tools in this paper.
     Secondly, Simulation results shows that the dynamic characteristics of sheath are largely influenced by electron temperature. With a low electron temperature, secondary electron emission coefficient is small than 1, the sheath has the characteristics of one-dimension dynamic sheath. The secondary electron emission coefficient increase with the electron temperature and the sheath begin periodic oscillation with the frequency near that of the plasma oscillation, at this time the secondary electron emission coefficient is below 1. When the electron temperature continues to rise, and the secondary electron emission coefficient near 1, sheath oscillations come into the range of space oscillation. At this range, except the oscillation in time domain, the sheath electric potential present fluctuation in space domain, the oscillation size is at the order of wavelength of electrostatic wave. When the electrons temperature becomes higher, the secondary electron emission coefficient bigger than 1, sheath enters into space charge saturation region.
     Then, we found that the different conduction of sheath have important effect on near wall conduction. Before the sheath present space oscillation, with classic sheath and oscillation in time domain, the simulation results show the conduction is formed by secondary-electrons produced by the oscillation of electrons and wall. Near wall conduction current and classical conduction current (the current produced by oscillation of electrons and heavy particles) are same order of magnitude, the result is save with many researchers. The conduction is too little to explain the big current in experiments. However, when the sheath state enter the space oscillation, non-normal component of sheath electrons field come to play effect, the electrons that can not overcome the sheath barrier and reach wall have take part in the new wall conduction. Because of the reasonable quantity of electrons, the current of near wall conduction is bigger than classical current by an order of magnitude, the effect can explain the current in experiments.
     Finally, No matter in what state of the sheath, the near wall current is proportional to electric field strength, and inversely proportional to the square of the magnetic field strength. The computation results further verify the near wall conduction is taken as“collision conduction”for through the magnetic field.
引文
1林来兴.现代小卫星及其关键技术.中国空间科学技术.1995, 15(4): 37~43
    2潘科炎.小卫星的推进系统.航天控制. 1996, 14(2): 47~56
    3 Y. H. Chiu, B. L. Austin, K. Williams, R. A. Dressler and G. F. Karabadzhak, Passive Optical Diagnostic of Xe-Propelled Hall thrusters. I. Emission Cross Sections. Journal of Applied Physics. 2006, 99:1~10
    4张天平.国外离子和霍尔电推进技术最新进展.真空与低温. 2006, 12(4): 187~193
    5张郁.电推进技术的研究应用现状及其发展趋势.火箭推进. 2005, 31(2): 27~36
    6张文祥,林胜勇,赵金才.月球探测技术—发展历程和特点.上海航天. 2003, 20(3): 57~62
    7 G. D. Racca, A. Marini, L. Stagnaro. SMART-1 Mission Description and Development Status. Planetary and Space Science. 2002, 50:1323~1337
    8 F. S. Gulczinski III. Examination of the Structure and Evolution of Ion Energy Properties of a 5kW Class Laboratory Hall Effect Thruster at Various Operational Conditions. A Dissertation for the Degree of Doctor of Philosophy. The University of Michigan. 1999: 1~7
    9 O. A. Gorshkov, A. S. Koroteev. Overview of Russian Activities in Electric Propulsion. AIAA-2001-3229
    10 V. Kim, et al. Overview of Russian EP Activities. AIAA-2003-4440
    11 S. O. Tverdokhlebov, et al. Overview of Russian Electric Propulsion Activities. AIAA-2002-3562
    12 A. I. Bugrova, A. S. Lipatov, S. V. Baranov and A. I. Morozov. ATON-Type SPT Operation at High Voltages. IEPC-2005-158
    13 A. I. Morozov and V. V. Savel'ev. Theory of the Near-Wall Conductivity. Plasma Physics Reports. 2001, 27(7): 607~ 613
    14 A. I. Bugrova, A. V. Desyatskov and A. I. Morozov. Electron Distribution Function in a Hall Thruster. Fiz. Plazmy. 1992,18:963~965
    15 R. R. Hofer, L. K. Johnson, et al. Effects of Internally Mounted Cathodes on Hall Thruster Plume Properties. Plasma Science. 2008,36(1): 2004~2014
    16 D. Lichtin, An Overview of Electric Propulsion Activities in US Industry. AIAA-2005-3532.
    17 D. Q. King, K. H. de Grys and R. Jankovsky. Multi-Mode Hall Thruster Development. AIAA-2001-3778
    18 N. B. Meezan, M. A. Cappelli. Kinetic Study of Wall Collisions in a Coaxial Hall Discharge. Physical Review E. 2002,66:1~10
    19 M. A. Cappelli, N. B. Meezan, N. Gascon. Transport Physics in Hall Plasma Thruster. AIAA-2002-0485
    20 Y. Raitses, D. Staack, A. Dunaevsky and N. J. Fisch. Operation of a Segmented Hall Thruster with Low-Sputtering Carbon-Velvet Electrodes. Journal of Applied Physics. 2006,99: 036103-1~ 036103-3
    21 A. Fruchtman, N. J. Fisch, Y. Raitses. Control of the Electric-Field Profile in the Hall Thruster. Physics of Plasmas. 2001,8(3):1048~1056
    22 A. Smirnov, Y. Raitses, et al. Electron Across-Field Transport in a Low Power Cylindrical Hall Thruster. Physics of Plasmas. 2004, 11(11): 4922~4933.
    23 L. Dorf, Y. Raitses, et al. Effect of Magnetic Field Profile on the Anode Fall in a Hall-Effect Thruster Discharge. Physics of Plasmas.2006, 13(5): 057104.
    24 Beal, B. E., A. D. Gallimore, et al. Effects of Cathode Configuration on Hall Thruster Cluster Plume Properties. Journal of Propulsion and Power. 2007, 23(4): 836~844.
    25 R. R. Hofer. Development and Characterization of High-Efficiency, High-Specific Impulse Xenon Hall Thrusters. University of Michigan. Doctor of Philosophy. 2004: 152~163
    26 J. A. Linnell, An Evaluation of Krypton Propellant in Hall Thrusters. Ph.D. Dissertation, Dept. of Aerospace Engineering, University of Michigan. 2007: 164~176
    27 G. M. Ioannis, K. Ira, et al. Numerical Simulations of a Hall Thruster Hollow Cathode Plasma. IEPC-2007-018
    28 S. Roy and B. Pandey. Development of a Finite Element Based Hall Thruster Model for Sputter Yield Prediction. IEPC-2001-49
    29 D. B. VanGilder; I. D. Boyd, M. Keidar. Particle Simulations of a Hall Thruster Plume. Journal of Spacecraft and Rockets. 2000,37(1):129~136
    30 M. Keidar and I.D. Boyd. Effect of a Magnetic Field on the Plasma Plumefrom Hall Thrusters. Journal OF Applied Physics. 1999,86(9):4786~4791
    31 J. P. Boeuf and L. Garrigues. Low Frequency Oscillations in a Stationary Plasma Thruster. Journal of Applied Physics. 1998, 84(7): 3541~3554
    32 G. J. M. Hagelaar, J. Bareilles, L. Garrigues, and J. P. Boeuf. Two-Dimensional Model of a Stationary Plasma Thruster. Journal of Applied Physics. 2002, 91(9): 5592~5598
    33 A. Lazurenko, V. Kim, A. Bishaev, and M. Auweter-Kurtz. Three-Dimensional Simulation of Atom and Ion Dynamics in a Stationary Plasma Thruster. Journal of Applied Physics. 2005, 98: 043303
    34 S. Mazouffre, P. Echegut, and M. Dudeck. A Calibrated Infrared Imaging Study on the Steady State Thermal Behaviour of Hall Effect Thrusters. Plasma Sources Science and Technology. 2007, 16: 13~22
    35 N. Gascon, M. Dudeck and S. Barral. Wall Material Effects in Stationary Plasma Thrusters.Ⅰ. Parametric Studies of an SPT-100. Physics of Plasmas. 2003,10(10):4123~4136
    36 S. Barral, K. Makowski, et, al. Wall Material Effects in Stationary Plasma Thrusters.Ⅱ. Near-Wall and In-Wall Conductivity. Physics of Plasmas. 2003, 10(10): 4137~4152
    37 M. Tajmar, et al. Charge-Exchange Plasma Contamination on SMART-1: First Measurements and Model Verification. AIAA-2004-3437
    38 A. Bouchoule, J. P. Boeuf, A. Heron and O. Duchemin. Physical Investigations and Developments of Hall Plasma Thrusters. Plasma Phys. Control. Fusion. 2004, 46: B407~B421
    39 H. Tahara, K. Imanaka and S. Yuge. Effects of Channel Wall Material on Thruster Performance and Plasma Characteristics of Hall-Effect Thrusters. Vacuum. 2006, 80: 1216~1222
    40潘海林,沈岩,魏延明,陈君. DFH~4卫星电推进系统的应用可行性研究.火箭推进. 2006, 32(5): 22~27
    41康小录,汪兆凌,汪南豪.稳态等离子体推力器低功率工作模式试验研究.推进技术. 2001, 22(4):326~328
    42廖宏图,汪兆凌,康小录.稳态等离子体推力器磁场设计与数值分析.推进技术. 2002, 23(6):240~244
    43 D. R. Yu, Z. W. Wu, and X. L. Wu. Numerical Simulation for OneDimensional Steady Quasineutral Hybrid Model of Stationary Plasma Thruster. Plasma Science & Technology. 2005, 7(4): 2939~2942
    44 D. R. Yu, Y. J. Ding, and Z. Zeng. Improvement on the Scaling Theory of the Stationary Plasma Thruster. Journal of Propulsion and Power. 2005, 21(1): 139~143
    45 D. R. Yu, Z. W. Wu, Zh. X. Ning,X. G. Wang. Measurement of Sheath Thickness by Lining out Grooves in the Hall-Type Stationary Plasma Thrusters. Physics Letters A. 2007, 364(2): 146~151
    46 D. R. Yu, Z. W. Wu, and X. G. Wang. Numerical Simulation for Near Wall Conductivity Effect on Current Profiles in the Annular Channel of Hall-Type Stationary Plasma Thrusters. Physics of Plasma. 2005, 12: 043507
    47 Z. W. Wu, D. R. Yu, X. G. Wang. Effects of Erosion Surface on Near Wall Conductivity (NWC) in the Hall-type Stationary Plasma Thruster. Vacuum, 2006, 80(11~12), 1376~1380
    48 P. E, D. R. Yu, Zh. W. Wu, and K. Han. On the Role of Magnetic Field Intensity Effects on the Discharge Characteristics of Hall Thrusters. Act Physica Sinica. 2009, 58(4): 250~257
    49 D. R. Yu, L. Q. Wei, Y. J. Ding, K. Han, G. J. Yan, and F. Y. Qi. Experimental Study on the Physical Mechanism of Coupling Oscillation: a Newly Discovered Oscillation in Hall Thrusters. Plasma Sources Science and Technology. 2007, 16(4): 757~764
    50 D. R. Yu, Y. Q. Li, and S. H. Song. Ion Sputtering Erosion of Channel Wall Corners in Hall Thrusters. Journal of Physics D ~ Applied Physics. 2006, 39(10): 2205~2211
    51 D. R. Yu and Y. Q. Li. Volumetric Erosion Rate Reduction of Hall Thruster Channel Wall during Ion Sputtering Process. Journal of Physics D-Applied Physics. 2007, 40(8): 2526~2532
    52 D. R. Yu, H. Liu, Y. Cao, and H. Y. Fu. The Effect of Magnetic Mirror on Near Wall Conductivity in Hall Thrusters. Contributions to Plasma Physics. 2008, 48(8): 543~554
    53 D. R. Yu, H. Li, Zh. W. Wu, and W. Mao. Effect of Oscillating Sheath on Near-Wall Conductivity in Hall Thrusters. Physics of Plasmas. 2007(14), 064505
    54 D. R. Yu, Zh. W. Wu, Zh. X. Ning,X. G. Wang. Measurement of Sheath Thickness by Lining out Grooves in the Hall-Type Stationary Plasma Thrusters. Physics Letter A. 2007, 364(2):146~151
    55 D. R. Yu, L. Q. Wei, Y. J. Ding, K. Han, G. J. Yan, F. Y. Qi. Experimental Study on the Physical Mechanism of Coupling Oscillation: A Newly Discovered Oscillation in Hall Thrusters. Plasma Sources Science and Technology. 2007, 16(4):757~764
    56 D. R. Yu, L. Q. Wei, Zh. L. Wei, P. E. Experimental Study on Low Frequency Oscillation in a Plume of Hall Thrusters. Plasma Sources Science and Technology. 2008, 17(3):035022
    57 D. R. Yu, Ch. Sh. Wang, L. Q. Wei, Ch. Gao, and G. Yu. Stabilizing of Low Frequency Oscillation in Hall Thrusters. Physics of Plasmas. 2008, 15, 113503
    58 L. Tonks, I. Langmuir. A General Theory of the Plasma of an Arc. Phys. Rev. 1929, 34(6): 876~878
    59 G. A. Emmert, R.M. Wieland, A. T. Mense, J. N. Davidson. Electric Sheath and Presheath in a Collisionless, Finite Ion Temperature Plasma. Physics of Fluids. 1980, 23(4): 803~806
    60 D. Bohm. In the Characteristics of Electrical Discharges in Magnetic Fields. Edited by A. Guthrie and R. K. Wakerling. McGraw-Hill, New York, 1949: 77~87
    61 E. R. Harrison, W. B. Thompson. The Low Pressure Plane Symmetric Discharge. Proc. Phys. Soc. London. 1959, 74:145~152
    62 A. Caruso, A. Cavaliere. The Structure of the Collisionless Plasma-Sheath Transition. Nuovo Cimento. 1962, 26: 1389~1390
    63 S. A. Self. Exact Solution of the Collisionless Plasma-Sheath Equation. Physics of Fluids. 1963, 6(12): 1762~1768
    64 P. N. Hu, S. Ziering. Collisionless Theory of a Plasma Sheath near an Electrode. Phys. Fluids. 1966, 9: 2168~2179
    65 S. Kuhn. Axial Equilibria, Disruptive Effects, and Buneman Instability in Collisionless Single-Ended Q-Machines. Plasma Phys. 1981, 23: 881~883
    66 L. A. Schwager, C. K. Birdsall. Collector and Source Sheaths of a Finite Ion Temperature Plasma. Physics of Fluids B: Plasma Physics. 1990, 2(5):1057~1068
    67 R. C. Bissell, P. C. Johnson. The Solution of the Plasma Equation in Plane Parallel Geometry with a Maxwellian Source. Physics of Fluids.1987, 30(3): 779~786
    68 R. C. Bissell. The Application of the Generalized Bohm Criterion to Emmert's Solution of the Warm Ion Collisionless Plasma Equation. Physics of Fluids. 1987, 30(7): 2264~2265
    69 J. T. Scheuer, G. A. Emmert. Sheath and Presheath in a Collisionless Plasma with a Maxwellian Source. Physics of Fluids. 1988, 31(12): 3645~3648
    70 K. U. Riemann. The Bohm Criterion and the Field Singularity at the Sheath Edge. Physics of Fluids B: Plasma Physics. 1989, 1(4): 961~963
    71 F. Taccogna, S. Longo, et al. Plasma~Surface Interaction Model with Secondary Electron Emission Effects. Physics of Plasmas. 2004,11(3): 1220~1228
    72 F. Taccogna, S. Longo, and M. Capitelli. Numerical Model of Plasma Sheaths in Hall Thruster. IEPC-2005-12
    73 F. Taccogna, S. Longo, M. Capitelli. Plasma Sheaths in Hall Discharge. Physics of Plasma. 2005,12, 093506
    74 V. L. Sizonenko, Zh. Tekh. Fiz. Sov, Effects of Strong Secondary Electron Emission on a Plasma Layer. Phys. Tech. Phys, 1981,26:1345
    75 G. D. Hobbs, J. A. Wesson. Heat Flow through a Langmuir Sheath in the Presence of Electron Emission. Plasma Physics. 1967, 9(1): 85~87
    76 L. S. Hall, I. Bernstern. National Technical Information Service Document No. UCID-17273, Lawrence Livermore National Laboratory, Livermore, California, 1976.
    77 P. C. Stangeby. Plasma Sheath Transmission Factors for Tokamak Edge. Plasmas. Phys. Fluids. 1984, 27(3): 682
    78 C. A. Ordonez. Fully Kinetic Plasma-sheath Theory for a Cold-Electron Emitting Surface. Phys. Fluids B. 1992, 4(4): 778
    79 L. A. Schwager. Effects of Secondary and Thermionic Electron Emission on the Collector and Source Sheaths of a Finite Ion Temperature Plasma using Kinetic Theory and Numerical Simulation. Phys. Fluids B. 1993, 5(2): 631~645
    80 A. I. Morozov, V. V. Savel’ev. Structure of Steady-State Debye Layers in a Low-Density Plasma near a Dielectric Surface. Plasma Physics Reports. 2004, 30(4): 299~306
    81 B. P. Pandey, S. Roy. Sheath in the Presence of Secondary Electron Emission and Sputtering Yield. AIAA-2003-3652
    82 M. Keidar, I. D. Boyd, I. I. Beilis. Plasma Flow and Plasma-Wall Transition in Hall Thruster Channel. Physics of Plasmas. 2001, 8(12): 5315~5322
    83 S. Barral, K. Makowski, Z. Peradzynski, N. Gascon, M. Dudeck. Wall Material Effects in Stationary Plasma Thrusters. II . Near-Wall and In-Wall Conductivity. Physics of Plasmas. 2003, 10(10): 4137~4152
    84 D. Bohm. The Characterister of Electrical Discharge in Magnetic Field. A. Guthrie and R.K. Wakerling, Eds. New York and London: McGraw-Hill, 1949: 65
    85 A. I. Morozov. Effect of Near-Wall Conductivity in a Strongly Magnetized Plasma. Prikl. Mekh. Tekh. Fuz. 1968,3:19 (In Russian)
    86 A. I. Morozov and A. Shubin. Electron Kinetics in Wall Conductivity. Plasma Zhurnal Tekhnicheskoi Fizika. 1984,10(1):28~31
    87 A. I. Morozov and A. Shubin. Electron Kinetics in the Wall Conductivity Regime I. Fizika Plazmy. 1984,10(11):1262~1270
    88 A. I. Morozov and A. Shubin. Electron Kinetics in the Wall Conductivity Regime II. Fizika Plazmy. 1984,10(11):1271~1274
    89 A. I. Bugrova, A. I. Morozov, V. K. Kharchevnikov. The Near Wall Conductivity Effect in the Channel of SPT. Technical Physics Letters. 1983,9(1):3~6
    90 A. I. Morozov, V. V. Savel'ev. Theory of the Near-Wall Conductivity. Plasma Physics Reports. 2001,27(7):570~575
    91 A. I. Bugrova., A .I. Morozov and V. K. Kharchevnikov, Experiment Study of Near Wall Conductivity in Stationary Plasma Thruster. Fiz.Plazmy. 1990, 16(12):1469~1480
    92 B. A. Arkhipov, R. Yu. Gnizdor, N. A. Maslennikov, etc. Anomalous Insulator Erosion in Plasma Flow. Fiz.Plazmy. 1992,18(9):1241~1244
    93 A. N. Kozlov. Model of the Near-Wall Conductivity in the Vicinity of a Macroscopically Inhomogeneous Mirror-Reflecting Surface. Plasma PhysicsReports. 2002, 28(2):158~165
    94武志文.霍尔推力器电子近壁传导机制研究.哈尔滨工业大学博士论文. 2007: 64~74
    95 Z. W. Wu, D. R. Yu, and X. G. Wang. Effects of Erosion Surface on Near Wall Conductivity (NWC) in the Hall-Type Stationary Plasma Thruster. Vacuum. 2006, 80: 1376~1380
    96 I. D. Kaganovich, Y. Raitses, et al. Kinetic Effects in a Hall Thruster Discharge. Physics of Plasmas. 2007, 14(5): 057104
    97 I. D. Kaganovich, Y. Raitses, et al. Electron Kinetic Effects and Beam-Related Instabilities in Hall Thrusters. Cincinnati, OH, United States, American Institute of Aeronautics and Astronautics Inc., Reston, VA 20191~4344, United States. 2007
    98 S. Locke, U. Shumlak, J. M. Fife. Effect of a Channel Wall Discontinuity in an SPT-Type Hall Thruster. AIAA-2001-3327
    99 M. Keidar, D. Boyd, I. I. Beilis. Plasma Flow and Plasma-Wall Transition in Hall Thruster Channel. Physics of Plasmas. 2001,8(12):5315~5322
    100 Y. Raitses, A. Smirnov, D. Staack, etc. Measurements of Secondary Electron Emission Effects in the Hall Thruster Discharge. Physics of Plasmas. 2006,13(1): 014502-1-4
    101 S. Barral, K. Makowski. Wall Material Effects in Stationary Plasma Thrusters.Ⅱ. Near-Wall and In-Wall Conductivity. Physics of Plasmas. 2003, 10(10):4137~4152
    102 H. Tahara, K. Imanaka and S. Yuge. Effects of Channel Wall Material on Thrust Performance and Plasma Characteristics of Hall-Effect Thrusters. Vacuum. 2006, 80(11-12):1216~1222
    103 A. I. Bugrova and A. I. Morozov. Effect of Vacuum Environment on Stationary Plasma Thruster. Fiz. Plazmy. 1996,22(8):701~706
    104 D. Sydorenko, V. Smolyakov, I. Kaganovich, and Y. Raitses. Modification of Electron Velocity Distribution in Bounded Plasmas by Secondary Electron Emission. Phys. Plasmas. 2005,13: 815 ~824
    105 A. I. Morozov, V. V. Savelyev. Fundamentals of Stationary Plasma Thruster Theory. Reviews of Plasma Physics. Edited by B. B. Kadomtsev and V. D. Shafranov, 2002, 21:263~264
    106刘元霞,王仲春等.电子发射与光电阴极.北京理工大学出版社. 1995, 5:23~51
    107 A. Dunaevsky, Y. Raitses, and N. J. Fisch. Secondary Electron Emission From Dielectric Materials of a Hall Thruster with Segmented Electrodes. Phys. Plasmas. 2003,10, 2574
    108 A. I. Morozov and V. V. Savel’ev. Fundamentals of Stationary Plasma Thruster Theory. Reviews of Plasma Physics. 2001, 21:241
    109 N. Gascon, M. Dudeck, S. Barral. Wall Material Effects in Stationary Plasma Thrusters. I. Parametric Studies of an SPT~100. Physics of Plasmas. 2003,10(10): 4123~4136
    110А.И.Бугрова,А.И.Морозов.ОсобенностифизическихпроцессоввУЗДП.УДК.533.9.07
    111 A. I. Besaev, V. Kim. Study on Local Plasma Parameter in Stationary Plasma Thruster. Journal of Technical Physics. 1978,48(9):1853~1857
    112毛威. SPT壁面鞘层的数值模拟及鞘层对推力器特性的影响.哈尔滨工业大学工学硕士论文. 2005: 87~89
    113 A. I. Morozov, V. V. Savelyev. Fundamentals of Stationary Plasma Thruster Theory. Consultants Bureau, New York, 2001: 299~305
    114 K. P. Kirdyashev. Near-wall Electron Instability of Plasma Flux. Tech Phys lett. 1997, 5:395~396
    115邵福球.等离子体粒子模拟.科学出版社, 2002: 10~12
    116 H. Seiler. Secondary Electron Emission in the Scanning Electron Microscope. Appl. Phys. 1983,54: R1
    117 K. Kanaya, S. Ono, and F. Ishigaki. Secondary Electron Emission from Insulators. J. Phys. D. 1978,11:2425
    118 E. Ahedo. Presheath/Sheath Model with Secondary Emission from Two Parallel Walls. Phys. Plasmas. 2002, 9:4340
    119 L. Jolivet and J. F. Roussel. Third European Spacecraft Propulsion Conference, Cannes, France, edited by R. Harris, 2000, 367~368
    120 E. Y. Choueiri. Fundamental Difference between the Two Hall Thruster Variants. Phys. Plasmas 2001,8:5025
    121 A. I. Morozov and A. P. Shubin. Steady-State Uniform Debye Sheaths. Sov. J. Plasma Phys. 1991,17:393
    122 S. Barral, K. Makowski, Z. Peradzynski, N. Gascon, M. Dudeck. Wall Material Effects in Stationary Plasma Thrusters. II . Near-Wall and In-Wall Conductivity. Physics of Plasmas. 2003, 10(10): 4137~4152
    123 A. Dunaevsky, Y. Raitses, and N. J. Fisch, Secondary Electron Emission from Dielectric Materials of a Hall Thruster with Segmented Electrodes. Phys. Plasmas, 2003, 10, 2574
    124 A. I. Morozov and V. V. Savel’ev, Reviews of Plasma Physics (New York Consultants Bureau, New York, 2001), 21, 241
    125 N. P. Bazhanova, V. P. Belevsky, and S. A. Fridrihov, Fiz. Tverd. Tela 1961, 3, 2610
    126 S. A. Fridrikhov and A. R. Shul’man, An Investigationof the Secondary Electron Emission by Certain Dielectricsat Low Primary Electron Energies, Fiz. Tverd. Tela (Leningrad). 1959,1:1259
    127 H. Farhang, E. Napchan, and B. H. Blott. Electron Backscattering and Secondary Electron Emission from Carbon Targets: Comparison of Experimental Results with Monte Carlo Simulations. J. Phys. D .1993, 26:2266
    128 Bronshtein and R. B. Segal, Sov. Phys. Dokl. 1959, 3, 1184
    129 V. Khayms, M. Martinez-Sanchez. Design of a Miniaturized Hall Thruster for Microsatellites. AIAA~96~3291:1~7
    130 M. A. Furman and M. T. F. Pivi. Probabilistic Model for the Simulation of Secondary Electron Emission. Phys. Rev. ST Accel. Beams. 2002,5:124404
    131 S. A. Fridrikhov and A. R. Shul’man, Sov. Phys. Solid State1959, 1, 1153
    132 N. P. Bazhanova, V. P. Belevskii, and S. A. Fridrikhov. Secondary Electron Emission from Barium Oxide and Yttrium Oxide Due to Low-energy Primary Electrons (1-100 eV), Sov. Phys. Solid State. 1899, 3:1962
    133 A. Dunaevsky, Y. Raitses, and N. J. Fisch. Yield of Secondary Electron Emission from Ceramic Materials of Hall Thruster, Phys. Plasmas 2003,10:2574
    134 S. A. Schwarz, Application of a Semi-Empirical Sputtering Model to Secondary Electron Emission. J. Appl. Phys. 1990, 68:2382
    135 A. I. Morozov. The Conceptual Development of Stationary Plasma Thrusters. Plasma Physics Reports. 2003, 29(3):235~250
    136 A. I. Morozov. From the Past to the Future. IEPC-2005-169
    137 A. I. Morozov, V. V. Savelyev. Fundamentals of Stationary Plasma Thruster Theory. Consultants Bureau, New York, 2001: 291~292
    138 Morozov, V. V. Savel’ev, One-Dimensional Model of the Debye Layer near a Dielectric Surface. Plasma Physics Reports. 2002, 28(12):1017~1023.
    139 Morozov, V. V. Savel’ev, Structure of Steady-State Dabye Layers in a Low~Density Plasma near a Dielectric Surface. Plasma Physics Reports, 2004, 30(4): 299~306.
    140 V. V. Zhurin, H. R. Kaufman and R. S. Robinson. Physics of Closed Drift Thrusters. Plasma Sources Sci. Technol. 1999, 8:1~20
    141徐家鸾,金尚宪.等离子体物理学.原子能出版社.1981:570~572
    142 G. S. Janes and R. S. Lowder. Anomalous Electron Diffusion and Ion Acceleration in a Low Density Plasma. Physics of Fluids. 1966, 9(6):1115~1123
    143 F. F. Chen.等离子体物理学导论.林光海译.人民教育出版社.1980:111~112
    144 S. Yoshikawa and D. Rose. Anomalous Diffusion of Plasma across a Magnetic Field. Physics of Fluids.1962, 5(3):334~340
    145 A. Litvak and J. Fisch. Resistive Instabilities in Hall Current Plasma Discharge. Physics of Plasmas. 2001,8(2): 648~651
    146 J. Fife and M. Martinez~Sanchez. Comparison of Results from a Two~Dimensional Numerical SPT Model with Experiment. AIAA- 96-3197
    147 W. A. Hargus and M. A. Cappelli. Development of a Linear Hall Thruster. AIAA~98~3336
    148 A. Lentz and M. Martinez~Sanchez. Transient one Dimensional Numerical Simulation of Hall Thrusters. AIAA 93~2491
    149 W. Koo and D. Boyd. Modeling of Anomalous Electron Mobility in Hall Thrusters. Physics of Plasmas. 2006, 13(3): 033501
    150 G. Mikellides, I. Katzf, M. Mandell. A 1~D Model of the Hall-effect Thruster with an Exhaust Region. AIAA 2001~3505
    151 L. Garrigues, A. Heron, J. C. Adam, etc. Hybrid and Particle~in~cell Models of a Stationary Plasma Thruster. Plasma Sources Sci. Technol. 2000(9): 219~226
    152 V. Latocha, L. Garrigues, P. Degond. Numerical Simulation of Electron Transport in the Channel Region of a Stationary Plasma Thruster. Plasma Sources Sci. Technol. 2002, 11:104~114
    153 N. B. Meezan and A. Cappelli. Kinetic Study of Wall Collisions in a Coaxial Hall Discharge. Phys. Rev. E. 2002, 66: 036401
    154 M. Keidar, I. D. Boyd, and I. I. Beilis. Plasma Flow and Plasma-wall Transition in Hall Thruster Channel. Physics of Plasmas. 2001,8(12): 5315~5322
    155 G. D. Hobbs, J. A. Wesson. Heat Flow through a Langmuir Sheath in the Presence of Electron Emission. Plasma of Physics. 1967, 9:85
    156 N. Gascon, M. Dudeck, S. Barral. Wall Material Effects in Stationary Plasma Thrusters I: Parametric Studies of an SPT-100. Physics of Plasmas. 2003, 10(10): 4123~4136
    157 A. I. Bugrova, A .I. Morozov, and V. K. Kharchevnikov. Experimental Study on Near Wall Conductivity, Fiz. Plazmy. 1992, 16:849~852 (in Russian)
    158 D. Sydorenko, A. Smolyakov, I. Kaganovich.andY. Rtises. Plasma-Sheath Instability in Hall Thrusters due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion. Physics of Plasmas. 2008, 15: 05356
    159 S. Barral, K. Makowski, Z. Peradzynski. Is Near-Wall Conductivity a Misnomer? AIAA 2003-4855
    160 A. I. Morozov and V. V. Savel’ev. Fundamentals of Stationary Plasma Thruster Theory. Reviews of Plasma Physics. 2001, 91:92

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700