用户名: 密码: 验证码:
新型枝状二阶非线性光学材料和电致发光材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息时代的到来,高速光通讯、光信息处理和光电子学等实用领域取得了飞速发展,二阶非线性光学高分子材料由于在宽带通讯、信息处理、太赫兹成像和雷达系统中的潜在应用前景而引起了巨大的研究兴趣。与无机晶体材料相比,有机高分子材料具有超快响应速度,介电常数低、光学损伤阈值高、低成本、易于分子设计和加工成型等优点。但是设计并合成出综合性能优良的电光高分子材料(即材料能同时兼具高电光系数,高稳定性以及低光学损耗等性能)仍然是个不小的难题,尤其是因为生色团偶极距之间存在强的静电相互作用,导致二阶非线性光学生色团的高μβ值难以有效转化为材料的宏观电光系数。在生色团上引入一定体积的间隔基团或将生色团引入树枝状结构中是解决上述问题的有效途径,但对于一个给定的非线性光学生色团,间隔基团性质与最终材料的宏观二阶非线性光学效应之间的构性关系并不清晰。本论文设计并合成了一系列新型二阶非线性光学高分子,并在生色团上引入不同尺寸大小的间隔基团,较为系统地研究了间隔基团的尺寸与材料宏观非线性光学性质的构性关系。另外,本论文还通过“点击化学”反应或Sonoghasira偶联反应构筑了一系列具有优秀综合性能的二阶非线性树枝状大分子(Dendrimer)、树枝状高分子(Dendronized polymer)以及超支化高分子(Hyperbranched polymer),并探讨了树枝状结构的调节对材料宏观性质的影响。
     有机/聚合物发光二极管(O/PLEDs)由于在平板显示、特种光源、通讯等领域有巨大的潜在商业应用价值而使其成为当前的热门研究领域。它们具有高效率、高亮度、宽视角、低功耗、自发光、驱动电压低、响应速度快、全彩色、超薄、材料轻便、有柔软性及易加工等特点。但是要制备出同时具备效率高、成本低、寿命长等优点的器件,还有很多方面的问题需要解决。与线型结构材料相比,具有树枝状结构的材料由于均三维立体结构,能够有效抑制分子间的堆积,提高发光效率,另外树枝状分子普遍具有良好的溶解性、可加工性(可直接旋涂成膜)和热稳定性。基于此,本论文合成了一系列新型的树枝状全共轭大分子和超支化共轭高分子,并研究了它们在有机电致发光器件中的应用。
     本论文的工作分为两部分。第一部分为新型二阶非线性光学高分子、树枝状大分子、树枝状高分子以及超支化高分子的合成、表征与二阶非线性光学性能的研究(包括第二—第二十章)。第二部分是新型树枝状全共轭大分子和超支化共轭高分子的合成、表征与发光性能或空穴传输性能的研究(包括第二十一章—第二十六章)。本论文各章节的主要内容和结论如下:
     1.第一章为绪论。在简要介绍电光材料有关知识的基础上,综述了近几年来树枝状结构电光材料的研究进展(包括树枝状大分子、树枝化高分子、超分子自组装以及超支化高分子),并探讨了材料结构与性能之间的关系,展望了电光高分子材料的发展方向,并在此基础上提出了本论文的设计思想。
     2.基于间隔基团性质与最终材料的宏观二阶非线性光学效应之间的构性关系尚不明晰,因此我们在第二章中,根据“位分离”原理设计并合成了两个系列共十个二阶非线性光学聚氨酯高分子P1-P10,在生色团的共轭桥上靠近给体端位置引入了不同尺寸大小的间隔基团,较为系统地研究了间隔基团的尺寸对聚合物宏观性质的影响。所得实验结果表明对于硝基生色团体系,当间隔基团为咔唑(Cz)时,其所对应的聚合物P4的d33值(82.3 pm/V)达到最大,是P1的d33值的1.46倍;而对于砜基生色团体系,让d33值达到最大值的间隔基团为苯环(Ph),其d33值是P5的1.76倍。我们将本章实验结果总结为“合适间隔基团”概念,即极化效率以及宏观二阶非线性光学效应并不是一直随着间隔基团尺寸的增大而增大,在一个特定的高分子中,对于一个给定的生色团,一个固定的连接点,将有一个最合适的间隔基团有效地将生色团微观的β值转换为材料尽可能大的宏观非线性光学效应。
     3.在第三章和第四章中,我们改变了间隔基团连接到生色团的位置,在生色团共轭桥上靠近受体端位置上,利用“点击化学”反应和Sonogashira偶联反应引入不同尺寸大小的间隔基团,合成了聚合物P11-P19,进一步研究了间隔基团的尺寸对聚合物宏观性质的影响。所得研究结果表明合适间隔基团的引入有效地提高了聚合物的非线性光学效应,其中P17的d33值达到89.7pm/V,与未引入间隔基团的聚合物(P11)相比,d33值提高幅度达到0.62倍,进一步验证了“合适间隔基团”概念。
     4.为解决主链型二阶非线性高分子中极化效率低下的问题,本论文在第五章和第六章中合成了含有不同尺寸大小间隔基团的主链型高分子P20-P27。另外,作为对比,还合成了与P24-P27相对应的侧链型聚合物P28-P31。所得实验结果进一步验证了“合适间隔基团”的存在,并且表明合适间隔基团的引入可以很好地提高主链型高分子的综合性能,在增加聚合物的溶解性以及极化效率的同时,还可以提高其取向稳定性。
     5.为获得更多具有优秀综合性能的二阶非线性光学高分子以及拓宽“合适间隔基团”概念的适用范围,在本论文第七章中,我们选取聚乙烯基咔唑(PVK)作为聚合物主链,通过后Knoevenagel反应合成了一系列含有不同尺寸大小间隔基团的侧挂型聚合物P33-P39。所得实验结果表明合适间隔基团的引入在保障取向稳定性的同时,很好地解决了基于PVK主链非线性光学高分子极化效率低下的问题,增强了该类材料的宏观非线性光学性质,为解决“非线性/稳定性矛盾”提供了有益的借鉴。此外,我们还通过改变生色团上键接到主链的位置,首次合成了基于PVK主链的腰挂型高分子P40,与含相同生色团及间隔基团的侧挂型高分子P35相比,其d33值大大提高,达到56.0pm/V。
     6.本论文第八章中,我们首次利用“点击化学”即Cu(Ⅰ)催化的叠氮-炔1,3-偶极环加成反应,通过后功能化途径将偶氮类非线性光学生色团键接到共轭高分子主链之中,成功制备出六个基于聚芴主链的树枝状二阶非线性光学高分子P41-P46。整条路线十分简便且高效,体现出“点击化学”在功能高分子合成中的优越性,所有聚合物具有良好的溶解性、成膜性、热稳定性以及光学透明性。二阶非线性光学测试结果进一步验证了“合适间隔基团”概念,含有合适间隔基团的聚合物P46的d33值与未含有任何间隔基团的P44相比,提高了近一倍,达到39.6 pm/V。
     7.为了简化合成路线,提高合成效率,本论文在第九章中,利用“点击化学”反应,通过后功能化途径成功将不同尺寸大小间隔基团键接到高分子主链之中,进而十分方便地对聚合物微观结构进行调控。而在第十章中,我们利用砜基受体可以双功能化这个特点,通过两步后功能化反应(偶氮反应和酯化反应),成功地将生色团和间隔基团分别键接到聚氨酯主链之中,制备出相应的高分子P59-P61。与本论文前几章通过直接聚合获得高分子相比,这两章所设计的合成路线更加简便,效率大大提高,为人们合成复杂树枝状高分子提供了有益的借鉴。而且,由于采用高分子反应,含不同间隔基团的聚合物是来源于同一高分子前体,因而有利于在同一水平上研究构性关系。
     8.在第十一章和第十二章中,我们通过几个对照实验,设计了一条高效反应路线制备了聚合物P61-P69和P71-P73,研究了将同一间隔基团引入到不同受体生色团中所产生的影响。二阶非线性光学测试表明,在不同生色团中,同样的间隔基团产生不同的效应,即对于一定尺寸的间隔基团,将有一个具有合适β值的生色团与之匹配,从另一个角度,进一步验证了“合适间隔基团”概念,且更具说服力。P71-P73是首次将毗咯环作为共轭桥引入到二阶非线性光学高分子中,其中P71的d33值为63.3 pm/V,去极化温度达到140℃。
     9.在第十三章中,我们成功设计并合成出一系列具有新型结构的“H”-型生色团,并基于它们构筑出一系列具有优秀非线性光学性能的枝状主链型高分子P74-P77,其中P75的d33值高达127.7pm/V,体现出“H”-型结构的优越性。紫外-可见吸收光谱表明枝状主链型中的生色团片段由于很好地被周围间隔基团所“封闭”,因而获得良好的位分离效应。通过应用“合适间隔基团”概念,我们将不同尺寸大小间隔基团引入到“H”-型生色团中,,结果表明含有合适间隔基团BOE的聚合物P75与P74相比,序参数提高了1.3倍(0.26),但由于生色团有效浓度的降低,d33值只增加了10pm/V。在第十四章,我们还通过改变“H”-型生色团嵌入到聚合物主链的方式,合成了一系列肩并肩-主链型高分子P78-P79和P81-P84。所得聚合物都获得了较大的二阶线性光学效应,d33值最大达到了94.7pm/V,且结果表明即便是“H”-型结构也有必要进行进一步的调节使其最优化。
     10.为获得优秀树枝状电光大分子材料,并研究树枝状形状、尺寸的调节对宏观性质的影响,在第十五章中,我们结合“点击化学”反应和偶联反应通过收缩法合成了第一代至第三代树枝状大分子G1-G3,并通过“两步法”合成了第四代和第五代树枝状大分子G4和G5,即利用收缩法合成的含有一个端炔基团的树枝状大分子G1-三和G2-三与扩散法合成的含有八个叠氮基团的G2-8N3进行点击反应。点击反应与“两步法”相结合使得制备高代数树枝状大分子的合成路线十分简便、高效,为人们合成树枝状大分子提供了有益的参考。所得树枝状大分子G1-G5具有优秀的溶解性、可加工性以及热稳定性。紫外-可见吸收光谱表明在G1-G5中,良好的位分离效应得以体现,归因于点击反应过程中新形成的三氮唑单元可以作为很好的间隔基团有效抑制生色团之间的静电相互作用,提高极化效率。随着代数的增加,有效生色团的浓度也在增加,而宏观二阶非线性光学效应也相应得到提高。因此,本章用实验结果证实了Dalton等人的理论预测,即在树枝状结构中,如果通过合理的结构设计,非线性光学效应与生色团的有效浓度之间可以形成合理的线性关系。G1-G5表现出极为优秀的二阶非线性光学性能,其中G5的d33值高达193.1 pm/V,去极化温度超过100℃,在光电子领域具有潜在的应用价值。
     10.在十六章工作中,我们结合了第八章和第十五章工作,即利用第八章所合成的侧链含有叠氮基团的共轭高分子主链P-N3与第十五章通过收缩法合成的含有端炔的树枝状单元进行点击反应,成功制备出含有高生色团浓度的两个树枝状聚芴高分子P85和P86。整条路线十分简便且高效,而且虽然树枝状单元的尺寸十分庞大,但是红外和核磁结果都表明聚合物主链的枝化转化率仍达到100%,反映出“点击化学”在高分子反应中的巨大优势。非线性光学测试结果表明P85和P86具有优秀二阶非线性光学效应,d33值分别达到91和106 pm/V,而且生色团浓度的增加,树枝状聚合物的非线性光学效应也在增加,从而进一步说明:通过合理的结构设计,材料的宏观性质将与生色团浓度可以形成一种线性关系。
     11.为继续深入探讨树枝状电光材料形状、尺寸的变化对宏观性质的影响,在十七章中,我们利用Sonogashria偶联反应,以三苯胺为核、生色团为臂,成功合成了三个分别为一维、二维以及三维的树枝状生色团T1-T3。为减小材料的光学损耗,我们选取五氟苯作为间隔基团引入到生色团的给体端。二阶非线性光学性质测试表明,随着维度的增加,树枝状生色团的d33值迅速地上升,其中T3的d33值高达191.8 pm/V。以上结果要归功于维度的增加使得分子的尺寸得以扩大,形状越来越接近于理想的球形,表明即使是树枝状结构,其形状也有必要进一步调节。
     12.超支化聚合物与树枝状大分子同样具有球型结构,特别是AB2-型超支化高分子与树枝状大分子的形状很相似,但合成更加简便,可通过一步法获得。在第十八章中,我们通过Sonogashira偶联反应制备了一个AB2-型超支化高分子P87,并通过相同的方法合成了其对应的AB-型聚合物P88。与P88相比,AB2型超支化聚合物P87的有效生色团浓度要低一些,但却表现出增强的非线性光学效应以及更好的取向稳定性,其二阶非线性光学系数高达153.9pm/V,而且去极化温度达到93℃。此外,在十九章中,我们通过控制聚合反应的过程,首次利用“点击化学”反应构筑出两个可溶于有机溶剂的AB2-型超支化聚三氮唑高分子P89和P90。P89和P90具有优秀的非线性光学性能,d33值分别为77.9和124.4 pm/V,且去极化温度分别达到118℃和93℃,但它们的加工性能并不好,导致成膜质量不佳,不利于实际应用。为此,我们依据“合适间隔基团”概念,通过简单的“一分六”反应过程,即同时将六个不同尺寸的封端基团引入超支化中间体的外围合成了六个聚合物P91-P96。结果显示,由于外围大量间隔基团的引入,P94-P96与P90相比,其溶解性、成膜性以及取向稳定性都得到很大的改善。另外,结果还表明外围间隔基团的尺寸变化在一定程度上影响了聚合物的非线性光学性能,其中Car基团可看作合适的外围封端基团,其对应的高分子的d33值达到最大,为89.1 pm/V。
     13.在二十章,我们利用Sonogashira偶联反应合成了一系列“A3+B2”-型主链型超支化高分子P97和P99-P104,期望这类高分子能够兼具超支化结构和主链型结构的优点,在具有大的非线性光学效应的同时也能获得优秀的取向稳定性,从而能够达到应用的要求。所得实验结果与我们最初设想很好地达成了一致,其中P97的d33值和去极化温度分别高达143.8pm/V和153℃,远大于其对应的线型主链型高分子P98(52.9pm/V和119℃),体现出主链型超支化结构的优越性。在主链型聚合物P99-P104中,以硝基为受体的聚合物P99的d33值高达152.6pm/V,以砜基为受体的超支化聚合物P102的d33值也达到86.2 pm/V,而且该类聚合物都具有良好的取向稳定性。本章结果为我们解决主链型聚合物中一直存在的“非线性与稳定性难以共存”的问题提供了一条有效途径。
     14.由于树枝状全共轭大分子优秀的溶解性、可加工性以及热稳定性,且其三维立体结构可有效抑制分子间聚集和激子的形成,从而提高发光效率。因此在第二十章中,我们在简单介绍有机电致发光的历程和机理后,设计了一条十分简便的合成路线,制备了一系列单键、双键、三键交错的树枝状全共轭分子D1-D10。所得树枝状分子均经过良好的结构鉴定及TGA、DSC、光物理性质表征。我们以部分树枝状分子作为发光层制作了双层电致发光器件研究了它们的电致发光性能,在器件ITO/dendrimer/TPBI/LiF/Al中,D5最大亮度和流明效率分别达到1325 cd/m2和1.03cd/A;D7的最大亮度和流明效率分别达到1190 cd/m2和1.67 cd/A。此外,我们还研究了D3和D8的空穴传输性能,在器件ITO/D3 or D8/Alq3/LiF/A1中,最大亮度分别达到5262和6863 cd/m2,最大流明效率分别达到1.70和1.59。
     15.针对传统的空穴传输材料TPD和NPB的玻璃化转变温度不高,且不能旋涂成膜,在第二十二章中,我们通过“收缩法”设计了一条高效合成路线十分方便地制备了两个新型的全共轭树枝状大分子DT1和DT2。这两个树枝状大分子都含有22个三苯胺分子,是目前仅由三苯胺分子构筑的分子量最大的树枝状大分子。热学性能测试表明DT1和DT2具有优秀的热稳定性,玻璃化转变温度分别达到257和241℃,远远大于常见空穴传输材料TPD和NPB。由于DT1的成膜性较差,因而以其作为空穴传输层的器件性能不佳。相反,DT2的成膜性十分优秀,以其作为空穴传输层的器件起亮电压为2.9 V,最大电流密度和发光亮度分别为400 mA/cm2和5024 cd/m2,且最大流明效率和能量效率分别为2.37 cd/A和2.40 lm/W。
     16:为了丰富超支化聚芴高分子种类,以及获得电致发光性能更好的超支化材料,在第二十三章中,我们通过Suzuki缩聚反应成功制备出三个基于芴单元的“A3+B2”型超支化高分子P105-P107。有趣的是,不同与文献报道的聚芴材料,全部由芴单元构筑的超支化聚合物P107发射出绿光。通过几个对照实验,我们发现这是由于P107中形成π-堆积很强的结构类似于文献报道的聚合物Poly(DBF)。聚合物薄膜在空气中经过加热处理的荧光光谱表明所得聚合物具有良好的光谱稳定性,反映出超支化结构优势—可有效抑制发光体聚集以及芴酮缺陷的形成。此外,电致发光器件结果表明聚合物P107具有良好的电致发光行为,最大发光亮度和发光效率分别达到142 cd/m2和0.15 cd/A。
     17.在第二十四章中,我们通过一条简便合成路线首次将六苯基苯作为“核”引入超支化共轭高分子中,并通过调节拉电子基团嗯二唑单元参与聚合的比例得到聚合物P110-P113。基于超支化聚合物P110-P113的双层OLEDs器件结果表明所得器件电致发光均为深蓝色光,且光谱很纯,半峰宽只有40nm左右。P100的器件最大亮度和流明效率分别达到251 cd/m2和0.46 cd/A,该器件结果对于“A3+B2”-型超支化发光高分子相比是相当不错的,唯一的缺陷是起亮电压太大,达到12 V。然而,拉电子基团噁二唑单元的引入在降低起亮电压的同时很好地提高了最大亮度和流明效率,其中六苯基苯、噁二唑与芴的投料比1:1:2.5时,所得聚合物P112器件结果最佳,起亮电压只需要6 V,最大电流密度、亮度和流明效率分别达到358mA/m2、549cd/m2和0.72 cd/A。
     18.在有机电致发光器件中,必须控制并实现电荷平衡,从而使空穴和电子的复合远离电极且发生在发光层,提高发光效率。在第二十五章,我们通过Suzuki偶联反应十分简单地合成了一个新型的全部由咔唑单元构筑的“A4+B2”-型超支化共轭高分子P114。由于具有较低的势垒以及增强的空穴传输能力,使得发光层的电荷传输更加平衡,因而以P114作为空穴传输材料的电致发光器件显示出增强的流明效率(3.05 cd/A),在相同的器件条件下,要大大高于广泛使用的空穴传输材料(PVK)的电致发光器件(2.19 cd/A)。另外,我们还制作了P114的有机场效应管器件,这是首次对超支化聚合物进行场效应性能研究。器件结果显示P114是典型的p-型半导体材料,其场效应迁移率为1×10-5cm2V-1s-1,开关比为103,阈值电压为-47.1V。考虑到P114的优秀空穴性能,在二十六章中,我们继续以P114的核作为超支化高分子构筑单元,通过Sonogashira偶联反应合成了一系列新型的“A4+B2”-型超支化共轭高分P115-P117,并研究了它们的电致发光性能。P116表现出良好的电致发光性能,在器件结构为ITO/P116/TPBI/LiF/Al时,最大发光亮度和流明效率分别为138 cd/m2和0.26 cd/A。在器件结构为ITO/P116/TNS/Alq3/LiF/Al时,器件性能进一步提高,最大发光亮度达到638 cd/m2,而最大流明效率则高达1.09 cd/A。
Second-order nonlinear optical (NLO) polymeric materials have attracted considerable attention due to their potential applications in broad bandwidth telecommunication, information processing, THZ imaging and radar systems, because they possess large and rapid NLO responses, low dielectric constant, high laser damage thresholds, low cost, superior chemical flexibility and ease of processing as compared to conventional inorganic crystalline materials. However, it is still a challenge to design and synthesize NLO polymers with large NLO effects, high temporal stability and low optical loss to fit the requirements of electro-optic (EO) apparatus, especially it is very difficult to translate large hyperpolarizability (β) of the organic chromophores into macroscopic optical nonlinearity of polymers, due to the strong intermolecular electrostatic interactions among high dipole moment chromophores. To introduce some bulky isolation spacers into chromophores or lock the chromophores inside the dendrimer shell has been demonstrated an effective approach for minimizing this interaction and enhancing the poling efficiency. However, the poling efficiencies and the macro-scale NLO properties of polymers containing dendronized chromophore as side groups, are expected to be heavily related to the subtle difference in architectural design. Thus, it is needed to study the structure-property relationship in detail. Especially, for a given chromophore, there is still very scarce information about how to control its shape to achieve optimized poling efficiency. In this thesis, various new series of NLO polymers were designed and synthesized, in which the isolation groups in different size were introduced into chromophore moieties, thus we could investigate the effect of the size of isolation spacer on the resultant NLO properties in detail. Moreover, by the usage of "click chemistry" or Sonogashira coupling reaction, a new series of NLO dendrimers, dendronized polymers and hyperbranched polymers with good comprehensive propeties were prepared successfully, while the relationship between dendritic structure and macroscopic properties was studied.
     Organic/polymeric light-emitting diodes (O/PLEDs) have been attracting great attention in the past decades due to their potential applications in flat display, white light source and telecommunication, where they exhibit advantages over existing technology, such as high efficiency, high brightness, wide angle viewing, low cost and consumption, low voltage drive, fast response, light weight, superior chemical flexibility, ease of processing, possibility of full-color and large-area flexible flat panel display, etc. However, organic/polymeric materials possessing high efficiency, low cost, high stability and long durability simultaneously has been still in the development of O/PLEDs. In comparison with well-known linear oligomers and polymers, dendritic conjugated macromolecules with large branches exhibit intrinsic two- or three-dimensional architectures, which can effectively depress the possible aggregation and excimer formation to enhance the thermal stability and improve the light emitting efficiency. Also such dendritic structure can make the materials forming good quality amorphous films. In this thesis, a new series ofπ-conjugated dendrimers and hyperbranched conjugated polymers used as emitting layer or hole-transporting layer have been developed by simple synthetic route.
     This thesis contains two parts. The first part concerns the synthesis, characterization and NLO properties of novel linear polymer, dendrimers, dendronized polymers and hyperbranched polymers (Chapter 2-20). The second part concerns the synthesis, characterization and electroluminescent or hole-transporting properties ofπ-conjugated dendrimers and hyperbranched conjugated polymers (Chapter 21-26). The main contents and results are described as following:
     Recent progress of NLO materials is reviewed in Chapter 1. Based on a brief introduction to EO modulators, the design and synthesis of novel dendritic EO materials was focused, mainly including EO dendrimers, dendronized EO polymers, supermolecular self-assembled EO polymers and hyperbranched EO polymers. Then the future directions of the EO polymers are discussed. Finally, the strategies and main contents of this thesis have also been outlined.
     Since there are still scarce information concerned on the relationship between the structure of isolation spacers and the resultant macroscopic NLO effects of the polymers, in Chapter 2, two series of polyurethanes P1-P10 containing dendronized NLO chromophores as side chains were prepared, in which the size of isolation groups in theπbridge near the donor side of NLO chromophore moieties changed from small atoms to much larger groups. Thus we could investigate the structure-properties relationship in detail. The experimental results demonstrated that for nitro-based chromophores, the best isolation groups were carbazole (Cz) moieties, and the d33 value of its corresponding polymer P4 was up to 82.3 pm/V,1.46 times that of P1; for sulfonyl-based chromophores, P6 with phenyl rings (Ph) as the isolation groups exhibited the highest d33 value,1.76 times that of P5. The obtained experimental results were summarized as the concept of "suitable isolation groups":for a given chromophore moiety and given linkage position in a given polymeric system, there should be a suitable isolation group present to boost its microscopicβvalue to possible higher macroscopic NLO property efficiently.
     In Chapter 3 and 4, to further investigate the relationship between the structure of isolation spacers and the resultant macroscopic NLO effects of the polymers, we changed the bonded position and species of isolation groups, and introduced different isolation groups into chromophore moieties in theπbridge near the acceptor side to prepare polymers P11-P19 through Sharpless's "click chemistry" or Sonogashira coupling reaction. The obtained experimental results demonstrated that the NLO effects of polymers can be enhanced effectively by the introduction of suitable isolation groups, while the d33 value of P17 was up to 89.7 pm/V,1.62 times of that of Pll without any isolation groups, further confirming the concept of "suitable isolation groups".
     In Chapter 5 and 6, to solve the mainly problem encountered in the development of main-chain polymers:the low poling efficiency, we designed and synthesized a series of main-chain polyurethanes P20-P27 with the structure well adjusted by introducing different isolation groups into chromophore moieties.In addition, for comparison, the corresponding side-chain polyurethanes P28-P31 were also prepared. The SHG test results further confirmed the concept of "suitable isolation groups", while the processability and temporal stabilities of polymers were also improved.
     In Chapter 7, to develop more NLO polymers with encouraging performance, and broaden the applyication area of "suitable isolation group", we choosed PVK as polymeric backbone, synthesized a series of PVK-based NLO polymers P33-P39 with different isolation groups introduced through post-Knoevenagel condensation reaction. The obtained results indicated that by introducting suitable isolation groups into PVK-based NLO polymeric system, the existed problem of this system (bad processability and poling efficiency) could be solved effectively, as well as the temporal stabilities were still relatively good, which demonstrated that the "nonlinearity-stability trade off" might be alleviated in some degree by applying the concept of "suitable isolation groups". In addition, a new side-on PVK-based NLO polymer P40, with different structure from P33-P39, was prepared, in which the linking position of spacer on the chromophore was at its center bridge. P40 exhibited a relatively high d33 value (56.0 pm/V), in comparison with that of P35, containing the same active chromophores and isolation groups.
     For the first time, the "click" chemistry reaction was applied to synthesize a series of conjugated polymers P41-P46 containing NLO azobenzene chromophores as side chains through polymer reactions in Chapter 8. The synthetic route was very simple and high efficient, due to the perfect quality of click reaction. All the polymers demonstrated good solubility, processability, thermal stability, improved optical transparency, and the SHG test demonstrated the NLO effect of polymers could be enhanced by introducing suitable isolation groups, while P46 exhibited a better d33 value (39.6 pm/V), nearly two times that of P44 without any isolation groups.
     In order to decrease synthetic procedure and improve the synthetic efficiency, the isolation groups in different size were introduced into the chromophore moieties in polymers to yield two series of NLO polyurethanes through polymer reactions by using the "click chemistry" in Chapter 9, making the subtle structure of the polymers being modified conveniently. And in Chapter 10, a series of polyurethanes (P59-P61) containing sulfonyl-based NLO chromophores, which could not be obtained from the direct synthetic route, were prepared through a two-step polymer reaction, consisting of the post azo coupling and esterification reactions conveniently with high yields. In comparison with those of the polymers through directly copolymerization reaction, the designed route of these two chapters was very simple, and the purification was very easy, making their preparation much effective. In addition, because the polymers with different isolation groups were derived from the same mother polymers, we could analyze their NLO properties nearly on the same level.
     In Chapter 11 and 12, based on control experiments, a new synthetic route was proposed to yield a series of nonlinear optical polymers P61-P69 and P71-P73, which contained the same isolation spacers, respectively. For the first time, the effect of the same isolation group on chromophore moieties with different acceptors, was studied. The obtained NLO properties showed that the same isolation group would result in different influence while the chromophore moieties were different. Or it is said, the same isolation group would lead to different effect in different NLO chromophores, which further confirmed the concept of "suitable isolation groups" on another side, but more powerful. It also should be pointed out that in P71-P73, pyrrole ring was firstly introduced into NLO polymers used as the bridge. P71 exhibited relatively good NLO properties, of which d33 value was up to 67.1 pm/V, and the onset temperature for decay was as high as 140℃.
     In Chapter 13, for the first time, a series of dendron-like main-chain polyurethanes P74-P77 embedded with "H"-type chromophores have been successfully designed and synthesized, and they all demonstrated very good NLO effects, while the d33 value of P75 was as high as 127.7 pm/V, indicating the superiority of "H"-type structure. The UV-vis spectra demonstrated that the effective isolation effect could be realized, when the chromophore moieties were well encapsulated by the bulky isolation spacers surrounded. By applying the concept of "suitable isolation groups", different size of isolation groups were introduced to modify the subtle structure of the used "H"-type chromophores, and theΦvalue of P75 with BOE as suitable isolation groups was 1.3 times that of P74, indicating the poling efficiency may be adjusted by controlling the shape of the "H"-type chromophores. However, because of the reduced loading density of chromophores, the d33 value of P75 was only enhanced about 10 pm/V. In Chapter 14, by changing the lingkage position of H"-type chromophores embedded into polymeric backbone, a new series of shoulder-to-shoulder polymers P78-P79 and P81-P84 were synthesized. The SHG test demonstrated that all the polymers exhibited very good NLO effects, and the highest d33 value was up to 94.7 pm/V. The results also indicated that the structure of polymers could be adjusted much better by introducing suitable isolation groups.
     In Chapter 15, to develop more comprehensive dendritic NLO materials with good performance and study their structure-properties relationship, the Sharpless "click" reaction, as well as azo coupling reaction were applied for the construction of NLO dendrimers G1-G3 easily. Also, through a "double-stage" method, in which the core (G2-8N3) was prepared through a divergent approach, while the end-capped dendrons (G1-≡and G2-≡) were synthesized through a convergent approach, high generation of dendrimers G4 and G5 were synthesized successfully. By the combination of "double-stage" method and click chemistry, the whole synthetic route was very convenient and with high-efficiently, which might give light on the syntheses of other functional dendrimers from more economic preparation routes. The resultant dendrimers demonstrated good solubility, processability, thermal stability, improved optical transparency, and the UV-vis spectra indicated that the effective isolation effect could be realized. The formed triazole rings were utilized as good isolation groups to minimize the strong dipole-dipole interactions among the chromophore moieties to enhance NLO effects. Accompanying with the increasing of the loading density of the chromophore moieties, the tested NLO effects are going higher, partially proving the prediction of Dalton et al and indicating that the frequently observed asymptotic dependence of electro-optic activity on chromophore number density may be overcome through rational design. The five generation of dendrimer G5 exhibited very excellent NLO properties, of which the d33 value was as high as 193.1 pm/V, as well as the onset temoeratture for decay was over 100℃, making it good candidate for optics applications.
     In Chapter 16, based on the work of Chapter 8 and Chapter 15, by the click reaction between P-N3 and Gl-≡or G2-≡, two new dendronized NLO polyfluorenes P85 and P86 were synthesized with high chromophore loading density by the introduction of high generation chromophore dendrons on the side chains. Thanks to the advantages of Sharpless' click chemistry reaction, the dendrons were conveniently bonded to the backbone of polyfluorene with the conversion of 100%, although they were really very bulky. P85 and P86 exhibited relatively good NLO effects, their d33 values were up to 91 and 106 pm/V, respactively. In addition, similiar resluts to Chapter 15 were obtained in this chapter:accompanying with the increasing of the loading density of the chromophore moieties, the tested NLO effects were going higher, further confirming the frequently observed asymptotic dependence of electro-optic activity on chromophore number density may be overcome through rational design.
     In Chapter 17, by using triphenylamine as the core, and the chromophores as branches, a new series of one-, two- and three-dimension NLO dendrimers T1-T3 were designed and synthesized succsessfully to investigate the effect of the shape of macromolecules on macroscopic NLO properties. To decrease the optical loss of the NLO dendrimers, 1,2,3,4,5-pentafluorobenzene moieties were choosed as isolation groups. The SHG test demonstrated that accompanying with the increasing of the dimension, the d33 values increased rapidly, and T3 exhibited a very high d33 value of 191.8 pm/V. This should be attributed to the size of macromolecules enlarged accompanying with the dimension increased, making their shape much nearly to sphericity.
     Hyperbranched polymers, a second class of branched polymers exhibiting similar unusual properties to dendrimers, are typically obtained in a one-pot reaction and can be easily prepared in larger quantities. In Chapter 18, we designed and synthesized one new AB2-type NLO hyperbranched polymers P87 via simple Sonogashira coupling reaction. Its corresponding linear analogue (P88) was also obtained from AB monomer for comparison. In spite of the lower effective chromophore density, P87 demonstrated enhanced second-harmonic coefficient (153.9 pm/V) and temporal stability (the onset temperature for decay was over 93℃) than those of P88. In addition, by modifying the synthetic procedure, the previous reported impossible approach was successfully utilized to construct new azo-chromophore-containing hyperbranched polymers (P89 and P90) from AB2 monomers through click chemistry reactions with the aid of copper(I) catalysis in Chapter 19. The NLO properties of P89 and P90 were relatively good, the d33 values were up to 77.9 and 124.4 pm/V, respectively, while the onset temoeratures for decay were 118℃and 93℃, respectively. However, both of these two polymers exhibited bad film-forming ability, which did not benefit to their applications. Thus in this chapter, according to the concept of "suitable isolation groups", the end-capped groups in different size were introduced into the periphery of the same hyperbranched polymer intermediate to afford six AB2-type polymers P91-P96 by a simple "one-to-six" process. The obtained results demonstrated P94-P96 exhibited much better solubility, processability, photo-physical properties than P90, which according with our original idea. The SHG test demonstrated that the change of the size of end-capped groups influenced the reslutant NLO properties in some degree, and Car moieties were the suitable end-capped groups.
     In Chapter 20, a facile route was designed to synthesize a new series of main-chain hyperbranched polymer P97 and P99-P104, and we expected these mid-type NLO polymers would have both of the merits of hyperbranched and main-chain NLO polymers:large optical nonlinearity and high stabilization of dipole moments. The obtained resluts accorded with our original idea, the d33 value and the temperature for decay of P97 were 143.8 pm/V and 153℃, much better than its correspongding linear main-chain polymer P98 (52.9 pm/V and 119℃). The same excellent results were obtained in P99-P104:the d33 value of P99 with nitro-based chromophores was up to 152.6 pm/V, and the d33 value of P101 with sulfonyl-based chromophores was up to 82.6 pm/V, and they also exhibited good temporal stabilies. In addition, our results may provide a new solution to solve the "nonlinearity-stability trade off' existing in main-chain polymers to some degree.
     Dendritic conjugated macromolecules with large branches exhibit intrinsic two- or three-dimensional architectures, which can effectively depress the possible aggregation and excimer formation to make them exhibit good film-forming ability, enhance the thermal stability and improve the light emitting efficiency. Therefore, in Chapter 21, based on a brief introduction to OLEDs, we designed a simple route to synthesize a new series ofπ-congjugated dendrimers D1-D10 with mono-, bis, tri-covalent bond introduced. The dendrimers were well characterized by TGA, DSC, UV-vis and PL. Some dendrimers were used as emitting layer to construct double-layer devices:ITO/dendrimer/TPBI/LiF/Al, and the D3-based device exhibited a maximum brightness of 1325 cd/m2, and current efficiency of 1.03 cd/A, while D7-based device exhibited a maximum brightness of 1190 cd/m2, and current efficiency of 1.67 cd/A. In addition, we also investigated the hole-transporting ability of D3 and D8 through the fabrication of the device ITO/dendrimer/Alq3/LiF/Al using D3 and D8 as hole-transporting layer, and their device exhibited a maximum luminance of 5262 and 6283 cd/m2, respectively, and a maximum current efficiency of 1.70 and 1.59 cd/A, respectively.
     Considering that the widely-used hole-transporting material TPD and NPB exhibited low glass transition temperature and bad film-forming ability, in Chapter 22, an effective synthetic route was designed to construct two newπ-congjugated dendrimers DTI and DT2 through a convergent approach. Both of these two dendrimers contained 22 triphenylamine units, and to the best of our knowledge, they are the largest size of dendrimers constructed only by triphenylamine moieties. DT1 and DT2 exhibited excellent thermal and morphological stabilities, and their glass transition temperatures were as high as 257 and 241℃, respectively, much higher than those of TPD and NPB. The film quality of DT1 was not good by spin-coating, while that of DT2 was much better, thus we fabricated the device using DT2 as hole-transporting layer to study its hole-transporting ability. The device exhibited a maximum current density of 400 mA/cm2, maximum luminance 5024 cd/m2, current efficiency of 2.37 cd/A and power efficiency of 2.40 lm/W.
     To develop more hyperbranched polyfluorenes and obtain excellent light-emitting materials, in Chapter 23, a new series of hyperbranched conjugated polymers P105-P107 containing fluorene moieties were synthesized from "A2+B3" approach based on Suzuki polycondensation reaction. Interestingly, P107 constructed only by fluorene moieties exhibited green luminescence, not like other PF derivatives with blue emissions, which might be due to the presence of theπ-stacked structure of poly(dibenzofulvene), based on several controlling experiments. And their film fluorescence spectra of their thin films were quite stable against heating, indicating the hyperbranched molecular structure really effectively hampers the aggregation formation of the polymer backbone or improves the resistance to the keto defect formation. The PLED device based on P107 as emitting layer exhibited a maximum luminance 142 cd/m2, and current efficiency of 0.15 cd/A.
     In Chapter 24, for the first time, hexaphenylbenzene moiety was used as the core to afford a new series of hyperbranched light-emitting polymers P110-P113 by introducing 1, 3,4-oxadiazole units in different molar ratios through a simple synthetic route. All the double-layer devices using P110-P113 as emitting layers exhibited deeply blue emission, and the spectra were very pure with a fwhm of about 40nm. P110-based device exhibited a maximum luminance 251 cd/m2, current efficiency of 0.46 cd/A, which is very good in comparion with "A3+B2"-type hyerbranched polymers reported in literatures, while the deficiency was that the turn-on voltage of device was much higher (12 V). The introduction of oxadiazole units could decrease the turn-on voltage, as well as enhance their luminance and current efficiency. When the molar ratios of three monomers (hexaphenylbenzene, oxadiazole and fluorene) was 1:1:2.5, the resultant polymer P113-based device exhibited better results, its maximum current density, luminance and current efficiency were up to 358 mA/m2,549 cd/m2 and 0.72 cd/A, respectively.
     For a good OLED device for practical applications, it is desired to control and achieve the charge balance, so that the recombination of the hole and electron occurred in the ETL away from electrodes to improve the emitting efficiency. In Chapter 25, we synthesized a novel hyperbranched polymer (P114) constructed only by carbazole moieties from "A4+B2" approach via Suzuki polycondensation reaction. The P114-based device yielded much better efficiency (3.05 cd/A), than that of PVK-based device (2.19 cd/A), under similar experimental conditions, which should be attributed to its low energy barrier, and enhanced hole-drifting ability in the P114 based device. In addition, for the first time, field effect transistors (FET) based on hyperbranched materials were fabricated, and the OFETs device displayed that P114 is a typical p-type FET operation with a saturation mobilityμ=1×10-5 cm2V-1s-1, the threshold voltage VT=-47.1 V and on-to-off current ratio Ion/Ioff=103. In Chapter 26, according to the excellent properties of P114, the core of P114 was utilized to develop a new series of hyperbranched light-emitting polymers P115-P117 via Sonogashira coupling reaction, and their electroluminescent properties were investigated. P116 demonstrated good performances, and the device of ITO/P116/TPBI/LiF/Al exhibited a maximum luminance of 138 cd/m2, and current efficiency of 0.26 cd/A; another device of TO/P116/TNS/Alq3/LiF/Al exhibited a maximum luminance of 638 cd/m2, and current efficiency of 1.09 cd/A.
引文
1. S. R. Marder, J. W. Perry, "Nonlinear Optical Polymers:Discovery to Market in 10 Years?", Science,1994,263,1706-1707.
    2. J. Zyss, "Molecular Nonlinear Optics:Materials, Physics and Devices", Academic Press:Boston,1994.
    3. D. M. Burland, R. D. Miller, C. A. Walsh, "Second-Order Nonlinearity in Poled-Polymer Systems", Chem. Rev.,1994,90,31-75.
    4. L. R. Dalton, "Polymeric Electro-Optic Modulators", Chemistry & Industry,1997,13, 510-514.
    5. W. E. Moerner, S. M. Silence, "Polymeric Photorefractive Materials", Chem. Rev.,1994, 94,127-155.
    6. S. R. Marder, B. Kippelen, A. K. Y. Jen, N. Peyghambarian, "Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications", Nature, 1997,388,845-851.
    7. C. V. McLaughlin, M. Hayden, B. Polishak, S. Huang, J. Luo, T.-D. Kim, A. K. Y. Jen, "Wideband 15 THz reponse using organic electro-optic polymer emitting-sensor pairs at telecommunication wavelengths", Appl. Phys. Lett.,2008,92,151107-15109.
    8.罗敬东,詹才茂,秦金贵,“极化聚合物电光材料研究进展”,高分子通报,2000,1,9-19.
    9. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape", Science,2000,288,119-122.
    10. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer", Science,2002, 298,1401-1403.
    11. F. Kajzar, K.-S. Lee, A. K.-Y. Jen, "Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics", Adv. Polym. Sci.,2003,161,1-84.
    12. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. Ren, S. Garder, A.-T. Chen, T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amenda, A. Jend, "From molecules to opto-chips:organic electro-optic materials",J. Mater. Chem., 1999,9,1905-1920.
    13.胡志鹏,Faccini Mirko, Verboom Willem,印杰,“电光高分子材料的最新研究进展”,高分子通报,2007,1,1-11.
    14.洪海平,王业斌,林绮,周淑琴,金祥风,“无机非线性光学材料的探索”,化学通报,1994,10,18-20.
    15. K. Clays, B. J. Coe, "Design Strategies versus Limiting Theory for Engineering Large Second-Order Nonlinear Optical Polarizabilities in Charged Organic Molecules", Chem. Mater.,2003,15,642-648.
    16. G. Meredith, J. Vandusen, D. Williams, "Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers", Macromolecules,1982, 15,1385-1389.
    17. http://artus.et7.tu-harburg.de/-et7www/phpsite/forschung/show.php?file=optik/index.ht ml
    18. H. K. Kim, S.-J. Kang, S.-K. Choi, Y.-H. Min, C.-S. Yoon, "Highly Efficient Organic/Inorganic Hybrid Nonlinear Optic Materials via Sol-Gel Process:Synthesis, Optical Properties, and Photobleaching for Channel Waveguides", Chem. Mater.,1999, 11,779-788.
    19. Z. Peng, L. Yu, "Second-Order Nonlinear Optical Polyimide with High-Temperature Stability", Macromolecules,1994,27,2638-2640.
    20. A. K.-Y. Jen, X. M. Mu, H. Ma, "High-Performance Polyquinolines with Pendent High-Temperature Chromophores for Second-Order Nonlinear Optics", Chem. Mater., 1998,10,471-473.
    21. D. K. Taylor, E. T. Samulski, "Synthesis and Characterization of Poly(p-phenylene)s with Nonlinear Optical Side Chains", Macromolecules,2000,33,2355-2358.
    22. C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, W. H. Steier, "Electric Poling and Relaxation of Thermoset Polyurethane Second-Order Nonlinear Optical Materials:Role of Cross-Linking and Monomer Rigidity", Macromolecules,2001,34, 235-243.
    23. F. Chaumel, H. Jiang, A. Kakkar, "Sol-Gel Materials for Second-Order Nonlinear Optics", Chem. Mater.,2001,13,3389-3395.
    24. H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides:Materials, processing, and devices", Adv. Mater.,2002,14,1339-1365.
    25. H. Ma, J. Wu, P. Herguth, B. Chen, A. K.-Y. Jen,"A Novel Class of High-Performance Perfluorocyclobutane-Containing Polymers for Second-Order Nonlinear Optics", Chem. Mater.,2000,12,1187-1189.
    26. Z. Q. Lu, P. Shao, J. Li, J. L. Hua, J. Qin, A. J. Qin, C. Ye,"Two Novel Fluorinated Poly(arylene ether)s with Pendant Chromophores for Second-Order Nonlinear Optical Application", Macromolecules,2004,37,7089-7096
    27. L. R. Dalton, A. W. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, M. Lee, "Polymeric Electro-Optic Modulators:From Chromophore Design to Integration with Semiconductor VLSI Electronics and Silica Fiber Optics", Ind. Eng. Chem. Res.,1999, 38,8-33.
    28. A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kulluri, W. H. Steier, B. H. Robinson,"Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity:The Role of Chromophore-Chromophore Electrostatic Interactions", J. Opt. Soc. Am. B,1998,15,329-337.
    29. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    30. B. H. Robinson, L. R. Dalton, H. W. Harper, A. Ren, F. Wang, C. Zhang, G Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. K.-Y.Jen, "The molecular and supramolecular engineering of polymeric electro-optic materials", Chem. Phys.,1999,245,35-50.
    31. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    32. A.-D. Schliiter, J. P. Rabe, "Dendronized Polymers:Synthesis, Characterization, Assembly at Interfaces, and Manipulation", Angew. Chem. Int. Ed.,2000,39,864-883.
    33. S. Hecht, J. M.-J. Frechet, "Dendritic Encapsulation of Function:Applying Nature's Site Isolation Principle from Biomimetics to Materials Science", Angew. Chem. Int. Ed., 2001,40,74-91.
    34. Y. V. Pereverzev, O. V. Prezhdo, L. R. Dalton, "Macroscopic order and electro-optic response of dipolar chromophore-polymer materials" ChemPhysChem,2004,5, 1821-1830.
    35. S. Yokoyama, T. Nakahama, A. Otomo, S. Mashiko, "Intermolecular Coupling Enhancement of the Molecular Hyperpolarizability in Multichromophoric Dipolar Dendrons", J. Am. Chem. Soc.,2000,122,3174-3181.
    36. W. Zhang, J. Xie, W. Shi, "Synthesis and characterization of dendrons and dendrimersskeleton-constructed with azobenzene moiety", Eur. Polym. J.,2007,43, 2387-2400.
    37. W. Zhang, J. Xie, W Shi, X. Deng, Z. Cao, Q. Shen, "Second-harmonic properties of dendritic polymers skeleton-constructed with azobenzene moiety used for nonlinear optical materials", Eur. Polym. J.,2008,44,872-880.
    38. H. Ma, B. Q. Chen, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electrooptics", J. Am. Chem. Soc., 2001,123,986-987.
    39. H. Ma, A. K.-Y. Jen, "Functional Dendrimers for Nonlinear Optics", Adv. Mater.,2001, 13,1201-1205.
    40. J. Luo, H. Ma, M. Haller, A. K.-Y. Jen, R. R. Barto, "Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore", Chem. Commun.,2002,888-889.
    41. P. A. Sullivan, A. J.-P. Akelaitis, S. K. Lee, G. McGrew, S. K. Lee, D. H. Choi, L. R. Dalton, "Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior", Chem. Mater,2006,18, 344-351.
    42. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J.-P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A.-T. Chen, A. K.-Y. Jen, B. H. Robinson, L. R. Dalton, "Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect", J. Am. Chem. Soc.,2007,129,7523-7530.
    43. Y. V. Pereverzev, K. N. Gunnerson, O. V. Prezhdo, P. A. Sullivan, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, A. K.-Y. Jen, L. R. Dalton, "Guest-Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response" J. Phys. Chem. C, 2008,112,4355-4363.
    44. L. R. Dalton, "Rational design of organic electro-optic materials", J. Phys:Conden. Matter.,2003,15,897-934.
    45. K. Schmidt, S. Barlow, A. Leclercq, E. Zojer, S-H. Jang, S. R. Marder, A. K.-Y. Jen, J.-L. Bredasa, "Efficient acceptor groups for NLO chromophores:competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran", J. Mater. Chem., 2007,17,2944-2949.
    46. M. Q. He, T. M. Ledlie, J. A. Sinicropi, "Synthesis of Chromophores with Extremely High Electro-optic Activity.1. Thiophene-Bridge-Based Chromophores", Chem. Mater., 2002,14,4662-4668.
    47. K. A. Firestone, P. Reid, R. Lawson, S. H. Jang, L. R. Dalton, "Advances in organic electro-optic materials and processing", Inorganica Chimica Acta,2004,357, 3957-3966.
    48. S.-H. Jang, J. Luo, N. M. Tucker, A. Leclercq, E. Zojer, M. A. Haller, T.-D. Kim, J.-W. Kang, K. Firestone, D. Bale, D. Lao, J. B. Benedict, D. Cohen, W. Kaminsky, B. Kahr, J.-L. Bredas, P. Reid, L. R. Dalton, A. K.-Y. Jen, "Pyrroline Chromophores for Electro-Optics", Chem. Mater.,2006,18,2982-2988.
    49. S. Liu, M. A. Haller, H. Ma, L. R. Dalton, S.-H. Jang, A. K.-Y. Jen, "Focused Microwave-Assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores", Adv. Mater.,2003,15,603-607.
    50. J. Luo, Y.-J. Cheng, T.-D. Kim, S. Hau, S.-H. Jang, Z. W. Shi, X. H. Zhou, A. K.-Y Jen, "Facile Synthesis of Highly Efficient Phenyltetraene-Based Nonlinear Optical Chromophores for Electrooptics", Org. Lett.,2006,8,1387-1390.
    51. J. Luo, S. Huang, Y.-J. Cheng, T.-D. Kim, Z. W. Shi, X.-H. Zhou, A. K.-Y. Jen, "Phenyltetraene-Based Nonlinear Optical Chromophores with Enhanced Chemical Stability and Electrooptic Activity", Org. Lett.,2007,9,4471-4474.
    52. Y.-J. Cheng, J. Luo, S. Hau, D. H. Bale, T.-D.Kim, Z. W. Shi, D. B. Lao, N. M. Tucker, Y. Q. Tian, L. R. Dalton, P. J. Reid, A. K.-Y. Jen, "Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-β Nonlinear Optical Chromophores", Chem. Mater.,2007,19,1154-1163
    53. S. R. Hammond, O. Clot, K. A. Firestone, D. H. Bale, D. Lao, M. Haller, G. D. Phelan, B. Carlson, A. K.-Y. Jen, P. J. Reid, L. R. Dalton, "Site-Isolated Electro-optic Chromophores Based on Substituted 2,2'-Bis(3,4-propylenedioxythiophene) π-Conjugated Bridges", Chem. Mater.,2008,20,3425-3434.
    54. P. Gopalan, H. E. Katz, D. J. McGee, C. Erben, T. Zielinski, D. Bousquet, D. Muller, J. Grazul, Y. Olsson, "Star-Shaped Azo-Based Dipolar Chromophores:Design, Synthesis, Matrix Compatibility, and Electro-optic Activity", J. Am. Chem. Soc.,2004,126, 1741-1747.
    55. V. E. Campbell, I. In, D. J. McGee, N. Woodward, A. Caruso,. P. Gopalan, "Chromophore Orientation Dynamics, Phase Stability, and Photorefractive Effects in Branched Azobenzene Chromophores", Macromolecules,2006,39,957-961.
    56. V. E. Campbell, P. Paoprasert, J. D. Mykietyn, I. In, D. J. McGee, P. Gopalan, "Linear and Branched Fluoroazo-Benzene Chromophores with Increased Compatibility in Semifluorinated Polymers", J. Polym. Sci. Part A:Polym. Chem.,2007,45,3166-3177.
    57. V. Percec, C.-H. Ahn, G Ungart, D. J.-P. Yeardley, M. Moller, S. S. Sheiko, "Controlling polymer shape through the self-assembly of dendritic side-groups", Nature,1998,391, 161-164.
    58. J. Barner, F. Mallwitz, L. Shu, A.-D. Schluter, J. P. Rabe,"Covalent Connection of Two Individual Polymer Chains on a Surface:An Elementary Step towards Molecular Nanoconstructions", Angew. Chem. Int. Ed.,2003,42,1932-1935.
    59. H. Frauenrath, "Dendronized polymers—building a new bridge from molecules to nanoscopic objects", Prog. Polym. Sci.,2005,30,325-384.
    60. J. Luo, S. Liu, M. Haller, L. Liu, H. Ma, A. K.-Y. Jen, "Design, Synthesis, and Properties of Highly Efficient Side-Chain Dendronized Nonlinear Optical Polymers for Electro-Optics", Adv. Mater.,2002,14,1763-1768.
    61. J. Luo, M. Haller, H. Li, H.-Z. Tang, A. K.-Y. Jen, K. Jakka, C.-H. Chou, C.-F. Shu, "A Side-Chain Dendronized Nonlinear Optical Polyimide with Large and Thermally Stable Electrooptic Activity", Macromolecules,2004,37,248-250.
    62. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y. Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics", J. Phys. Chem. B, 2004,108,8523-8530.
    63. J. Luo, J. Qin, H. Kang, C. Ye, "A Postfunctionalization Strategy To Develop PVK-Based Nonlinear Optical Polymers with a High Density of Chromophores and Improved Processibility", Chem. Mater.,2001,13,927-931.
    64. J. Hua, Z. Li, K. Long, J. Qin, S. J. Li, C. Ye, Z. H. Lu, "Synthesis and Second-Order Nonlinear Optical Properties of Multifunctional Polysiloxanes with Sulfonyl-Based Chromophores", J. Polym. Sci. Part A:Polym. Chem.2005,43,1317-1324.
    65. X. Wang, J. Kumar, S. K. Tripathy, "Epoxy-Based Nonlinear Optical Polymers from Post Azo Coupling Reaction", Macromolecules,1997,30,219-225.
    66. Z. Li, J. Qin, S. J. Li, C. Ye, J. Luo, Y. Cao, "Polyphophazene Containing Indole-Based Dual Chromophores:Synthesis and Nonlinear Optical Characterization", Macromolecules,2002,35,9232-9235.
    67. Z. Li, C. Huang, J. L. Hua, J. Qin, Z. Yang, C. Ye, "A New Postfunctional Approach To Prepare Second-Order Nonlinear Optical Polyphophazenes Containing Sulfonyl-Based Chromophore", Macromolecules,2004,37,371-376.
    68. Z. Li, Q. Q. Li, A. J. Qin, Y. Q. J. W.-Y. Dong, Lam, Y. P. Dong, C. Ye, J. Qin, B. Z. Tang, "Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains", J. Polym. Sci. Part A:Polym. Chem.,2006,44, 5672-5680.
    69. Z. Li, J. Hua, Q. Q. Li, C. Huang, A. J. Qin, C. Ye, J. Qin, "Synthesis of novel poly {methyl-[3-(9-indolyl)propyl]siloxane}-based nonlinear optical polymers via postfunctionalization", Polymer,2005,46,11940-11948.
    70. K. D. Belfield, C. Chinna, O. Najjar, "Synthesis of Novel Polysiloxanes Containing Charge Transporting and Second-Order Nonlinear Optical Functionalities with Atom Economical Constructs", Macromolecules,1998,31,2918-2824.
    71. T.-D. Kim, J. Luo, Y. Q. Tian, J.-W. Ka, N. M. Tuker, M. Haller, J.-W. Kang, A. K.-Y. Jen, "Diels-Alder "Click Chemistry" for Highly Efficient Electrooptic Polymers", Macromolecules,2006,39,1676-1680.
    72. H. C. Kolb, M. G. Finn, K. B. Sharpless, "Click Chemistry:Diverse Chemical Function from a Few Good Reactions", Angew. Chem., Int. Ed.,2001,40,2004-2021.
    73. B. Helms, J. L. Mynar, C. J. Hawker, J. M. J. Frechet, "Dendronized Linear Polymers via "Click Chemistry"", J. Am. Chem. Soc.,2004,126,15020-15021.
    74. W. H. Binder, R. Sachsenhofer,"'Click' chemistry in polymer and materials science", Macromol. Rapid. Commun.,2007,28,15-54.
    75.董卫莉,赵卫光,李玉新,刘征骁,李正名,““链接”化学及其应用”,有机化学2006,26,271-277.
    76. Q. Zeng, Z. Li, Z. Li, C.Ye, J. Qin, B. Z. Tang, "Convenient Attachment of Highly Polar Azo Chromophore Moieties to Disubstituted Polyacetylene through Polymer Reactions by Using "Click" Chemistry", Macromolecules,2007,40,5634-5637.
    77. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    78. J. Y. Do, S. K. Park, J.-J. Ju, S. Park, M.-H. Lee, "Electro-optic materials: hyperbranched chromophores attached linear polyimide and dendritic polyesters", Polym. Adv. Technol.,2005,16,221-226.
    79. Y. Do, S. K. Park, J.-J. Ju, S. Park, M.-H. Lee, "Improved Electro-Optic Effect by Hyperbranched Chromophore Structures in Side-Chain Polyimide" Macromol. Chem. Phys.,2003,204,410-416.
    80. L. R. Dalton, "Nonlinear Optical Polymeric Materials:From Chromophore Design to Commercial Applications", Adv. Polym. Sci.,2002,158,1-86.
    81. L. R. Dalton, "Polymeric Electro-Optic Materials:Optimization of Electro-Optic Activity, Minimization of Optical Loss, and Fine-Tuning of Device Performance", Opt. Eng.,2000,39,589-595.
    82. M. Zhou, "Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication", Opt. Eng.,2002,41,1631-1643.
    83. C. Zhang, C. Wang, L. R. Dalton, H. Zhang, W. H. Steier, "Progress toward Device-Quality Second-Order Nonlinear Optical Materials.4. A Trilink High μβ NLO Chromophore in Thermoset Polyurethane:A "Guest-Host" Approach to Larger", Macromolecules,2001,34,253-261.
    84. H. Ma, J. Wu, P. Herguth, B. Chen, A. K.-Y. Jen, "A Novel Class of High-Performance Perfluorocyclobutane-Containing Polymers for Second-Order Nonlinear Optics", Chem. Mater.,2000,12,1187-1189.
    85. J. Luo, M. Haller, H. Li, T.-D. Kim, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-optic Polymer from a Smartly Controlled Crosslinking Process", Adv. Mater.,2003,15,1635-1368.
    86. M. Haller, J. Luo, H. Li, T.-D. Kim, Y. Liao, B. H. Robinson, L. R. Dalton, A. K.-Y. Jen, "A Novel Lattice-Hardening Process To Achieve Highly Efficient and Thermally Stable Nonlinear Optical Polymers", Macromolecules,2004,37,688-690.
    87. T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. w. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, A. K.-Y. Jen, "Ultralarge and Thermally Stable Electro-optic Activities from Diels-Alder Crosslinkable Polymers Containing Binary Chromophore Systems", Adv. Mater.,2006,18,3038-3042.
    88. Y. Enami, C. T. Derosei, D. Mathinei, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients", Nature Photonics,2001,1,180-185.
    89. Z. W. Shi, S. Hau, J. D. Luo, T.-D. Kim, N. M. Tucker, J.-W. Ka, H. S. Sun, A. Pyajt, L. R. Dalton, A. T. Chen, A. K.-Y. Jen, "Highly Efficient Diels-Alder Crosslinkable Electro-Optic Dendrimers for Electric-Field Sensors", Adv. Funct. Mater.,2007,17, 2557-2564.
    90. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, "About Supramolecular Assemblies of π-Conjugated Systems", Chem. Rev.,2005,105, 1491-1546.
    91. M. S. Lee, B. K. Cho, W. C. Zin, "Supramolecular Structures from Rod-Coil Block Copolymers", Chem. Rev.,2001,101,3869-3892.
    92. Y. Q. Tian, C.-Y. Chen, M. A. Haller, N. M. Tucker, J.-W. Ka, J. D. Luo, S. Huang, A. K.-Y. Jen,"Nanostructured Functional Block Copolymers for Electrooptic Devices", Macromolecules,2007,40,97-104.
    93. M. Leolukman, P. Paoprasert, Y. Wang, V. Makhija, D. J. McGee, P. Gopalan, "Influence of Architecture, Concentration, and Thermal History on the Poling of Nonlinear Optical Chromophores in Block Copolymer Domains", Macromolecules, 2008,41,4651-4660.
    94. D. S. Lawrence, T. Jiang, M. Levett, "Self-Assembling Supramolecular Complexes", Chem. Rev.,1995,95,2229-2260.
    95. H. Saadeh, L. M. Wang, L. P. Yu, "Supramolecular Solid-State Assemblies Exhibiting Electrooptic Effects",J. Am. Chem. Soc.,2000,122,546-547.
    96. S.-H. Jang, A. K.-Y. Jen, "Electro-Optic (E-O) Molecular Glasses", Chem. Asian J., 2009,4,20-31.
    97. T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, A. K.-Y. Jen, "Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular Self-Assembled Molecular Glasses" J. Am. Chem. Soc.,2007,129,488-489.
    98. P. J. Flory, "Molecular size distribution in three dimensional polymers VI. Branched polymers containing A-R-Bf-1 type units",J. Am. Chem. Soc.,1952,74,2718-2723.
    99. Y. H. Kim, O. W. Webster, "Hyperbranched polyphenylenes", Polym. Prepr.,1988,29, 310-311.
    100.Y. H. Kim, O.W. Webster. "Water-soluble hyperbranched polyphenylene:a unimolecular micelle",J.Am. Chem. Soc.,1990,112,4592-4593.
    101.韩巧荣,夏海平,丁马太,“超支化聚合物”,化学通报,2004,2,104-116.
    102.C. Gao, D. Yan, "Hyperbranched polymers:from synthesis to applications", Prog. Polym. Sci.,2004,29,183-275.
    103.B. Voit, "New developments in hyperbranched polymers", J. Polym. Sci. Part A:Polym. Chem.2000,38,2505-25.
    104.A. Hult, M. Johansson, E. Malmstrom, "Hyperbranched polymers", Adv. Polym. Sci. 1999,143,1-34.
    105.Y. Zhang, T. Wada, H. Sasabe, "A new hyperbranched polymer with polar chromophore for nonlinear optics", Polymer,1997,38,2893-2897.
    106.Y. Zhang, L. Wang, T. Wada, H. Sasabe, "One-pot synthesis of a new hyperbranched polyester containing 3,6-di-acceptor-substituted carbazole chromophores for nonlinear optics", Macromol. Chem. Phys.,1996,197,667-676.
    107.Y. Zhang, L. Wang, T. Wada, H. Sasabe, "Synthesis and characterization of novel hyperbranched polymer with dipole carbazole moieties for multifunctional materials", J. Polym. Sci., Part A:Polym. Chem.,1996,34,1359-1363.
    108.Y. Bai, N. Song, J. Gao, X. Sun, X. Wang, G. Yu, Z. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant", J. Am. Chem. Soc., 2005,127,2060-2061.
    109.Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y Dong, C. Ye, I. Williams, B. Tang, "Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores", Macromolecules, 2006,39,1436-1442.
    110.Z. Zhu, Z. Li, Y. Tan, Z. Li, Q. Li, Q. Zeng, C. Ye, J. Qin, "New hyperbranched polymers containing second-order nonlinear optical chromophores:synthesis and nonlinear optical characterization", Polymer,2006,47,7881-7888.
    111.Z. Zhu, Z. Li, Q. Li, Q. Zeng, Z. Li, C. Ye, J. Qin, "Convenient synthesis and enhanced second-order nonlinear optical property of a novel hyperbranched polymer", Chin. J. Chem.,2007,25,237-240.
    112.J. Xie, X. Deng, Z. Cao, Q. Shen, W. Zhang, W. "Shi, Synthesis and second-order nonlinear optical properties of hyperbranched polymers containing pendant azobenzene chromophores", Polymer,2007,48,5988-5993.
    113.J. Xie, L. Hu, W. Shi, X. Deng, Z. Cao, Q. Shen, "Synthesis and Nonlinear Optical Properties of Hyperbranched Polytriazole Containing Second-Order Nonlinear Optical Chromophore", J. Polym. Sci. Part B:Polym. Phys.2008,46,1140-1148.
    114.J. Xie, L. Hu, W. Shi, X. Deng, Z. Cao, Q. Shen, "Synthesis and characterization of hyperbranched polytriazole via an "A2+B3" approach based on click chemistry", Polym. Int.,2008,57,965-974.
    115.H.-L. Chang, T.-Y. Chao, C.-C. Yang, S. A. Dai, R.-J. Jeng, "Second-order nonlinear optical hyperbranched polymers via facile ring-opening addition reaction of azetidine-2,4-dione", Europ. Polym. J.,2007,43,3988-3996.
    116.C.-C. Tsai, T.-Y. Chao, H.-L. Lin,Y.-H. Liu, H.-L. Chang, Y.-L. Liu, R.-J. Jeng, "The facile synthesis and optical nonlinearity of hyperbranched polyaspartimides with azobenzene dyes", Dyes and Pigments,2009,82,31-39.
    1. G. Meredith, J. Vandusen, D. Williams, "Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers", Macromolecules,1982, 15,1385-1389.
    2. P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers. John Wiley & Sons, Inc.:New York,1991.
    3. A. K.-Y. Jen, T. A. Chen, V. P. Rao, Y. Cai, Y. J. Liu, L. R. Dalton, "High Performance Chromophores and Polymers for Electro-Optic Applications", Adv. Nonlinear Opt., 1997,4,237-249.
    4. S. K. Yesodha, C. K. S. Pillai, N. Tsutsumi, "Stable polymeric materials for nonlinear optics:a review based on azobenzene systems", Prog. Polym. Sci.2004,29,45-74.
    5. L. R. Dalton, A. W. Harper, B. H. Robinson, "The Role of London Forces in Defining Noncentrosymmetric Order of High Dipole Moment-High Hyperpolarizability Chromophores in Electrically Poled Polymeric Thin Films", Proc. Natl. Acad. Sci.1997, 94,4842-4847.
    6. A. W. Harper, S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kulluri, W. H. Steier, B. H. Robinson,"Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity:The Role of Chromophore-Chromophore Electrostatic Interactions",J. Opt. Soc. Am. B,1998,15,329-337.
    7. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    8. B. H. Robinson, L. R. Dalton, H. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. K.-Y. Jen, "The molecular and supramolecular engineering of polymeric electro-optic materials" Chem. Phys.,1999,245,35-50.
    9. L. R. Dalton, A. W. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, M. Lee, "Polymeric Electro-Optic Modulators:From Chromophore Design to Integration with Semiconductor VLSI Electronics and Silica Fiber Optics", Ind. Eng. Chem. Res.,1999, 38,8-33.
    10. M. A. Mortazavi, A. Knoesen, S. T. Kowel, B. G Higgins, A. Dienes, "Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures",J. Opt. Soc. Am. B,1989,6,733-741.
    11.朱培旺,王鹏,赵开盛,叶成,“同步极化聚合及原位二次谐波测试系统的研制”,高技术通讯,1999,9,35-38.
    12. D. S. Chemla, J. Zyss, Eds, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York,1987.
    13. L. R. Dalton, C. Xu, A. W. Harper, R. Ghosn, B. Wu, Z. Liang, R. Montgomery, A. K. Y. Jen, "Development and Application of Organic Electro-OpticModulators", Mol. Cryst. Liq. Cryst. Sci. Technol. Sect B:Nonlinear Opt.,1995,10,383-407.
    14.劳文剑,尤进茂,于兆文,欧庆瑜,“溴代咔唑的合成及正相高效液相色谱分离”,化学试剂,2000,22,260-261.
    15. A. Courtin, "A. Notiz zur synthese von alkyl-, cycloalkyl- und aryl-(4-aminophenyl)-sulfonen", Helv. Chim. Acta.,1983,66,1046-1052.
    16. C. Samyn, T. Verbiest, E. Kester, K. V. D. Broeck, M. V. Beylen, A. Persoons, "High glass transition chromophore functionalised poly(maleimide-styrene)s for second-order nonlinear optical applications", Polymer,2000,41,6049-6054.
    17. N. Tsutsumi, O. Matsumoto, W. Sakai, T. Kiyotsukuri, "Nonlinear Optical Polymers.2. Novel NLO Linear Polyurethane with Dipole Moments Aligned Transverse to the Main Backbone", Macromolecules,1996,29,592-597.
    18. S. W. Thomas, T. M. Swager, "Synthesis and Optical Properties of Simple Amine-Containing Conjugated Polymers", Macromolecules,2005,38,2716-2721.
    19. T. Mustafa, B. Sylvia, B. Martin R., B. Andrei S., M. P. Andrew, "Practical syntheses of N-hexylcarbazol-2-yl- and -3-yl-boronic acids, their cross-coupled products and a derived tris-cyclometalated (pyridin-2-yl)carbazole iridium(III) complex", Synthesis, 2005,10,1619-1624.
    20. A. Suzuki, "Recent Advances in the Cross-Coupling Reactions of Organoboron Derivatives with Organic Electrophiles,1995-1998", J. Organomet. Chem.,1999,576, 147-168.
    21. N. Miyaura, A. Suzuki, "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds", Chem. Rev.,1995,95,2457-2483.
    22. H. Y. Woo, H. K. Shim, K. S. Lee, "Synthesis and optical properties of polyurethanes containing a highly NLO active chromophore", Macromol. Chem. Phys.,1998,199, 1427-1433.
    23. C. K. Park, J. Zieba, C. F. Zhao, B. Swedek, W. M. E. P. WiJekoon, P. N. Prasad, "Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties", Macromolecules,1995,28,3713-3717.
    24. C. R. Moylan, R. D. Miller, R. J. Twieg, V. Y. Lee, I. H. McComb, S. Ermer, S. M. LoveJoy, D. S. Leung, "Defeating tradeoffs for nonlinear optical chromophores", Proc. SPIE,1995,2527,150-162.
    25. M. Kauranen, T. Verbiest, C. Boutton, M. N. Teeren, K. Clay, A. J. Schouten, R. J. M. Nolte, A. Persoons, "Supramolecular Second-Order Nonlinearity of Polymers with Orientationally Correlated Chromophores", Science,1995,270,966-969.
    26. Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y. Dong, C. Ye, I. Williams, B. Tang, "Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores", Macromolecules, 2006,39,1436-1442.
    27. C. Xu, B.Wu, L. R. Dalton, "New Random Main-Chain, Second-Order Nonlinear Optical Polymers", Macromolecules,1992,25,6714-6715.
    1. H. C. Kolb, M. G. Finn, K. B. Sharpless, "Click Chemistry:Diverse Chemical Function from a Few Good Reactions", Angew. Chem., Int. Ed.,2001,40,2004-2021.
    2. J. F. Lutz, "1,3-Dipolar Cycloadditions of Azides and Alkynes:A Universal Ligation Tool in Polymer and Materials Science", Angew. Chem. Inter. Ed.,2007,46,1018-1025.
    3. D. D. Diaz, S. Punna, P. Holzer, A. K. Mcpherson, K. B. Sharpless, V. V. Fokin, M. G Finn, "Click chemistry in materials synthesis.1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition", J. Polym. Sci. Part A:Polym. Chem., 2004,42,4392-4403.
    4. W. H. Binder, R. Sachsenhofer,"'Click' chemistry in polymer and materials science", Macromol. Rapid. Commun.,2007,28,15-54.
    5.方申文,段明,易峰,李娟,““链接”化学在高分子合成中的应用”,化学世界,2008,4,244-248.
    6.张涛,郑朝晖,成煦,丁小斌,彭宇行,“材料学科中的点击化学”,化学进展,2008,20,1090-1101.
    7. M. G. Finn, H. C. Kolb, V. V. Fokin, K. B. Sharples著,张欣豪,吴云东译,“点击化学—释义与目标”,化学进展,2008,20,1-4.
    8. S. Itsuno, "Chiral polymer synthesis by means of repeated asymmetric reaction", Prog. Polym. Sci.,2005,540-58.
    9. S. Brase, J. Cobberling, D. Enders, R. Lazny, M. Wang, "Triazenes as Robust and Simple Linkers for Amine in Solid-phase Organic Synthesis", Tetra. Lett.1999,40, 2105-2108.
    10. R. Lazny, A. Nodzewska, "Synthesis of polymeric supports with spacer-modified triazene linkers:aldol and Grignard reactions of immobilized nortropinone", Tetra. Lett., 2003,44,2441-2444.
    11. E. Fernandez-Megia, J. Correa, I. Rodrniguez-Meizoso, R. Riguera, "A Click Approach to Unprotected Glycodendrimers", Macromolecules,2006,39,2113-2120.
    12. M. Malkoch, K. Schleicher, E. Drockenmuller, C.J. Hawker, T. P. Russell, P. Wu, V. V. Fokin, "Structurally Diverse Dendritic Libraries:A Highly Efficient Functionalization Approach Using Click Chemistry", Macromolecules,2005,38,3663-3678.
    13. P. Appukkuttan, W. Dehaen, V. V. Fokin, E. V. d. Eycken, "A Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(I)-Catalyzed Three-Component Reaction", Org. Lett.,2004,6,4223-4225.
    14. A. Michael, "Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsaurem-ethylester", J. Prakt. Chem.,1893,48,94-95.
    15. R. Huisgen, "In 1,2,3 Dipolar Cycloaddition Chemistry", New York:Wiley,1984,1, 1-176.
    16. C. W. Tornoe, C. Christensen, M. Meldal, "Peptidotriazoles on Solid Phase:[1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides", J. Org. Chem.,2002,67,3057-3062.
    17.李娟,段明,张烈辉,蒋晓慧,“点击化学及其应用”,化学进展,2007,19,1754-1760.
    18. H. Y. Woo, H. K. Shim, K. S. Lee, "Synthesis and optical properties of polyurethanes containing a highly NLO active chromophore", Macromol. Chem. Phys.,1998,199, 1427-1433.
    19. C. K. Park,J. Zieba, C. F. Zhao, B. Swedek, W. M. E. P. WiJekoon, P. N. Prasad, "Highly cross-linked polyurethane with enhanced stability of second-order nonlinear optical properties", Macromolecules,1995,28,3713-3717.
    20. J. Y. Lee, H. B. Bang, E. J. Park, W. J. Lee, B. K. Rhee, S. M. Lee, "Synthesis and electro-optical properties of novel Y-type polyurethanes containing dioxynitrostilbene", Polym. Int.,2004,53,1838-1844.
    1.邢其毅,裴伟伟,徐瑞秋,裴坚,“有机化学”,第二十五章,高等教育出版社,第三版,2005.
    2. L. Brandsma, "Synthesis of Acetylenes, Allenes and Cu-mulenes:Methods and Techniques", New York:Elsevier Academic Press,2004.
    3.王晔峰,邓维,刘磊,郭庆祥,"Sonogashira反应研究的最新进展”,有机化学2005,25,8-24.
    4. H. A. Diek, F. R. Heck, "Palladium catalyzed synthesis of aryl-, heterocyclic and vinylic acetylene derivatives", J. Organomet.Chem.,1975,93,259-263.
    5. L. J.Cassar, "Synthesis of aryl- and vinyl- substituted acetylene derivatives by the use of nickel and palladium complexes", J. Organomet.Chem.,1975,93,253-257.
    6. K. Sonogashira, "A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines", Tetra. Lett., 1975,16,4467-4470.
    7. C. Wang, L.-O. Palsson, A. S. Batsanov, M. R. Bryce, "Molecular Wires Comprising π-Extended Ethynyl- and Butadiynyl-2,5-Diphenyl-1,3,4-Oxadiazole Derivatives: Synthesis, Redox, Structural, and Optoelectronic Properties", J. Am. Chem. Soc.,2006, 128,3789-3799.
    8. J.-L. Wang, J. Luo, L.-H. Liu, Q.-F. Zhou, Y. Ma, J. Pei, "Nanosized Gradient π-Conjugated Thienylethynylene Dendrimers for Light Harvesting:Synthesis and Properties", Org. Lett.,2006,8,2281-2284.
    9. T. Okamoto, Z. Bao, "Synthesis of Solution-Soluble Pentacene-Containing Conjugated Copolymers", J. Am. Chem. Soc.,2007,129,10308-10309.
    10. Z. Li, Y. Dong, A. Qin, J. W. Y. Lam, Y. Dong, W. Yuan, J. Sun, J. Hua, K. S. Wong, B. Z. Tang, "Functionalization of Disubstituted Polyacetylenes through Polymer Reactions:Syntheses of Functional Poly(1-phenyl-l-alkyne)s", Macromolecules,2006, 39,467-469.
    11. S. P. Mcllroy, E. Clo, L. Nikolajsen, P. K. Frederiksen, C.B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, P. R. Ogilby, "Two-Photon Photosensitized Production of Singlet Oxygen: Sensitizers with Phenylene-Ethynylene-Based Chromophores", J. Org. Chem.,2005,70, 1134-1146.
    12. A. Qin, J. W. Y. Lam, H. Dong, W. Lu, C. K. W. Jim, Y. Dong, M.Halussler, H. H. Y. Sung, I. D. Williams, G. K. L. Wong, B. Z. Tang, "Metal-Free, Regioselective Diyne Polycyclotrimerization:Synthesis, Photoluminescence, Solvatochromism, and Two-Photon Absorption of a Triphenylamine-Containing Hyperbranched Poly(aroylarylene)", Macromolecules,2007,40,4879-4886.
    13. J. Zyss, Molecular Nonlinear Optics:Materials, Physics, and Devices, Academic Press, 1994.
    14. N. Tsuboya, R. Hamasaki, M. Ito, M. Mitsuishi, T. Miyashita, Y. Yamamoto, "Nonlinear optical properties of novel fullerene-ferrocene hybrid molecules", J. Mater. Chem.,2003,13,511-513.
    15. R. Chinchilla, C. Najera, "The Sonogashira Reaction:A Booming Methodology in Synthetic Organic Chemistry", Chem. Rev.,2007,107,874-922
    16.柯城,唐星华,吴雪梅,郑重,"Sonogashira反应机理研究进展”,江西科学,2008,26,426-429.
    1. H. K. Kim, S.-J. Kang, S.-K. Choi, Y.-H. Min, C.-S. Yoon, "Highly Efficient Organic/Inorganic Hybrid Nonlinear Optic Materials via Sol-Gel Process:Synthesis, Optical Properties, and Photobleaching for Channel Waveguides", Chem. Mater.,1999, 11,779-788.
    2. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    3. Y. J. Cui, G D. Qian, J. K. Gao, L. J. Chen, Z. Y. Wang, M. Q. Wang, "Preparation and nonlinear optical properties of inorganic-organic hybrid films with various substituents on chromophores", J. Phys. Chem. B,2005,109,23295-23295.
    4. C. Heldmann, M. Warner, "Nematic Main Chain Polymers with Head-to-Tail Structure:Synthesis and Enhanced NLO Response", Macromolecules,1998,31, 3519-3531.
    5. Z. Peng, L. Yu, "Second-Order Nonlinear Optical Polyimide with High-Temperature Stability", Macromolecules,1994,27,2638-2640.
    6. H. Ma, A. K.-Y. Jen, J. Wu, S. Liu, C.-F. Shu, L. R. Dalton, S. R. Marder, S. Thayumanavan, "A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices", Chem. Mater.,1999,11,2218-2225.
    7. S. Li, Z. Yang, P. Wang, H. Kang, W. Wu, C. Ye, M. Yang, X. Yang, "Contribution of the Multiple Charge-Transfer Chromophore to the Orientation Stability of the Poled Polymer Film", Macromolecules,2002,35,4314-4316.
    8. C. Zhang, C. Wang, J. Yang, L. R. Dalton, G. Sun, H. Zhang, W. H. Steier, "Electric Poling and Relaxation of Thermoset Polyurethane Second-Order Nonlinear Optical Materials:Role of Cross-Linking and Monomer Rigidity", Macromolecules,2001,34, 235-243.
    9. A. Scarpaci, E. Blart, V. Montembault, L. Fontaine, V. Rodriguez, F. Odobel, "A new crosslinkable system based on thermal Huisgen reaction to enhance the stability of electro-optic polymers", Chem. Commun.,2009,1825-1827.
    10. D. Bose, F. Foll,B. Boutevin, A. Rousseau, "Synthesis of a Novel Difunctional NLO Azo-Dye Chromophore and Characterizations of Crosslinkable Copolymers with Stable Electrooptic Properties", J. App. Polym. Sci.,1999,74,974-982.
    11. D. M. Walba, P. Keller, R. Shao, N. A. Clark, M. Hillmyer, R. H. Grubbs, "Main-Chain Ferroelectric Liquid Crystal Oligomers by Acyclic Diene Metathesis Polymerizationl", J. A0m. Chem. Soc.,1996,118,2740-2741.
    12. C. Heldmann, M. Schulze, G. Wegner, "Rigid-Rod-Like Main Chain Polymers with Rigidly Attached Chromophores. A Novel Structural Concept for Electrooptical Materials.1. Synthesis and Characterization", Macromolecules,1996,29,4686-4696
    13. M. Dobler, C. Weder, O. Ahumada, P. Neuenschwander, U. W. Suter,'Main-Chain Nonlinear Optical Polymers with Enhanced Orientational Stability", Macromolecules, 1998,31,7676-7681.
    14. M. E. Wright, S. Mullick, H.S. Lackritz, L.-Y. Liu, "Organic NLO Polymers.2. A Study of Main-Chain and Guest-Host x(2) NLO Polymers:NLO-phore Structure Versus Poling", Macromolecules,1994,27,3009-3015.
    15. P. Smitha, S. K. Asha C. K. S. Pillai, "Synthesis, Characterization, and HyperpolarizabilityMeasurements of Main-Chain Azobenzene Molecules",J. Polym. Sci. Part A:Polym. Chem.,2005,43,4455-4468.
    16. Y. Zhang, L. Wang, T. Wada, H. Sasabe, "Synthesis and Characterization of Polymers Containing in the Chain Backbone Carbazoles Substituted with Two Acceptor Groups as Nonlinear Optical Chromophores", Macromolecules,1996,29,1569-1573.
    17. H.-C. Tsai, W.-J. Kuo, G.-H. Hsiue, "Highly Thermal Stable Main-Chain Nonlinear Optical Polyimide Based on Two-Dimensional Carbazole Chromophores", Macromol. Rapid Commun.,2005,26,986-991.
    18. H.-C.Tsai, W.-J. Kuo, G.-H. Hsiue, "Enhanced Temporal Stability of an NLO Polyurethane via a Two-Dimensional Chromophore", Macromol. Rapid Commun., 2002,22,601-606.
    19. R. Centore, P. Riccio, S. Fusco, A. Carella, A. Quatela, S. Schutzmann, F. Stella, F. Dematteis, "Nonlinear Optical Properties of Regioregular Main-Chain Polyesters", J. Polym. Sci. Part A:Polym. Chem.,2007,45,2719-2725.
    20. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y. Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics", J. Phys. Chem. B, 2004,108,8523-8530.
    21.Z.-S. Xu, V. Drnoyan, A. Natansohn, P. Rochon, "Novel Polyesters with Amino-Sulfone Azobenzene Chromophores in the Main Chain", J. Polym. Sci. Part A:Polym. Chem.,2000,38,2245-2253.
    22. A. Ulman, C. S. Willand, W. Kohler, D. R. Robello, D. J. Williams, L. Handley, "New sulfonyl-containing materials for nonlinear optics:semiempirical calculations, synthesis, and properties", J. Am. Chem. Soc.,1990,112,7083-7090.
    23. W. Kohler, D. R. Robello, C. S. Willand, D. J. Williams, "Dielectric relaxation study of some novel polymers for nonlinear optics", Macromolecules,1991,24,4589-4599.
    24. C, Xu, B. Wu, L. R. Dalton, Y. Shi, P. M. Ranon, W. H. Steier, "Novel double-end crosslinkable chromophores for second-order nonlinear optical materials", Macromolecules,1992,25,6714-6715.
    25. C. Samyn, T. Verbiest, E. Kester, K. Van den Broeck, M. Van Beylen, A. Persoons, "High glass transition chromophore functionalised poly(maleimide-styrene)s for second-order nonlinear optical applications", Polymer,2000,41,6049-6054.
    26. K. Fuchibe, T. Akiyama, "Low-Valent Niobium-Mediated Double Activation of C-F/C-H Bonds:Fluorene Synthesis from o-Arylated a,a,a-Trifluorotoluene Derivatives",J. Am. Chem. Soc.,2006,128,1434-1435.
    27. N. Tsutsumi, O. Matsumoto, W.Sakai, T. Kiyotsukuri, "Nonlinear Optical Polymers.2. Novel NLO Linear Polyurethane with Dipole Moments Aligned Transverse to the Main Backbone", Macromolecules,1996,29,592-597.
    28. A. Courtin, "A. Notiz zur synthese von alkyl-, cycloalkyl- und aryl-(4-aminophenyl)-sulfonen", Helv. Chim. Acta.,1983,66,1046-1052.
    29. H. Y. Woo, H. K. Shim, K. S. Lee, "Synthesis and optical properties of polyurethanes containing a highly NLO active chromophore", Macromol. Chem. Phys.,1998,199, 1427-1433.
    30. C. Xu, B. Wu, L. R. Dalton, P. M. Ranon, Y. Shi, W. H. Steier, "New random main-chain, second-order nonlinear optical polymers", Macromolecules,1992,25, 6716-6718.
    1. Y. Zhang, L. Wang, T. Wada, H. Sasabe, "Synthesis and Characterization of Polymers Containing in the Chain Backbone Carbazoles Substituted with Two Acceptor Groups as Nonlinear Optical Chromophores", Macromolecules,1996,29,1569-1573.
    2. H.-C.Tsai, W.-J. Kuo, G.-H. Hsiue, "Highly Thermal Stable Main-Chain Nonlinear Optical Polyimide Based on Two-Dimensional Carbazole Chromophores", Macromol. Rapid Commun.,2005,26,986-991.
    3. H.-C.Tsai, W.-J. Kuo, G.-H. Hsiue, "Enhanced Temporal Stability of an NLO Polyurethane via a Two-Dimensional Chromophore", Macromol. Rapid Commun., 2002,22,601-606.
    4. R. Centore, P. Riccio, S. Fusco, A. Carella, A. Quatela, S. Schutzmann, F. Stella, F. Dematteis, "Nonlinear Optical Properties of Regioregular Main-Chain Polyesters", J. Polym. Sci. Part A:Polym. Chem.,2007,45,2719-2725.
    5. O. Ahumada, C. Weder, P. Neuenschwander, U. W. Suter, S. Herminghaus, "Electro-Optical Properties of Waveguides Based on a Main-Chain Nonlinear Optical Polyamide", Macromolecules,1997,30,3256-3261.
    6. M. Dobler, C. Weder,O. Ahumada, P. Neuenschwander, U. W. Suter, S. Follonier, C. Bosshard, P. Gunter, "Main-Chain Nonlinear Optical Polymers with Enhanced Orientational Stability", Macromolecules,1998,31,7676-7681.
    7. J.-Y. Lee, H.-B. Bang, T.-S. Kang, E.-J. Park, "Molecular design, synthesis and electro-optic properties of novel Y-type polyurethanes with high thermal stability of second harmonic generation", Europ. Polym. J.,2004,40,1815-1822.
    8. J.-Y. Lee, H.-B. Bang, E.-J. Park, W.-J. Lee, B. K. Rhee, S. M. Lee, "Synthesis and electro-optical properties of novel Y-type polyurethanes containing dioxynitrostilbene", Polym. Int.,2004,53,1838-1844.
    9. S. W. Kim, S. C. Shim, B.-J. Jung, H.-K. Shim, "Synthesis and properties of new electroluminescent polymers processing both hole and electon-transporting units in the main-chain", Polymer,2002,43,4297-4305.
    1. F. Kajzar, K.-S. Lee, A. K.-Y. Jen, "Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics", Adv. Polym. Sci.,2003,161,1-84.
    2. Z. Peng, L. Yu, "Second-Order Nonlinear Optical Polyimide with High- Temperature Stability", Macromolecules,1994,27,2638-2640.
    3. H. Ma, A. K.-Y. Jen, J. Wu, S. Liu, C.-F. Shu, L. R. Dalton, S. R. Marder, S. Thayumanavan, "A Convenient Modular Approach of Functionalizing Aromatic Polyquinolines for Electrooptic Devices", Chem. Mater.,1999,11,2218-2225.
    4. D. K. Taylor, E. T. Samulski, "Synthesis and Characterization of Poly(p-phenylene)s with Nonlinear Optical Side Chains", Macromolecules,2000,33,2355-2388.
    5. W. E. Moerner, S. M. Silence, "polymeric Photorefractive Materials", Chem. Rev.,1994,94, 127-155.
    6. Y. D. Zhang, R. Burzynski, S. Ghosal. M. K. Casstevens, "Photorefractive Polymers and Composites", Adv. Mater.,1996,8,111-125.
    7. J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, K. Pielichowski, "Carbazole-containing polymers.synthesis, properties and applications", Prog. Polym. Sci.,2003,28,1297-1353.
    8. A. S. Brar, S. Kaur, "Atom transfer radical polymerization of N-vinyl carbazole: Optimization to characterization",J. Polym. Sci. Part A:Polym. Chem.,2006,44, 1745-1757.
    9. J. Kido, H. Shionoya, K. Nagai, "Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(iV-vmylcarbazole)", Appl. Phys. Lett.,1995,67,2281-2283.
    10. X. N. Xie, M. Deng, H. Xu, S. W. Yang, D. C. Qi, C. Y. Gao, H. J. Chung, C. H. Sow, V. B. C. Tan, T. S. Wee, "Creating Polymer Structures of Tunable Electric Functionality by Nanoscale Discharge-Assisted Cross-Linking and Oxygenation", J. Am. Chem. Soc.,2006,128,2738-2744.
    11. D. V. Steenwinckel, E. Hendrickx, A. Persoons, "Large Dynamic Ranges in Photorefractive NLO Polymers and NLO-Polymer-Dispersed Liquid Crystals Using a Bifunctional Chromophore as a Charge Transporter", Chem. Mater.,2001,13, 1230-1237.
    12. M. Feng, Y. Chen, N. He, L. L. Gu, L. L. Gao, Z. Hu, Y. Lin, X. D. Zhuang, H. B. Zhan, "Ultrasound-assisted bulk synthesis of Cds-PVK nanocomposites via RAFT polymerization", J. Polym. Sci. Part A:Polym. Chem.,2008,46,5702-5707.
    13. K. R. Yoon, S-O. Ko, S. M. Lee, H. Lee, "Synthesis and characterization of carbazole derived nonlinear optical dyes", Dyes and Pigments,2007,75,567-573.
    14. H. Y. Woo, H. K. Shim, K. S. Lee, "Synthesis and optical properties of polyurethanes containing a highly NLO active chromophore", Macromol. Chem. Phys.,1998,199, 1427-1433.
    15. Y. Zhang, H. Hokari, T. Wada, Y. Shang, S. R. Marder, H. Sasabe, "Synthesis of N-Vinylcarbazole Derivatives with Acceptor Groups", Tetra. Lett.,1997,38,8721-8722.
    16.曾卉一,“两种全功能化光折变聚合物的合成与性能研究”,武汉大学硕士学位论文,1995.
    17. J. Luo, J. Qin, H. Kang, C. Ye, "A Postfunctionalization Strategy To Develop PVK-Based Nonlinear Optical Polymers with a High Density of Chromophores and Improved Processibility", Chem. Mater.,2001,13, 927-931.
    18. T.-D. Kim, J. Luo, Y. Q. Tian, J.-W. Ka, N. M. Tuker, M. Haller, J.-W. Kang, A. K.-Y. Jen, "Diels-Alder "Click Chemistry" for Highly Efficient Electrooptic Polymers", Macromolecules,2006,39,1676-1680.
    19. T. K. Lim, S. H. Hong, M. Y. Jeong, G. J. Lee, J. I. Jin, H. Y. Oh. "Aligning Polymer Main Chain by Pendent Chromophore Alignment:Optical and Electrical Methods", Macromolecules,1999,32,7051-7054.
    20. S. W. Cha, D. H. Choi, J. I. Jin, "Unusually Fast Optically Induced Birefringence in Polyoxetanes Bearing 4-(N,N-Diphenyl)amino-4'-nitroazobenzene Chromophores", Adv. Funct. Mater.,2001,11,355-360.
    21. S. W. Cha, D. H. Choi, D. K. Oh, D. Y. Han, C. E. Lee, J. I. Jin, "Reversible Polarization Gratings on Thin Films Polyoxetanes bearing 4-(N,N-Diphenyl)-amino-4'-nitroazobenzene Chromophores", Adv. Funct. Mater.,2002,12,670-678.
    22. D. Briers, L. D. Cremer, G. Koeckelberghs, S. Foerier, T. Verbiest, C. Samyn, "Influence of the Position of the Connecting Spacer of the Chromophore on the Nonlinear Optical Response", Macro. Rapid. Commun.,2007,28,942-947.
    23. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    24. J. Luo, M. Haller, H. Li, H.-Z. Tang, A. K.-Y. Jen, K. Jakka, C.-H. Chou, C.-F. Shu, "A Side-Chain Dendronized Nonlinear Optical Polyimide with Large and Thermally Stable Electrooptic Activity", Macromolecules,2004,37,248-250.
    25. J. Y. Do, S. K. Park, J.-J. Ju, S. Park, M.-H. Lee, "Electro-optic materials: hyperbranched chromophores attached linear polyimide and dendritic polyesters", Polym. Adv. Technol.,2005,16,221-226.
    26. Y.-C. Chen, H.-L. Chang, R.-H., Lee, S. A. Dai, W.-C. Su, R.-J. Jeng, "Nonlinear optical polyimides consisting of chromophore-containing dendrons with site-isolation effect", Polym. Adv. Technol.,2009,20,493-500.
    1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Loglund, W. R. Salaneck, "Electroluminescence in Conjugated Polymers", Nature,1999,397,121-128.
    2. D. Y. Kim, H. N. Cho, C. Y. Kim, "Blue Light Emitting Polymer", Prog. Polym. Sci., 2000,25,1089-1139.
    3. J. Hou, Z. Tan, Y. Yan, Y. He, C. Yang, Y. Li, "Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains", J. Am. Chem. Soc.,2006,128,4911-4916.
    4. M. J. Panzer, C. D. Frisbie, "Polymer Electrolyte-Gated Organic Field-Effect Transistors:Low-Voltage, High-Current Switches for Organic Electronics and Testbeds for Probing Electrical Transport at High Charge Carrier Density" J. Am. Chem. Soc.,2007, 129,6599-6607.
    5. S. W. Thomas III, G. D. Joly, T. M. Swager, "Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers", Chem. Rev.,2007,107,1339-1386.
    6. C. Xue, S. P. Jog, P. Murthy, H. Liu, "Synthesis of Highly Water-Soluble Fluorescent Conjugated Glycopoly(p-phenylene)s for Lectin and Escherichia coli", Biomacromolecu-les,2006,7,2470-2474.
    7. J.-F. Morin, M. Leclerc, D. Ades, A. Siove, "Polycarbazoles:25 Years of Progress", Macro. Rapid. Commun.,2005,26,761-778.
    8. T. Matsui, T. Nagata, M. Ozaki, A. Fujii, M. Onoda, M. Teraguchi, T. Masuda, K. Yoshino, "Novel properties of conducting polymers containing azobenzene moieties in side chain", Synth. Met.,2001,119,599-600.
    9. A. Izumi, R. Nomura, T. Masuda, "Design and Synthesis of Stimuli-Responsive Conjugated Polymers Having Azobenzene Units in the Main Chain", Macromolecules, 2001,34,4342-4347.
    10. Y. Chen, W. A. Harrison, C. T. Imrie, K. S. Ryder, "Pyrrole and polypyrrole-based liquid crystals containing azobenzene mesogenic groups", J. Mater. Chem.,2002,12,579-585.
    11.K. Huang, H. Qiu, M. Wang, "Synthesis of Highly Conducting Polyaniline with Photochromic Azobenzene Side Groups", Macromolecules,2002,35,8653-8655.
    12. S. R. Marder, B. Kippelen, A. K. Y. Jen, N. Peyghambarian, "Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications", Nature, 1997,388,845-851.
    13. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape", Science,2000,288,119-122.
    14. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer", Science,2002, 298,1401-1403.
    15. A. K.Y. Jen, T. A. Chen, V. P. Rao, Y. Cai, Y. J. Liu, L. R. Dalton, "High Performance Chromophores and Polymers for Electro-Optic Applications", Adv. Nonlinear Opt., 1997,4,237-249.
    16. H. Ma, A. K.-Y. Jen, "Functional Dendrimers for Nonlinear Optics", Adv. Mater.,2001, 13,1201-1205.
    17. J. L. Hua, B. Li,F. S. Meng, F. Ding, S. X. Qian, H. Tian, "Two-photon absorption properties of hyperbranched conjugated polymers with triphenylamine as the core", Polymer,2004,45,7143-7149.
    18. A. Hohenau, C. Cagran, G. Kranzelbinder, U. Scherf, G. Leising, "Efficient Continuous-Wave Two-Photon Absorption in para-Phenylene-Type Polymers", Adv. Mater.,2001,13,1303-1307.
    19. D. K. Taylor, E. T. Samulski, "Synthesis and Characterization of Poly(p-phenylene)s with Nonlinear Optical Side Chains", Macromolecules,2000,33,2355-2358.
    20.唐超,刘烽,徐慧,黄维,“聚芴类电致发光材料”,化学进展,2007,19,1153-1161.
    21.姜鸿基,冯嘉春,温贵安,韦玮,徐筱杰,黄维,“芴类电致发光材料研究进展”,化学进展,2005,15,818-825.
    22. D. Neher, "Polyfluorene Homopolymers:Conjugated Liquid-Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence", Macromol. Rapid Commun., 2001,22,1365-1385.
    23. B. Liu, W. L. Yu, Y. H. Lai, W. Huang, "Blue-Light-Emitting Fluorene-Based Polymers with Tunable Electronic Properties", Chem. Mater.,2001,13,1984-1991.
    24. E. H. Lim, B. J. Jung, H. K. Shim, "Synthesis and Characterization of a New Light-Emitting Fluorene-Thieno[3,2-b]thiophene-Based Conjugated Copolymer", Macromolecules,2003,36,4288-4293.
    25. N. S. Cho, D. H. Hwang, B. J. Jung, E. Lim, J. Lee, H. K. Shim, "Synthesis, Characterization, and Electroluminescence of New Conjugated Polyfluorene Derivatives Containing Various Dyes as Comonomers", Macromolecules,2004,37,5265-5273.
    26. M. S. Liu, J. L. Luo, A. K. Y. Jen, "Efficient Green-Light-Emitting Diodes from Silole-Containing Copolymers", Chem. Mater.,2003,15,3496-3500.
    27. S. Setayesh, A. C. Grimsdale, T, Weil, V. Enkelmann, K. Mullen, F. Meghdadi, E. J. W. List, G. Leising, "Polyfluorenes with Polyphenylene Dendron Side Chains:Toward Non-Aggregating, Light-Emitting Polymers",J. Am. Chem. Soc.,2001,123,946-953.
    28. B. C. Englert, S. Bakbak, U. H. F. Bunz, "Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s:Comparison of Pre-and Postfunctionalization Schemes", Macromolecules,2005,38,5868-5877
    29. B. Helms, J. L. Mynar, C. J. Hawker, J M. J. Frechet, "Dendronized Linear Polymers via "Click Chemistry"", J. Am. Chem. Soc.,2004,126,15020-15021.
    30. J. B. Carroll, B. J. Jordan, H. Xu, B, Erdogan, L, Lee, L. Cheng, C. Tiernan, G. Cooke, V. M. Rotello, "Model Systems for Flavoenzyme Activity:Site-Isolated Redox Behavior in Flavin-Functionalized Random Polystyrene Copolymers", Org. Lett.,2005, 7,2551-2554.
    31. N. K. Devaraj, P. H. Dinolfo, C. E. D. Chidsey, J. P. Collman, "Selective Functionalization of Independently Addressed Microelectrodes by Electrochemical Activation and Deactivation of a Coupling Catalyst", J. Am. Chem. Soc.,2006,128, 1794-1795
    32.劳文剑,尤进茂,于兆文,欧庆瑜,“溴代咔唑的合成及正相高效液相色谱分离”,化学试剂,2000,22,260-261.
    33. A. P. Vogt, B. S. Sumerlin, "An Efficient Route to Macromonomers via ATRP and Click Chemistry", Macromolecules,2006,39,5286-5292
    34. H. Gao, K. Matyjaszewski, "Synthesis of Star Polymers by a Combination of ATRP and the "Click" Coupling Method", Macromolecules,2006,39,4960-4965.
    35. J. A. Johnson, D, R. Lewis, D, D. Dlaz, M. G. Finn, J. T. Koberstein, N. J. Turro, "Synthesis of Degradable Model Networks via ATRP and Click Chemistry", J. Am. Chem. Soc.,2006,128,6564-6565.
    36. Y.-M. Chen, Y.-F. Liu, J.-G. Gao, C.-F. Chen, F. Xi, "Poly(methacrylates) bearing dendritic blocks", Macromol. Chem. Phys.,1999,200,2240-2244.
    37. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    1. M. Meldal, C. W. Tornoe, "Cu-catalyzed azide-alkyne cycloaddition", Chem. Rev.,2009, 108,2952-3015.
    2. W. H. Binder, R. Sachsenhofer,'"Click' chemistry in polymer and material science:An update", Macromol. Rapid. Commun.,2008,29,952-981.
    3. M. Meldal, "Polymer "Clicking" by CuAAC reactions", Macromol. Rapid. Commun., 2008,29,1016-1051.
    4.方申文,段明,易峰,李娟,““链接”化学在高分子合成中的应用”,化学世界,2008,4,244-248.
    5. U. Hahn, M. Elhabiri, A.Trabolsi, H. Herschbach, E. Leize, A. V. Dorsselaer, A.-M. Albrecht-Gary, J.-F. Nierengarten, "Supramolecular Click Chemistry with a Bisammonium-C60 Substrate and a Ditopic Crown Ether Host", Angew. Chem. Int. Ed., 2005,44,5338-5341.
    6. M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker, T. P. Russell, P. Wu, V. V. Fokin, "Structurally Diverse Dendritic Libraries:A Highly Efficient Functionalization Approach Using Click Chemistry", Macromolecules,2005,38,3663-3678.
    7. B. C. Englert, S. Bakbak, U. H. F. Bunz, "Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s:Comparison of Pre- and Postfunctionalization Schemes", Macromolecules,2005,38,5868-5877
    8. Y. Xu, Y. Suzuki, M. Komiyama, "Click Chemistry for the Identification of G-Quadruplex Structures:Discovery of a DNA-RNA G-Quadruplex", Angew. Chem. Int. Ed.,2009,48,3281-3284.
    9. G. K. Such, J. F. Quinn, A. Quinn, E. Tjipto, F. Caruso, "Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry",J. Am. Chem. Soc.,2006,128,9318-9319.
    10. J. K. Lee, Y. S. Chi, I. S. Choi, "Reactivity of Acetylenyl-Terminated Self- Assembled Monolayers on Gold:Triazole Formation", Langmuir,2004,20,3844-3847
    11. B. Khanttskyy, D. Dallinger, C. O. Kappe, "Combining Biginelli Multicomponent and Click Chemistry:Generation of 6-(1,2,3-Triazol-1-yl)-Dihydropyrimidone Libraries", J.Comb. Chem.,2004,6,884-892.
    12. A. E. Speers, G. C. Adam, B. F. J. Cravatt, "Activity-Based Protein Profiling in Vivo Using a Copper(Ⅰ)-Catalyzed Azide-Alkyne [3+2] Cycloaddition", J. Am. Chem. Soc., 2003,125,4686-4687.
    13. F. S. Hassane, B. Frisch, F. Schuber, "Targeted Liposomes:Convenient Coupling of Ligands to Preformed Vesicles Using "Click Chemistry", Bioconjugate Chem.,2006,17, 849-854.
    14. H. C. Kolb, K. B. Sharpless, "The growing impact of click chemistry on drug discovery", Drug Discovery Today,2003,8,1128-1137.
    15. T.-D. Kim, J. Luo, Y. Q. Tian, J.-W. Ka, N. M. Tuker, M. Haller, J.-W. Kang, A. K.-Y. Jen, "Diels-Alder "Click Chemistry" for Highly Efficient Electrooptic Polymers", Macromolecules,2006,39,1676-1680.
    16. A. Scarpaci, E. Blart, V. Montembault, L. Fontaine, V. Rodriguez, F. Odobel, "A new crosslinkable system based on thermal Huisgen reaction to enhance the stability of electro-optic polymers", Chem. Commun.,2009,1825-1827.
    17. Q. Zeng, Z. Li, Z. Li, C.Ye, J. Qin, B. Z. Tang, "Convenient Attachment of Highly Polar Azo Chromophore Moieties to Disubstituted Polyacetylene through Polymer Reactions by Using "Click" Chemistry", Macromolecules,2007,40,5634-5637.
    18. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    19. B. H. Robinson, L. R. Dalton, H. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. K.-Y. Jen, "The molecular and supramolecular engineering of polymeric electro-optic materials" Chem. Phys.,1999,245,35-50.
    20. T. P. Lodge "A Virtual Issue of Macromolecules:Click Chemistry in Macromolecular Science", Macromolecules,2009,42,3827-3829.
    21. J. A. Johnson, M. G. Finn, J. T. Koberstein, "Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition "Click" chemistry" Macromol. Rapid. Commun.,2008,29, 1052-1072.
    22. L. P. Yu, W. K. Chan, Z. N. Bao, "Synthesis and characterization of a thermally curable second-order nonlinear optical polymer", Macromolecules,1992,25,5609-5612.
    23. L. R. Dalton, "Organic electro-optic materials", Pure App. Chem.,2004,76,1421-1433.
    24. P. A. Sullivan, A. J.-P. Akelaitis, S. K. Lee, G. McGrew, S. K. Lee, D. H. Choi, L. R. Dalton, "Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior", Chem. Mater.,2006,18, 344-351.
    25. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y. Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics", J. Phys. Chem. B, 2004,108,8523-8530.
    1. Z, Li, J, Qin, S, Li, C. Ye, "Second-order Nonlinear Optical Property of Polysiloxane Containing Indole-Based Multifunctional Cchromophore", Synth. Metal.,2003,135, 467-468.
    2. Z. Li, J. Li, J. Qin, A. Qin, C. Ye, "Synthesis and characterization of polysiloxanes containing carbazolyl and sulfonyl-indole based chromophore as side chains", Polymer, 2005,46,363-358.
    3. J. Li, Z. Li, C. Zhan, J. Qin, Y. Li, "Synthesis of Polysiloxanes Exhibiting Both Photo-Conductive and Electro-Opical Properties", Synth. Metal.,1999,101,127.
    4. J. Li, P. Ren, C. Zhan, J. Qin, "Synthesis and Structural Characterization of a Novel Kind of Multifunctional Polysiloxane for Photorefractive Effect", Polym. Int.,1999,48, 491-494.
    5. Z. Li, J. Qin, S. J. Li, C. Ye, J. Luo, Y. Cao, "Polyphophazene Containing Indole-Based Dual Chromophores:Synthesis and Nonlinear Optical Characterization", Macromolecules,2002,35,9232-9235.
    6. Z. Li, C. Huang, J. L. Hua, J. Qin, Z. Yang, C. Ye, "A New Postfunctional Approach To Prepare Second-Order Nonlinear Optical Polyphophazenes Containing Sulfonyl-Based Chromophore", Macromolecules,2004,37,371-376.
    7. Z. Li, J. Hua, Q. Q. Li, C. Huang, A. J. Qin, C. Ye, J. Qin, "Synthesis of novel poly {methyl-[3-(9-indolyl)propyl]siloxane}-based nonlinear optical polymers via postfunctionalization", Polymer,2005,46,11940-11948.
    8. Z. Li, W. Gong, J. Qin, Z. Yang, C, Ye, "Second-order nonlinear optical property of polyphosphazenes containing charge-transporting agents and indole-based chromophore", Polymer,2005,46,4971-4978.
    9. Z. Li, Q. Q. Li, A. J. Qin, Y. Q. J. W.-Y. Dong, Lam, Y. P. Dong, C. Ye, J. Qin, B. Z. Tang, "Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains", J. Polym. Sci. Part A:Polym. Chem.,2006,44, 5672-5680.
    10. Zhen Li, Y. Dong, A. Qin, J. W. Y. Lam, Y. Dong, W. Yuan, J. Sun, J. Hua, K. S. Wong, B. Z. Tang, "Functionalization of Disubstituted Polyacetylenes through Polymer Reactions:Syntheses of Functional Poly(1-phenyl-l-alkyne)s", Macromolecules,2006, 39,467-469.
    11. Z. Li, Y. Dong, M. Halussler, J. W. Y. Lam, Y. Dong, L.Wu, K. S. Wong, B. Z. Tang, "Synthesis of, Light Emission from, and Optical Power Limiting in Soluble Single-Walled Carbon Nanotubes Functionalized by Disubstituted Polyacetylenes", J. Phys. Chem. B,2006,110,2302-2309
    12. Z. Li, J. Qin, X. Wu, "New Approaches for the Synthesis of Hindered C60- Containing Polyphosphazenes via Functionalized Intermediates",J. Polym. Sci. Part A:Polym. Chem.,2004,42,2877-2885.
    13. Z. Li, J. Qin, "Synthesis of C60-Containing Polyphosphazenes from a New Reactive Macromolecular Intermediate:Polyphophazene Azides", J. Polym. Sci. Part A:Polym. Chem.,2004,42,194-199.
    14. Z. Li, P. Shao, J. Qin, "New Postfunctional Method To Synthesize C60-Containing Poly(ethylene oxide)",J. Appl. Polym. Sci.,2004,92,867-870.
    15. Z. Li, J. Qin, "A New Postfunctional Method to Synthesize C60-Containing Polysiloxanes", J. Appl. Polym. Sci.,2003,89,2068-2071.
    16. Y. Tian, X. Zhang, J. Wu, H. Fun, M. Jiang, Z. Xu, "Structural diversity and properties of a series of dinuclear and mononuclear copper and copper carboxylato complexes", New. J. Chem.,2002,26,1468-1473.
    17.17. A. Courtin, "A. Notiz zur synthese von alkyl-, cycloalkyl- und aryl-(4-aminophenyl)- sulfonen", Helv. Chim. Acta.,1983,66,1046-1052.
    18. H. Y. Woo, H. K. Shim, K. S. Lee, "Synthesis and optical properties of polyurethanes containing a highly NLO active chromophore", Macromol. Chem. Phys.,1998,199, 1427-1433.
    19. A. Ulman, C. S. Willand, W. Kohler, D. R. Robello, D. J. Williams, L. Handley, "New sulfonyl-containing materials for nonlinear optics:semi empirical calculations, synthesis, and properties", J. Am. Chem. Soc.,1990,112,7083-7090.
    20. W. Kohler, D. R. Robello, C. S. Willand, D. J. Williams, "Dielectric relaxation study of some novel polymers for nonlinear optics", Macromolecules,1991,24,4589-4599.
    21. C, Xu, B. Wu, L. R. Dalton, Y. Shi, P. M. Ranon, W. H. Steier, "Novel double-end crosslinkable chromophores for second-order nonlinear optical materials", Macromolecules,1992,25,6714-6715.
    22. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y. Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics",J. Phys. Chem. B, 2004,108,8523-8530.
    23. P. A. Sullivan, A. J.-P. Akelaitis, S. K. Lee, G McGrew, S. K. Lee, D. H. Choi, L. R. Dalton, "Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior", Chem. Mater.,2006,18, 344-351.
    1. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape", Science,2000,288,119-122.
    2. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer", Science,2002, 298,1401-1403.
    3. S. R. Marder, B. Kippelen, A. K. Y. Jen, N. Peyghambarian, "Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications", Nature, 1997,388,845-851.
    4. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    5. B. H. Robinson, L. R. Dalton, H. W. Harper, A. Ren, F. Wang, C. Zhang, G Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. K.-Y. Jen, "The molecular and supramolecular engineering of polymeric electro-optic materials", Chem. Phys.,1999,245,35-50.
    6. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    7. H. Ma, A. K.-Y. Jen, "Functional Dendrimers for Nonlinear Optics", Adv. Mater.,2001, 13,1201-1205.
    8. M. J. Choa, D. H. Choia, P. A. Sullivanb, A. J. P. Akelaitis, L. R. Dalton, "Recent progress in second-order nonlinear optical polymers and dendrimers", Prog. Polym. Sci.,2008,33,1013-1058.
    9. P. A. Sullivan, A. J.-P. Akelaitis, S. K. Lee, G. McGrew, S. K. Lee, D. H. Choi, L. R. Dalton, "Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior", Chem. Mater.,2006,18, 344-351.
    10. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J.-P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A.-T. Chen, A. K.-Y. Jen, B. H. Robinson, L. R. Dalton, "Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect", J. Am. Chem. Soc.,2001,129,7523-7530.
    11.L. R. Dalton, "Polymeric Electro-Optic Materials:Optimization of Electro-Optic Activity, Minimization of Optical Loss, and Fine-Tuning of Device Performance", Opt. Eng.,2000,39,589-595.
    12. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y. Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics", J. Phys. Chem. B, 2004,108,8523-8530.
    13. S. Liu, M. A. Haller, H. Ma, L. R. Dalton, S.-H. Jang, A. K.-Y. Jen, "Focused Microwave-Assisted Synthesis of 2,5-Dihydrofuran Derivatives as Electron Acceptors for Highly Efficient Nonlinear Optical Chromophores", Adv. Mater.,2003,15,603-607.
    14. E. Campaigne, W. M. Budde, G F. Schaefer, "p-Aminobenzaldehyde", Org. Synth.Coll., 1963,4,31.
    15. N. Miyaura, A. Suzuki, "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds", Chem. Rev.,1995,95,2457-2483.
    16. Y. Koizumi, S. Seki, S. Tsukuda, S. Sakamoto, S. Tagawa, "Self-Condensed Nanoparticles of Oligofluorenes with Water-Soluble Side Chains", J. Am. Chem. Soc., 2006,128,9036-9037.
    17. J. Hua, J. Luo, J. Qin, Y. Shen, Y. Zhang, Z. Lu, "New nonlinear optical chromophores exhibiting good transparency and large nonlinearity:synthesis and characterization of chromophores with stilbene and ring-locked triene as a combined conjugation bridge", J. Mater. Chem.,2002,12,863-867.
    18. W. Gong, Q. Li,Z. Li, C. Lu, J. Zhu, S. Li, J. Yang, Y. Cui, J. Qin, "Synthesis and Characterization of Indole-Containing Chromophores for Second-Order Nonlinear Optics", J. Phys. Chem. B,2006,110,10241-10247
    19. G. Kaupp, M. R. Naimi-Jamal, J. Schmeyers, "Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield", Tetrahedron,2003,59,3753-3760.
    20. Y. Zhang, H. Hokari, T. Wada, Y. Shang, S. R. Marder, H. Sasabe, "Synthesis of N-Vinylcarbazole Derivatives with Acceptor Groups", Tetra. Lett.,1997,38,8721-8722.
    21. G Koeckellberghs, M. Vangheluwe, I. Picard, L. D. Groof, T. Verbiest, T. Samyn, C. Persoons, "Synthesis and Properties of New Chiral Donor-Embedded Polybinaphthalenes for Nonlinear Optical Applications", Macromolecules,2004,37, 8530-8537.
    22. L. Qiu, Y. Shen, J. Hao, J. Zhai, F. Zu, T. Zhang, "Study on novel second-order NLO azo-based chromophores containing strong electron-withdrawing groups and different conjugated bridges", J. Mater. Sci.,2004,39,2335-2340.
    23. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    24. L. R. Dalton, "Rational design of organic electro-optic materials", J. Phys:Conden. Matter.,2003,15,897-934.
    25. K. Schmidt, S. Barlow, A. Leclercq, E. Zojer, S-H. Jang, S. R. Marder, A. K.-Y. Jen, J.-L. Bredasa, "Efficient acceptor groups for NLO chromophores:competing inductive and resonance contributions in heterocyclic acceptors derived from 2-dicyanomethylidene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran",J. Mater. Chem., 2007,17,2944-2949.
    1. L. R. Dalton, "Rational design of organic electro-optic materials", J. Phys:Conden. Matter.,2003,15,897-934.
    2. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    3.花建丽,李俊,罗敬东,秦金贵,“兼具大的二阶光学非线性与良好透明性的有机生色团的分子设计进展”,有机化学,2003,23,44-53。
    4. R. M. Christopher, S. Ermer, M. L. Steven, I. H. McComb, D. S. Leung, R. Wortmann, K. Prdmer, R. J. Twieg, "(Dicyanomethylene)pyran Derivatives with C2v Symmetry:An Unusual Class of Nonlinear Optical Chromophores", J. Am. Chem. Soc.,1996,118, 12950-12955.
    5. M. S. Wong, C. Bosshard, F. Pan, P. Gunter, "Non-classical donor-acceptor chromophores for second order nonlinear optics ", Adv. Mater.,1996,8,677-680.
    6. P. R. Varanasi,A. K.-Y. Jen, J. Chandrasekhar, I. N. N. Namboothiri, A. Rathna, J. Am. Chem. Soc.,1996,118,12443-12448.
    7. G. Mignani, G. Kramer, G. Puccetti, I. Lwdoux, G. Soula, J. Zyss, R. Meyrueix, "A new class of silicon compounds with interesting nonlinear optical effects", Organometallics, 1990,9,2640-2643.
    8. S. Zrig, G. Koeckelberghs, T. Verbiest, B. Andrioletti, E. Rose, A. Persoons, I. Asselberghs, K. Clays, "△-Type Regioregular Oligothiophenes:Synthesis and Second-Order NLO Properties", J. Org. Chem.,2007,72,5855-5858.
    9. A. J. P. Akelaitis, B. C. Olbricht, P. A. Sullivan, Y. Liao, S. K. Lee, D. H. Bale, D. B. Lao, W. Kaminsky, B. E. Eichinger, D. H. Choi, Philip J. Reid, L. R. Dalton, "Synthesis and electro-optic properties of amino-phenyl-thienyl donor chromophores", Opt. Mater,2008, 30,1504-1513.
    10. J. Luo, J. Hua, J. Qin, J. Cheng, Y. Shen, Z. Lu, P. Wang, C. Ye, "The design of second-order nonlinear optical chromophores exhibiting blue-shifted absorption and large nonlinearities:the role of the combined conjugation bridge", Chem. Commun.,2001, 171-172.
    11. W. Gong, Q. Li, Z. Li, C. Lu, J. Zhu, S. Li, J. Yang, Y. Cui, J. Qin, "Synthesis and Characterization of Indole-Containing Chromophores for Second-Order Nonlinear Optics",J. Phys. Chem. B,2006,110,10241-10247.
    12. Q. Li, C. Lu, J. Zhu, E. Fu, C. Zhong, S. Li, Y. Cui, J. Qin, Z. Li, "Nonlinear Optical Chromophores with Pyrrole Moieties as the Conjugated Bridge:Enhanced NLO Effects and Interesting Optical Behavior", J. Phys. Chem. B,2008,112,4545-4551.
    13. S. Michael, H. Ammon, "Preparation of a rigid macrocycle with two exotopic phenanthroline binding sites", Synlett,1999,6,750-752.
    14. S. P. Dudek, M. Pouderoijen, R. Abbel, A. P. H. J. Schening, E. W. Meijer, "Synthesis and Energy-Transfer Properties of Hydrogen-Bonded Oligofluorenes", J. Am. Chem. Soc., 2005,127,11763-11768.
    15.邵频,“新型有机双光子吸收分子和高分子的设计、合成、结构和性质”,武汉大学博士论文,2005.
    1. D. J. Williams, "Organic polymeric and non-polymeric materials with large optical nonlinearities", Angew. Chem. Int. Ed.,1984,23,690-703.
    2. P. N. Prasad, D. R. "Ulrich Nonlinear optical and electro-active polymers", New York: Plenum Press,1988.
    3. D. M. Burland, R. D. Miller, C. A. Walsh, "Second-order nonlinearity in poled-polymer systems", Chem. Rev.,1994,94,31-75.
    4. F. Kajzar, K.-S. Lee, A. K.-Y. Jen, "Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics", Adv. Polym. Sci.,2003,161,1-84.
    5. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape", Science,2000,288,119-122.
    6. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer", Science,2002, 298,1401-1403.
    7. M. S. Chandra, M. G. Krishna, H. Mimata, J. Kawamata, T. Nakamura, T. P. Radhakrishnan, "Laser-induced second harmonic generation decay in a Langmuir-Blodgett film:arresting by polyelectrolyte templating", Adv. Mater.,2005,17, 1937-1941.
    8. H. Yamamoto, S. Katogi, T. Watanabe, H. Sato, S. Miyata, "New molecular design approach for noncentrosymmetric crystal structures:Lambda (A)-shaped molecules for frequency doubling", Appl. Phys. Lett.,1992,60,935-939.
    9. H. Kang, P.-W. Zhu, Y. Yang, A. Facchetti, T. J. Marks, "Self-Assembled Electrooptic Thin Films with Remarkably Blue-Shifted Optical Absorption Based on an X-Shaped Chromophore", J. Am. Chem. Soc.,2004,126,15974-15975.
    10. R. M. Christopher, S. Ermer, M. L. Steven, I. H. McComb, D. S. Leung, R. Wortmann, P. Krdmer and R. J. Twieg, "(Dicyanomethylene)pyran Derivatives with C2v Symmetry:An Unusual Class of Nonlinear Optical Chromophores", J. Am. Chem. Soc.,1996,118,12950-12955.
    11. E. A. Weiss, L. E. Sinks, A. S. Lukas, E. T. Chernick, M. A. Ratner, M. R. Wasielewski, "Influence of Energetics and Electronic Coupling on Through-Bond and Through-Space Electron Transfer within U-Shaped Donor-Bridge-Acceptor Arrays", J. Phys. Chem. B,2004,108,10309-10316.
    12. B. R. Cho, S. J. Lee, S. H. Lee, K. H. Son, Y. H. Kim, J.-Y. Doo, G. J. Lee, T. I. Kang, Y. K. Lee, M. Cho and S.-J. Jeon, "Octupolar Crystals for Nonlinear Optics:1,3,5-Trinitro-2,4,6-tris(styryl)benzene Derivatives", Chem. Mater.,2001,13, 1438-1040.
    13. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    14. B. H. Robinson, L. R. Dalton, H. W. Harper, A. Ren, F. Wang, C. Zhang, G Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. K.-Y. Jen, "The molecular and supramolecular engineering of polymeric electro-optic materials", Chem. Phys.,1999,245,35-50.
    15. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    16. Q. Li, G. Yu, J. Huang, H. Liu, Z. Li, C. Ye, Y. Liu, J. Qin, "Polyurethanes Containing Indole-Based Non-Linear Optical Chromophores:from Linear Chromophore to H-Type", Macromol. Rapid Commun.,2008,29,798-803.
    17. C.-Z. Zhang, C. Lu, J. Zhu, G.-Y. Lu, X. Wang, Z.-W. Shi, F. Liu, Y.Cui, "The Second-Order Nonlinear Optical Materials with Combined Nonconjugated D-π-A Units", Chem. Mater.,2006,18,6091-6093.
    18. C.-Z. Zhang, C. Lu, J. Zhu, C.-Y. Wang, G.-Y. Lu, C.-S. Wang, D.-L. Wu, F. Liu and Y. Cui, "Enhanced Nonlinear Optical Activity of Molecules Containing Two D-π-A Chromophores Locked Parallel to Each Other", Chem. Mater.,2008,20,4628-4641.
    19. Y. Zhang, L. Wang, T. Wada, H. Sasabe, "Synthesis and Characterization of Polymers Containing in the Chain Backbone Carbazoles Substituted with Two Acceptor Groups as Nonlinear Optical Chromophores", Macromolecules,1996,29,1569-1573.
    20. H.-C. Tsai, W.-J. Kuo, G.-H. Hsiue, "Enhanced Temporal Stability of an NLO Polyurethane via a Two-Dimensional Chromophore", Macromol. Rapid Commun., 2002,22,601-606.
    21.J.-L. Wang, J. Luo, L.-H. Liu, Q.-F. Zhou, Y. Ma, J. Pei, "Nanosized Gradient π-Conjugated Thienylethynylene Dendrimers for Light Harvesting:Synthesis and Properties", Org. Lett.,2006,8,2281-2284.
    22. S. P. McIlroy, E. C16, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, P. R. Ogilby, "Two-Photon Photosensitized Production of Singlet Oxygen: Sensitizers with Phenylene-Ethynylene-Based Chromophores", J. Org. Chem.,2005,70, 1134-1146.
    23. A. Qin, J. W. Y. Lam, H. Dong, W. Lu, C. K. W. Jim, Y. Dong, M.Hal ussler, H. H. Y. Sung, I. D. Williams, G. K. L. Wong, B. Z. Tang, "Metal-Free, Regioselective Diyne Polycyclotrimerization:Synthesis, Photoluminescence, Solvatochromism, and Two-Photon Absorption of a Triphenylamine-Containing Hyperbranched Poly(aroylarylene)", Macromolecules,2007,40,4879-4886.
    24. Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y. Dong, C. Ye, I. Williams, B. Tang, "Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores", Macromolecules, 2006,39,1436-1442.
    25. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    1. F. Kajzar, K.-S. Lee, A. K.-Y. Jen, "Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics", Adv. Polym. Sci.,2003,161,1-84.
    2. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    3. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    4. M. J. Choa, D. H. Choia, P. A. Sullivanb, A. J. P. Akelaitis, L. R. Dalton, "Recent progress in second-order nonlinear optical polymers and dendrimers", Prog. Polym. Sci.,2008,33,1013-1058.
    5. T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, A. K.-Y. Jen, "Ultralarge and Thermally Stable Electro-Optic Activities from Supramolecular Self-Assembled Molecular Glasses" J.Am. Chem. Soc.,2007,129,488-489.
    6. Y. Zhang, L. Wang, T. Wada, H. Sasabe, "Synthesis and Characterization of Polymers Containing in the Chain Backbone Carbazoles Substituted with Two Acceptor Groups as Nonlinear Optical Chromophores", Macromolecules,1996,29,1569-1573.
    7. M. Dobler, C. Weder, O. Ahumada, P. Neuenschwander, U. W. Suter, S. Follonier, C. Bosshard, P. Gunter, "Main-Chain Nonlinear Optical Polymers with Enhanced Orientational Stability", Macromolecules,1998,31,7676-7681.
    8. M. P. Pretre, U. Meier, U. Stalder, C. Bosshard, P. Gunter, P. Kaatz, C. Weder, P. Neuenschwander, U. W. Suter, "Relaxation Processes in Nonlinear Optical Polymers:A Comparative Study", Macromolecules,1998,31,1947-1957.
    9. Z. S. Hou, Y. B. Tan, K. Kim, Q. F. Zhou, "Preparation of novel side-chain pseudopolyrotaxanes consisting of cucurbituril[6] and polyamine salts", Chin. Chem. Lett.,2005,16,1031-1034.
    10. E. J. O'Neil, K. M. DiVittorio, B. D.Smith, "Phosphatidylcholine-Derived Bolaamphip-hiles via Click Chemistry", Org. Lett.,2007,9,199-202.
    1. E. W. Buhleier, W. Wehner, F. Vogtle, ""Cascade" and "nonskid-chain-like" synthesis of molecular cavity topologies", Synthesis,1978,155-158.
    2. D. A. Tomalia, H. Baker, J. R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. "A new class of polymers:Starburst- dendritic macromolecules Smith", Polym.J.,1985,17,117-132.
    3. S.-E. Stiriba,H. Frey, R. Haag, "Dendritic Polymers in Biomedical Applications:From Potential to Clinical Use in Diagnostics and Therapy", Angew. Chem. Int. Ed.,2002,41, 1329-1334.
    4. J. M. J. Frechet, "Dendrimers and Other Dendritic Macromolecules:From Building Blocks to Functional Assemblies in Nanoscience and Nanotechnology", J. Polym. Sci. Part A:Polym.Chem.,2003,41,3713-3725.
    5. E. Holder, B. M. W. Langeveld, U. S. Schubert, "New Trends in the Use of Transition Metal-Ligand Complexes for Applications in Electroluminescent Devices", Adv. Mater., 2005,17,1109-1121.
    6. U. Boas, P. M. H. Heegaard, "Dendrimers in drug research", Chem. Soc. Rev.,2004,33, 43-63.
    7. A. W. Bosman, H. M. Janssen, E. W. Meijer, "About Dendrimers:Structure, Physical Properties, and Applications", Chem. Rev.,1999,99,1665-1688.
    8. D. A. Tomalia, J. M. J. Frechet, "Discovery of dendrimers and dendritic polymers:a brief historical perspective",J. Polym. Sci. Part A:Polym. Chem.,2002,40,2719-2728.
    9. J. M. J. Frechet, D. A. Tomalia, "Dendrimers and other dendritic polymers" New York: Wiley; 2002.
    10. S. Hecht, J. M. J. Frechet, "Dendritic encapsulation of function:Applying nature's site isolation principle from biomimetics to materials science", Angew. Chem. Int. Ed., 2001,40,74-91.
    11. S. M. Grayson, J. M. J. Frechet, "Convergent dendrons and dendrimers:From synthesis to applications", Chem. Rev.,2001,101,3819-3867.
    12. M. Fischer, F. Vogtle, "Dendrimers:From Design to Application—A Progress Report", Angew. Chem. Int. Ed.,1999,38,884-905.
    13. G. Franc, A. Kakkar, "Dendrimer design using CuI-catalyzed alkyne-azide "click-chemistry", Chem. Comm.,2009,5267-5276.
    14. P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Frechet, K. B. Sharpless, V. V. Fokin, "Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(i)-Catalyzed Ligation of Azides and Alkynes", Angew. Chem. Int. Ed.,2004,43,3928-3932.
    15. P. Antoni, M. Malkoch, G. Vamvounis, D. Nystrom, A. Nystrom, M. Lindgrenb, A. Hult, "Europium confined cyclen dendrimers with photophysically active triazoles", J. Mater. Chem.,2008,18,2545-2554.
    16. R. Westlund, E. Glimsdal, M. Lindgren, R. Vestberg, C. J. Hawker, C. Lopesd, E. Malmstrom, "Click chemistry for photonic applications:triazole-functionalized platinum(II) acetylides for optical power limiting", J. Mater. Chem.,2008,18,166-175.
    17. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J.-P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A.-T. Chen, A. K.-Y. Jen, B. H. Robinson, L. R. Dalton, "Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect", J. Am. Chem. Soc.,2007,129,7523-7530.
    18. K. L. Wooley, C. J. Hawker, J. M. J. Frechet, "Hyperbranched Macromolecules via a Novel Double-Stage Convergent Growth Approach", J. Am. Chem. Soc.,1991,113, 4252-4261.
    19. T. M. Miller, T. X. Neenan, R. Zayas, H. E. Bair, "Synthesis and Characterization of a Series of Monodisperse,1,3,5-Phenylene-Based Hydrocarbon Dendrimers Including C276H186 and Their Fluorinated Analogues",J. Am. Chem. Soc.,1992,114,1018-1025.
    20. D. Zanini, R. Roy, "Novel Dendritic a-Sialosides:Synthesis of Glycodendrimers Based on a 3,3-Iminobis(propylamine) Core", J. Org. Chem.,1996,61,7348-7354.
    21. S. J. Lee, S. S. Lee, J. Y. Lee, J. H. Jung, "A Functionalized Inorganic Nanotube for the Selective Detection of Copper(II) Ion", Chem. Mater.,2006,18,4713-4715.
    22. X. Shen, H. Liu, Y. Li, S. Liu, "Click-Together Azobenzene Dendrons:Synthesis and Characterization", Macromolecules,2008,41,2421-2425.
    23. C. R. Moylan, R. D. Miller, R. J. Twieg, V. Y. Lee, I. H. McComb, S. Ermer, S. M. Lovejoy, D. S. Leung, "Defeating tradeoffs for nonlinear optical chromophores", Proc. SPIE,1995,2527,150-162.
    24. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    1. A. D. Jenkins, P. Kratochvil, R. F. T. Stepto, U. W. Suter, "Glossary of basic terms in polymer science", Pure. Appl. Chem.,1996,68,2287-2311.
    2. A. D. Schluter, "Dendrimers with polymeric core:towards nanocylinders", Topics Curr. Chem.,1998,197,165-191.
    3. H. Frauenrath, "Dendronized polymers—building a new bridge from molecules to nanoscopic objects", Prog. Polym. Sci.,2005,30,325-384.
    4. J. L. Hedrick, T. Magbitang, E. F. Connor, T. Glauser, W. Volksen, C. J. Hawker, V. Y. Lee, R. D. Miller, "Application of complex macromolecular architectures for advanced microelectronic materials", Chem. Eur. J.,2002,8,3308-3319.
    5. D. A. Tomalia, P. M. Kirchhoff, "Rod-shaped dendrimers",694. Midland, MI, USA: The Dow Chemical Company; 1987. USPatent 4,694,064.
    6. D. A. Tomalia, A. M. Naylor, W. A. Goddard Ⅲ, "Starburst dendrimers:Molecular-level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matter", Angew. Chem. Int. Ed.,1990,29,138-175.
    7. C. J. Hawker, J. M. J. Frechet, "The synthesis and polymerization of a hyperbranched polyether macromonomer", Polymer,1992,33,1507-1511.
    8. V. Percec, J. Heck, G. Ungar, "Liquid-crystalline polymers containing mesogenic units based on half-disk and rodlike moieties 5. Side-chain liquid-crystalline poly(methylsiloxanes) containing hemiphasmidic mesogens based on 4-[[3,4,5,-tris (alkan-1-yloxy)benzoyl]oxy]-40-[[p-(propan-l-yloxy)benzoyl]oxy]biphenyl groups", Macromolecules,1991,24,4957-4962.
    9. V. Percec, M. Lee, J. Heck, H. E. Blackwell, G. Ungar, "Alvarez-Castillo A. Reentrant isotropic phase in a supramolecular disc-like oligomer of 4-[3,4,5-tris (n-dodecyloxy) benzoyloxy]-40-[(2-vinyloxy)ethoxy]biphenyl", J. Mater. Chem.,1992,2,931-938.
    10. V. Percec, J. Heck, M. Lee, G. Ungar, "Alvarez-Castillo A. Poly[2-vinyloxyethyl 3,4,5-tris[4-(n-dodecanyloxy)benzyloxy]benzoate]:a self-assembled supramolecular polymer similar to tobacco mosaic virus", J. Mater. Chem.,1992,2,1033-1039.
    11. R. Freudenberger, W. Claussen, A. D. Schluter, H. Wallmeier, "Functionalized rod-like polymers one-dimensional rigid matrixes", Polymer,1994,35,4496-4501.
    12. B. Karakaya, W. Claussen, K. Gessler, W. Saenger, A. D. Schluter, "Toward dendrimers with cylindrical shape in solution", J. Am. Chem. Soc.,1997,119, 3296-3301.
    13. A. D. Schluter, J. P. Raabe "Dendronized polymers:Synthesis, characterization, assembly at interfaces, and manipulation", Angew. Chem. Int. Ed.,2000,39,864-883.
    14. H. Frey, "From random coil to extended nanocylinder:Dendrimer fragments shape polymer chains", Angew. Chem. Int. Ed.,1998,37,2193-2197.
    15. A. Zhang, L. Shu, Z. Bo, A. D. Schliiter, "Dendronized polymers:recent progress in synthesis", Macromol. Chem. Phys.,2003,204,328-339.
    16. P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. J. Fre'chet, K. B. Sharpless, V. V. Fokin, "Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(i)-Catalyzed Ligation of Azides and Alkynes", Angew. Chem. Int. Ed.,2004,43,3928-3932.
    17. B. Helms, J. L. Mynar, C. J. Hawker, J M. J. Frechet, "Dendronized Linear Polymers via "Click Chemistry"",J. Am. Chem. Soc.,2004,126,15020-15021.
    18. L. Mynar, T.-L. Choi, M. Yoshida, V. Kim, C. J. Hawker, J. M. J. Frechet, "Doubly-dendronized linear polymers", Chem. Commun.,2005,5169-5171.
    19. K.-N. Lau, H.-F. Chow, M.-C. Chan, K.-W. Wong, "Dendronized Polymer Organogels from Click Chemistry:A Remarkable Gelation Property Owing to Synergistic Functional-Group Binding and Dendritic Size Effects", Angew. Chem. Int. Ed.,2008, 47,6912-6916.
    20. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J.-P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A.-T. Chen, A. K.-Y. Jen, B. H. Robinson, L. R. Dalton, "Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect", J. Am. Chem. Soc.,2007,129,7523-7530.
    21. C. R. Moylan, R. D. Miller, R. J. Twieg, V. Y. Lee, I. H. McComb, S. Ermer, S. M. Lovejoy, D. S. Leung, "Defeating tradeoffs for nonlinear optical chromophores", Proc. SPIE,1995,2527,150-162.
    22. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y. Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics", J. Phys. Chem. B, 2004,108,8523-8530.
    1. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    2. Y.-J. Cheng, J. Luo, S. Hau, D. H. Bale, T.-D.Kim, Z. W. Shi, D. B. Lao, N. M. Tucker, Y. Q. Tian, L. R. Dalton, P. J. Reid, A. K.-Y. Jen, "Large Electro-optic Activity and Enhanced Thermal Stability from Diarylaminophenyl-Containing High-β Nonlinear Optical Chromophores", Chem. Mater.,2007,19,1154-1163
    3. S. R. Hammond, O. Clot, K. A. Firestone, D. H. Bale, D. Lao, M. Haller, G. D. Phelan, B. Carlson, A. K.-Y. Jen, P. J. Reid, L. R. Dalton, "Site-Isolated Electro-optic Chromophores Based on Substituted 2,2'-Bis(3,4-propylenedioxythiophene) π-Conjugated Bridges", Chem. Mater.,2008,20,3425-3434.
    4. J. Luo, H. Ma, M. Haller, A. K.-Y. Jen, R. R. Barto, "Large electro-optic activity and low optical loss derived from a highly fluorinated dendritic nonlinear optical chromophore", Chem. Commun.,2002,888-889.
    5. J. Luo, Y.-J. Cheng, T.-D. Kim, S. Hau, S.-H. Jang, Z. W. Shi, X. H. Zhou, A. K.-Y. Jen, "Facile Synthesis of Highly Efficient Phenyltetraene-Based Nonlinear Optical Chromophores for Electrooptics", Org. Lett.,2006,8,1387-1390.
    6. O. Varnavski, A. Leanov, L. Liu, J. Takacs, T. Goodson Ⅲ, "Large Nonlinear Refraction and Higher Order Nonlinear Optical Effects in a Novel Organic Dendrimer" J. Phys. Chem. B,2000,104,179-188
    7. H. Ma, B. Q. Chen, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Nonlinear Optical Dendrimer for Electrooptics", J. Am. Chem. Soc., 2001,123,986-987.
    8. P. Gopalan, H. E. Katz, D. J. McGee, C. Erben, T. Zielinski, D. Bousquet, D. Muller, J. Grazul, Y. Olsson, "Star-Shaped Azo-Based Dipolar Chromophores:Design, Synthesis, Matrix Compatibility, and Electro-optic Activity", J. Am. Chem. Soc.,2004,126, 1741-1747.
    9. Y. Do, S. K. Park, J.-J. Ju, S. Park, M.-H. Lee, "Improved Electro-Optic Effect by Hyperbranched Chromophore Structures in Side-Chain Polyimide" Macromol. Chem. Phys.,2003,204,410-416.
    10. H. Ma, J. Luo, S. H. Kang, S. Wong, J. W. Kang, A. K.-Y. Jen, R. Barto, C. W. Frank, "Highly Fluorinated and Crosslinkable Dendritic Polymer for Photonic Applications" Macromol. Rapid Commun.,2004,25,1667-1673.
    11. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S. H. Jang, L. R. Dalton, A. K.-Y Jen, "Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics", J. Phys. Chem. B, 2004,108,8523-8530.
    12. P. A. Sullivan, A. J.-P. Akelaitis, S. K. Lee, G McGrew, S. K. Lee, D. H. Choi, L. R. Dalton, "Novel Dendritic Chromophores for Electro-optics:Influence of Binding Mode and Attachment Flexibility on Electro-optic Behavior", Chem. Mater.,2006,18, 344-351.
    13. Y. H. Kiang, G. B. Gardner, S. Lee, Z. Xu, E. B. Lobkovsky, "Variable Pore Size, Variable Chemical Functionality, and an Example of Reactivity within Porous Phenylacetylene Silver Salts", J. Am. Chem. Soc.,1999,121,8204-8215.
    14. M. J. Plater, T. Jackson, "Polyaromatic amines. Part 4:Synthesis of poly(ethynyl) linked aromatic amines" Tetrahedron,2003,59,4687-4692.
    15. W. Zhang, J. Xie, W. Shi, "Synthesis and characterization of dendrons and dendrimers skeleton-constructed with azobenzene moiety", Eur. Polym. J.,2007,43,2387-2400.
    16. S. M. Grayson, J. M. J. Frechet, "Convergent Dendrons and Dendrimers:from Synthesis to Application", Chem. Rev.,2001,101,3819-3867.
    1. M. Fischer, F. Vogtle, "Dendrimers:From Design to Application-A Progress Report", Angew. Chem. Int. Ed.,1999,38,884-905.
    2. A. W. Bosman, H. M. Janssen, E. W. Meijer, "About Dendrimers:Structure, Physical Properties, and Applications", Chem. Rev.,1999,99,1665-1688.
    3. S.-E. Stiriba,H. Frey, R. Haag, "Dendritic Polymers in Biomedical Applications:From Potential to Clinical Use in Diagnostics and Therapy", Angew. Chem. Int. Ed.,2002,41, 1329-1334.
    4. J. M. J. Frechet, "Dendrimers and Other Dendritic Macromolecules:From Building Blocks to Functional Assemblies in Nanoscience and Nanotechnology", J. Polym. Sci. Part A:Polym. Chem.,2003,41,3713-3725.
    5. Y. H. Kim, "Hyperbranched Polymers 10 Years After", J. Polym. Sci. Part A:Polym. Chem.,1998,36,1685-1698.
    6. A. Sunder, J. Heinemann, H. Frey, "Contralling the Growth of Polymer Trees:Concepts and Perspectives For Hyperbranched Polymers", Chem. Eur. J.,2000,6,2499-2456.
    7. M. Scholl, Z. Kadlecova, H.-A. Klok, "Dendritic and hyperbranched polyamides", Prog. Polym. Sci.,2009,34,24-61.
    8. M. Hauβer, B. Z.Tang, "Functional Hyperbranched Macromolecules Constructed from Acetylenic Triple-Bond Building Blocks", Adv. Polym. Sci.,2007,209,1-58.
    9. B. Voit, "New Developments in Hyperbranched Polymers", J. Polym. Sci. Part A: Polym. Chem.,2000,39,2505-2525.
    10. B. H. Robinson, L. R. Dalton, "Monte Carlo Statistical Mechanical Similations of the Competition of Intermolecular Electrostatic and Poling-Field Interactions in Defining Macroscopic Electro-Optic Activity for Organic Chromophore/Polymer Materials", J. Phys. Chem. A,2000,104,4785-4795.
    11. B. H. Robinson, L. R. Dalton, H. W. Harper, A. Ren, F. Wang, C. Zhang, G. Todorova, M. Lee, R. Aniszfeld, S. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, A. K.-Y. Jen, "The molecular and supramolecular engineering of polymeric electro-optic materials", Chem. Phys.,1999,245,35-50.
    12. H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton, A. K.-Y. Jen, "Highly Efficient and Thermally Stable Electro-Optical Dendrimers for Photonics", Adv. Funct. Mater.,2002,12,565-574.
    13. Y. Bai, N. Song, J. Gao, X. Sun, X. Wang, G. Yu, Z. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant", J. Am. Chem. Soc., 2005,127,2060-2061.
    14. J. Xie, X. Deng, Z. Cao, Q. Shen, W. Zhang, W. "Shi, Synthesis and second-order nonlinear optical properties of hyperbranched polymers containing pendant azobenzene chromophores", Polymer,2007,48,5988-5993.
    15. J. Xie, L. Hu, W. Shi, X. Deng, Z. Cao, Q. Shen, "Synthesis and Nonlinear Optical Properties of Hyperbranched Polytriazole Containing Second-Order Nonlinear Optical Chromophore", J. Polym. Sci. Part B:Polym. Phys.,2008,46,1140-1148.
    16. H.-L. Chang, T.-Y. Chao, C.-C. Yang, S. A. Dai, R.-J. Jeng, "Second-order nonlinear optical hyperbranched polymers via facile ring-opening addition reaction of azetidine-2,4-dione", Eur. Polym. J.,2007,43,3988-3996.
    17. C.-C. Tsai, T.-Y. Chao, H.-L. Lin,Y.-H. Liu, H.-L. Chang, Y.-L. Liu, R.-J. Jeng, "The facile synthesis and optical nonlinearity of hyperbranched polyaspartimides with azobenzene dyes", Dyes and Pigments,2009,82,31-39.
    18. Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y. Dong, C. Ye, I. Williams, B. Tang, "Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores", Macromolecules, 2006,39,1436-1442.
    19. J. Qu, M. Shiotsuki, N. Kobayashi, F. Sanda, T. Masuda, "Synthesis and properties of carbazole-based hyperbranched conjugated polymers", Polymer,2007,48,6481-6490.
    20. D. Yu, A. Gharavi, L. P. Yu, "Novel Aromatic Polyimides for Nonlinear Optics", J. Am. Chem. Soc.,1995,117,11680-11686.
    21. Z. Zhu, Z. Li, Y. Tan, Z. Li, Q. Li, Q. Zeng, C. Ye, J. Qin, "New hyperbranched polymers containing second-order nonlinear optical chromophores:synthesis and nonlinear optical characterization", Polymer,2006,47,7881-7888.
    22. Z. Zhu, Z. Li, Q. Li, Q. Zeng, Z. Li, C. Ye, J. Qin, "Convenient synthesis and enhanced second-order nonlinear optical property of a novel hyperbranched polymer", Chin. J. Chem.,2007,25,237-240.
    23. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J.-P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A.-T. Chen, A. K.-Y. Jen, B. H. Robinson, L. R. Dalton, "Theory-Guided Design and Synthesis of Multichromophore Dendrimers:An Analysis of the Electro-optic Effect", J. Am. Chem. Soc.,2007,129,7523-7530
    1. W. H. Binder, R. Sachsenhofer, "'Click' chemistry in polymer and material science:An update", Macromol. Rapid. Commun.,2008,29,952-981.
    2. M. Meldal, "Polymer "Clicking" by CuAAC reactions", Macromol. Rapid. Commun., 2008,29,1016-1051.
    3. T. P. Lodge "A Virtual Issue of Macromolecules:Click Chemistry in Macromolecular Science", Macromolecules,2009,42,3827-3829.
    4. A. Qin, J. W. Y. Lam, C. K. W. Jim, L. Zhang, J. Yan, M. Haussler, J. Liu, Y. Dong, D. Liang, E. Chen, G. Jia, B. Z. Tang, "Hyperbranched Polytriazoles:Click Polymerization, Regioisomeric Structure, Light Emission, and Fluorescent Patterning", Macromolecules, 2008,41,3808-3822.
    5. C. Li, M. G. Finn, "Click Chemistry in Materials Synthesis. Ⅱ. Acid-Swellable Crosslinked Polymers Made by Copper-Catalyzed Azide-Alkyne Cycloaddition", J. Polym. Sci. Part A:Polym. Chem.,2006,44,5513-5518.
    6. J. Xie, L. Hu, W. Shi, X. Deng, Z. Cao, Q. Shen, "Synthesis and Nonlinear Optical Properties of Hyperbranched Polytriazole Containing Second-Order Nonlinear Optical Chromophore", J. Polym. Sci. Part B:Polym. Phys.,2008,46,1140-1148.
    7. J. A. Johnson, D. R. Lewis, D. D. Diaz, M. G. Finn, J. T. Koberstein, N. J. Turro, "Synthesis of Degradable Model Networks via ATRP and Click Chemistry", J. Am. Chem. Soc.,2006,128,6564-6565.
    8. A. J. Scheel, H. Komber, B. I. Voit, "Novel Hyperbranched Poly([1,2,3]-triazole)s Derived from AB2 Monomers by a 1,3-Dipolar Cycloaddition", Macromol. Rapid Commun.,2004,25,1175-1180.
    9. S. M. Grayson, J. M. J. Frechet, "Convergent dendrons and dendrimers:From synthesis to applications", Chem. Rev.,2001,101,3819-3867.
    10. Z. Li, C. Huang, J. L. Hua, J. Qin, Z. Yang, C. Ye, "A New Postfunctional Approach To Prepare Second-Order Nonlinear Optical Polyphophazenes Containing Sulfonyl-Based Chromophore", Macromolecules,2004,37,371-376.
    11. S. J. Lee, S. S. Lee, J. Y. Lee, J. H. Jung, "A Functionalized Inorganic Nanotube for the Selective Detection of Copper(II) Ion", Chem. Mater.,2006,18,4713-4715.
    12. G.-L. Feng, S.-J. Ji, W.-Y. Lai, W. Huang, "Synthesis and optical properties of starburst carbazoles based on 9-phenylcarbazole core", Synlett,2006,17,2841-2845.
    13. Q.-Q. Chen, F. Liu, Z. Ma, B. Peng, W. Wei, W. Huang, "Synthesis and characterization of novel monodisperse starburst oligo(fluoreneethynylene) based on truxene moiety", Chem. Lett.,2008,37,178-179.
    14. S. W. Kim, S. C. Shim, B.-J. Jung, H.-K. Shim, "Synthesis and properties of new electroluminescent polymers processing both hole and electon-transporting units in the main-chain", Polymer,2002,43,4297-4305.
    15. J. Li, Z. Bo, ""AB2+AB" Approach to Hyperbranched Polymers Used as Polymer Blue Light Emitting Materials", Macromolecules,2004,37,2013-2015.
    16. Y. Liao, C. A. Anderson, P. A. Sullivan, A. J. P. Akelaitis, B. H. Robinson, L. R. Dalton, "Electro-Optical Properties of Polymers Containing Alternating Nonlinear Optical Chromophores and Bulky Spacers", Chem. Mater.,2006,18,1062-1067.
    1. M. E. Wright, S. Mullick, H.S. Lackritz, L.-Y. Liu, "Organic NLO Polymers.2. A Study of Main-Chain and Guest-Host χ(2) NLO Polymers:NLO-phore Structure Versus Poling", Macromolecules,1994,27,3009-3015.
    2. Y. Zhang, L. Wang, T. Wada, H. Sasabe, "Synthesis and Characterization of Polymers Containing in the Chain Backbone Carbazoles Substituted with Two Acceptor Groups as Nonlinear Optical Chromophores", Macromolecules,1996,29,1569-1573.
    3. H.-C. Tsai, W.-J. Kuo, G.-H. Hsiue, "Highly Thermal Stable Main-Chain Nonlinear Optical Polyimide Based on Two-Dimensional Carbazole Chromophores", Macromol. Rapid Commun.,2005,26,986-991.
    4. Y. Bai, N. Song, J. Gao, X. Sun, X. Wang, G. Yu, Z. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant", J. Am. Chem. Soc., 2005,127,2060-2061.
    5. J. Xie, X. Deng, Z. Cao, Q. Shen, W. Zhang, W. "Shi, Synthesis and second-order nonlinear optical properties of hyperbranched polymers containing pendant azobenzene chromophores", Polymer,2007,48,5988-5993.
    6. J. Xie, L. Hu, W. Shi, X. Deng, Z. Cao, Q. Shen, "Synthesis and Nonlinear Optical Properties of Hyperbranched Polytriazole Containing Second-Order Nonlinear Optical Chromophore", J. Polym. Sci. Part B:Polym. Phys.,2008,46,1140-1148.
    7. Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y. Dong, C. Ye, I. Williams, B. Tang, "Facile synthesis, large optical nonlinearity, and excellent thermal stability of hyperbranched poly(aryleneethynylene)s containing azobenzene chromophores", Macromolecules, 2006,39,1436-1442.
    8.朱志超,“新型二阶非线性光学超支化聚合物的设计、合成与性能研究”,武汉大学博士论文,2008.
    9. Q. Zeng, Z. Li, Z. Li, C.Ye, J. Qin, B. Z. Tang, "Convenient Attachment of Highly Polar Azo Chromophore Moieties to Disubstituted Polyacetylene through Polymer Reactions by Using "Click" Chemistry", Macromolecules,2007,40,5634-5637.
    10.O. Ahumada, C. Weder, P. Neuenschwander, U. W. Suter, S. Herminghaus, "Electro-Optical Properties of Waveguides Based on a Main-Chain Nonlinear Optical Polyamide", Macromolecules,1997,30,3256-3261.
    11. M. Dobler, C. Weder, O. Ahumada, P. Neuenschwander, U. W. Suter,'Main-Chain Nonlinear Optical Polymers with Enhanced Orientational Stability", Macromolecules, 1998,31,7676-7681.
    12. R. Centore, P. Riccio, S. Fusco, A. Carella, A. Quatela, S. Schutzmann, F. Stella, F. Dematteis, "Nonlinear Optical Properties of Regioregular Main-Chain Polyesters", J. Polym. Sci. Part A:Polym. Chem.,2007,45,2719-2725.
    13. M. Hauper, B. Z.Tang, "Functional Hyperbranched Macromolecules Constructed from Acetylenic Triple-Bond Building Blocks", Adv. Polym. Sci.,2007,209,1-58.
    14. Z. Li, Y. Dong, A. Qin, J. W. Y. Lam, Y. Dong, W. Yuan, J. Sun, J. Hua, K. S. Wong, B. Z. Tang, "Functionalization of Disubstituted Polyacetylenes through Polymer Reactions:Syntheses of Functional Poly(1-phenyl-l-alkyne)s", Macromolecules,2006, 39,467-469.
    1. U. Mitschke, P. Bauerle, "The Electroluminescence of Organic Materials", J. Mater. Chem.,2000,10,1471
    2.黄春辉,李富友,黄岩谊,光电功能超薄膜,北京大学出版社,北京,2001.
    3. M. G Craford, F. M. Steranka, Light-Emitting Diodes in Encyclopedia of Applied Physics, ed. G L. Trigg, VCH, Wienheim,1994.
    4. M. Pope, H. P. Kallmann, P. Magnante, "Electroluminescence in Organic Crystals", J. Chem. Phys.1963,38,2042.
    5. C. W. Tang, S. A. Vanslyke, "Organic electroluminscent diodes", Appl. Phys. Lett., 1987,51,913-915.
    6. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, "Light-emitting-diodes based on conjugated polymers", Nature,1990,347,539-541.
    7. S. A. Jenekhe, "Excited-state complexes of conjugated polymers", Adv. Mater.,1995,7, 309-311.
    8. P. W. Wang, Y. J. Liu, C. Devadoss, P. Bharathi, J. S. Moore, "Electro-luminescent diodes from a single component emitting layer of dendritic macromolecules", Adv. Mater.,1996,8,237-241.
    9. E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater.,2005,17,1109-1121
    10.潘建峰,朱为宏,田禾,“树枝状有机电致发光材料近期研究进展”,世界科技研究和发展,2005,21,27-33.
    11.孟宪乐,朱为宏,田禾,“树枝状有机电致发光材料”,化学进展,2007,16,1671-1680.
    12.张璐,封伟“树枝状共轭聚合物研究”,化学进展,2007,19,227-349.
    13. S. C. Lo, P. L. Burn, "Development of Dendrimers:Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells", Chem. Rev.,2007,107,1097-1116.
    14. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Mullen, F. Meghdadi, E. J. W. List, G. Leising, "Polyfluorenes with Polyphenylene Dendron Side Chains:Toward Non-Aggregating, Light-Emitting Polymers", J. Am. Chem. Soc.,2001,123,946-953.
    15. J. Luo, Y. Zhou, Z.-Q. Niu, Q.-F. Zhou, Y.Ma, J. Pei, "Three-Dimensional Architectures for Highly Stable Pure Blue Emission", J. Am. Chem. Soc.,2007,129, 11314-11315.
    16. B. S. Li, J. Li, Y. Q. Fu, Z. S. Bo, "Porphyrins with four monodisperse oligofluorene arms as efficient red Iight2emitting materials", J. Am. Chem. Soc.,2004,126, 3430-3431.
    17. Z. H. Fei, B. S. Li, Z. S. Bo, R. Lu, "Synthesis and properties of hyperbranched conjugated porphyrins", Org. Lett.,2004,6,4703-4706.
    18. P. Du, W. H. Zhu, Y. Q. Xie, F. Zhao, C. F. Ku, Y. Cao, C. P. Chang, H. Tian, "Dendron-functionalized macromolecules:enhancing core luminescence and tuning carrier injection", Macromolecules,2004,37,4387-4398.
    19. A. Winter, D. A. M. Egbe, U. S. Schubert, "Rigid π-Conjugated Mono-, Bis-, and Tris(2,2':6',2"-terpyridines)", Org. Lett.,2007,9,2345-234.
    20.刘自军,“基于嘧啶的双光子吸收分子的设计、合成、结构与性能研究”,武汉大学博士论文,2007.
    21. G. Koeckelberghs, M. Vangheluwe, I. Picard, L. D. Groof, T. Verbiest, A. Persoons, C. Samyn, "Synthesis and Properties of New Chiral Donor-Embedded Polybinaphthalenes for Nonlinear Optical Applications", Macromolecules,2004,37,8530-8537.
    22. Y. Wang, L. Hou, K. Yang, J. Chen, F. Wang, Y. Cao, "Conjugated Silole and Carbazole Copolymers:Synthesis, Characterization, Single-Layer Light-Emitting Diode, and Field Effect Carrier Mobility", Macromol. Chem. Phys.,2005,206,2190-2198.
    23. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, "Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems:Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole", J. Am. Chem. Soc.1983,105, 6555-6559.
    24. D. W. De Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, "Stability of n-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices", Synth. Met.1997,87,53-59.
    25. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, J. Daub, "Efficient Two Layer LEDs on a Polymer Blend Basis", Adv. Mater.,1995,7,551-554.
    1. J. Li, D. Liu, Y. Li, C. S. Lee, H. L. Kwong, S. T. Lee, "A High Tg Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices", Chem. Mater.,2005, 17,1208-1212.
    2. D. F. O'Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E. Thompson, "Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light-Emitting Devices", Adv. Mater.,1998,10,1108-1112.
    3. H. Okumoto, T. Yatabe, M. Shimomura, A. Kaito, N. Minami, Y. Tanabe, "Self-Organized Oligosilanes; a New Class of Organic Hole-Transport Materials", Adv. Mater.,2001,13,72-76.
    4. K. R. J. Thomas, J. T. Lin, Y.-T. Tao, C.-W. Ko, "New Star-Shaped Luminescent Triarylamines:Synthesis, Thermal, Photophysical, and Electroluminescent Characteristics ", Chem. Mater.,2002,14,1354-1361.
    5. P. Kundu, K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. H. Chein, "High-Tg Carbazole Derivatives as Blue-Emitting Hole-Transporting Materials for Electroluminescent Devices", Adv. Funct. Mater.,2003,13,445-452.
    6. C. Adachi, K. Nagai, N. Tamoto, "Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes", Appl. Phys. Letter., 1995,66,2679-2681.
    7. S. Tokito, H. Tanaka, K. Noda, "Thermal stability in oligomeric triphenylamine/tris-(8-quinolinolato)aluminum electroluminescent devices", Appl. Phys. Letter.,1997,70, 1929-1931.
    8. T.-H. Huang, J. T. Lin, Y.-T.Tao, C.-H. Chuen, "Benzo[a]aceanthrylene Derivatives for Red-Emitting Electroluminescent Materials", Chem. Mater.,2003,15,4854-4862.
    9. Chem. Mater.2006,18,1053-1061.
    10. C.-W. Ko, Y.-T. Tao, J. T. Lin, K. R. J. Thomas, "Light-Emitting Diodes Based on a Carbazole-Derivatized Dopant:Origin of Dopant Excitation as a Function of the Device Structure", Chem. Mater.,2002,14,357-361.
    11.K. Naito, A. Miura, "Molecular design for nonpolymeric organic dye glasses with thermal stability:relations between thermodynamic parameters and amorphous properties", J. Phys. Chem.,1993,97,6240-6248.
    12. B. E. Koene, D. E. Loy, M. E. Thompson, "Asymmetric Triaryldiamines as Thermally Stable Hole Transporting Layers for Organic Light-Emitting Devices", Chem. Mater., 1998,10,2235-2250.
    13. E. Bellmann, S. E. Shaheen, R. H. Grubbs, S. R. Marder, B. Kippelen, N. Peyghambarian, "Organic Two-Layer Light-Emitting Diodes Based on High-Tg Hole-Transporting Polymers with Different Redox Potentials", Chem. Mater. 1999,11,399-407.
    14. Q. X. Tong, S. L. Lai, M. Y. Chan, K. H. Lai, J. X. Tang, H. L. Kwong, C. S. Lee, S. T. Lee, "High Tg Triphenylamine-Based Starburst Hole-Transporting Material for Organic Light-Emitting Devices", Chem. Mater.,2007,19,5851-5855.
    15. K. Katsuma, Y. Shirota, "A Novel Class of π-Electron Dendrimers for Thermally and Morphologically Stable Amorphous Molecular Materials", Adv. Mater.,1998,10, 223-226.
    16. P. Furuta, J. Brooks, M. E. Thompson, J. M. J. Frechet, "Simultaneous Light Emission from a Mixture of Dendrimer Encapsulated Chromophores:A Model for Single-Layer Multichromophoric Organic Light-Emitting Diodes",J. Am. Chem. Soc.,2003,125, 13165-13172.
    17. H. Zhao, C. Tanjutco S. Thayumanavan, "Design and synthesis of stable triarylamines for hole-transport applications", Tetra. Lett.,2001,42,4421-4424.
    18. J.-S. Cho, A. Kimoto, M. Higuchi, K. Yamamoto, Synthesis of Diphenylamine-Substituted Phenylazomethine Dendrimers and the Performance of Organic Light-Emitting Diodes", Macromol. Chem. Phys.,2005,206,635-641.
    19. N. Sato, J. S. Cho, M. Higuchi, K. Yamamoto, "Novel Triarylamine Dendrimers as a Hole-Transport Material with a Controlled Metal-Assembling Function", J. Am. Chem. Soc.,2003,125,8104-8105.
    20. A. Kimoto, J. S. Cho, M. Higuchi, K. Yamamoto, "Synthesis of Asymmetrically Arranged Dendrimers with a Carbazole Dendron and a Phenylazomethine Dendron", Macromolecules,2004,37,5531-5537.
    21. H. Tanaka, Tokito. S, Y. Taga, A. Okada, "Novel hole-transporting materials based on triphenylamine for organic electroluminescent devices", Chem. Commun.,1996,2175-2176.
    22. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, "Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems:Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole", J. Am. Chem. Soc.1983,105, 6555-6559.
    23. D. W. De Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, "Stability of n-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices", Synth. Met.1997,87,53-59.
    24. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, J. Daub, "Efficient Two Layer LEDs on a Polymer Blend Basis", Adv. Mater.,1995,7,551-554.
    1. J. H. Burroughes, D. D. C Bradley, A. R. Browne, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, "Light-emitting Diodes Based on Conjugated Polymers", Nature,1990,347,539-541.
    2. C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, "Multi-colour Organic Light-emitting Displays by Solution Processing", Nature,2003,421,829-833.
    3. D. Y. Kim, H. N. Cho, C. Y. Kim, "Blue Light Emitting Polymers", Prog. Polym. Sci., 2000,25,1089-1139.
    4. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Loglund, W. R. Salaneck, "Electroluminescence in Conjugated Polymers", Nature,1999,397,121-128.
    5. A.P. Kulkarni, Y. Zhu, S. A. Jenekhe, "Quinoxaline-containing Polyfluorenes:Synthesis, Photophysics, and Stable Blue Electroluminescence", Macromolecules,2005,38, 1553-1563.
    6. M. B. Ramey, J. A. Hiller, M. F. Rubner, C. Tan, K. S Schanze, J. R. Reynolds, "Amplified Fluorescence Quenching and Electroluminescence of a Cationic Poly(p-phenylene-co-thiophene) Polyelectrolyte", Macromolecules,2005,38,234-233.
    7. S. H. Chen, Y. Chen, "Optical and Electrochemical Properties of Copoly(aryl ether)s Consisting of Alternate 2,5-distyrylbenzene and Electron-transporting Oxadiazole or Triazole Derivatives", J. Polym. Sci, Part A:Polym. Chem.,2005,43,5083-5096.
    8. X. Z. Jiang, S. Liu, H. Ma, A. K.-Y. Jen, "High-performance Blue Light-emitting Diode Based on a Binaphthyl-containing Polyfluorene", Appl. Phys. Lett.,2000,76, 1813-1815.
    9. M. Leclerc, "Polyfluorenes:Twenty Years of Progress", J. Polym. Sci, Part A:Polym. Chem.,2001,39,2867-2873.
    10. Y. H. Kim, D.C. Shin, H. You, S.K. Kwon, "Efficient and Color Pure Blue Light Emitting Random Copolymer with Fluorene and Fluorenylstilbene" Polymer,2005,46, 7969-7973.
    11. Q. Pei, Y. Yang, "Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene",J. Am. Chem. Soc.,1996,118,7416-7417.
    12. H. C. Lin, H. H. Sung, C. M. Tsai, K. C. Li, "Synthesis and Characterization of Alternating Fluorene-based Copolymers Containing Diaryl- and Non-substituted Bithiophene Units", Polymer,2005,46,9810-9820.
    13. Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, "Blueelectoluminescent Diodes Utilizing Poly(alkylfluorene)", Jpn. J. Appl. Phys.,1991,30, L1941-1943.
    14. U. Scherf, E. J. W. List, "Semiconducting Polyfluorenes-Towards Reliable Structure-property Relationships", Adv. Mater.,2002,14,477-487.
    15. L, Yang, J. K. Feng, A.M. Ren, "Theoretical Studies on the Electronic and Optical Properties of Two Thiophene-fluorene Based Pi-conjugated Copolymers", Polymer, 2005,46,10970-10981.
    16. D. Neher, "Polyfluorene Homopolymers:Conjugated Liquid-crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence", Macromol. Rapid. Commun. 2001,22,1365-1385.
    17. J. I. Lee, G Klaerner, R. D. Miller, "Structure-property Relationship for Excimer Formation in Poly(alkylfluorene) Derivatives", Synth. Met.,1999,101,126-126.
    18. J. Teetsov, M. A. Fox, "Photophysical Characterization of Dilute Solutions and Ordered Thin Films of Alkyl-substituted Polyfluorenes", J. Mater. Chem.,1999,9,2117-2122.
    19. C. Ego, A. C. Grimsdale, F. Uckert, G Yu, G Srdanov, K. Mullen, "Triphenylamine-substituted Polyfluorene-A Stable Blue-emitter with Improved Charge Injection for Light-emitting Diodes", Adv. Mater.,2002,14,809-811.
    20. D. Marsitzky, J. C. Scott, J. P. Chen, V. Y. Lee, R. D. Miller, S. Setayesh, K. Mullen, "Poly-2,8-(indenofluorene-co-anthracene)—A Colorfast Blue-light-emitting Random Copolymer",Adv. Mater.,2001,13,1096-1099.
    21. B. Liu, W. L. Yu, Y. H. Lai, W. Huang, "Blue-light-emitting Fluorene-based Polymers with Tunable Electronic Properties", Chem. Mater,2001,13,1984-1991.
    22. G. Klaener, J. L. Lee, V. Y. Lee, E. Chan, J. P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scott, R. D. Miller, "Cross-linkable Polymers Based on Dialkylfluorenes", Chem. Mater.,1999,11,1800-1805.
    23. H. J. Cho, B. J. Jung, N. S. Cho, J. Lee, H. K. Shim, "Synthesis and Characterization of Thermally Stable Blue Llight-emitting Polyfluorenes Containing Siloxane Bridges", Macromolecules,2003,36,6704-6710.
    24. Y. Li, J. Ding, M. Day, T. Tao, J. Lu, M. D'ioro, "Novel Stable Blue-Light-Emitting Oligofluorene Networks Immobilized by Boronic Acid Anhydride Linkages", Chem. Mater.,2003,15,4936-4943.
    25. D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. P. Carter, "Self-Encapsulation of Poly-2,7-fluorenes in a Dendrimer Matrix", J. Am. Chem. Soc., 2001,123,6965-6972.
    26. A. Pogantsch, F. P. Wenzl, E. J. W. List, G. Leising, A. C. Grimsdale, K. Mullen, "Polyfluorenes with Dendron Side Chains as the Active Materials for Polymer Light-emitting Devices", Adv. Mater.,2002,14,1061-1064.
    27. C. H. Chou, C. F. Shu, "Synthesis and Characterization of Dendronized Polyfluorenes", Macromolecules,2002,35,9673-9677.
    28. W. Y. Lai, R. Zhu, Q. L. Fan, L. T. Hou, Y. Cao, W. Huang, "Monodisperse Six-Armed Triazatruxenes:Microwave-Enhanced Synthesis and Highly Efficient Pure-Deep-Blue Electroluminescence", Macromolecules,2006,39,3707-3709.
    29. X. M. Liu, J. Xu, X. Lu, C. He, "A Comparative Study on Luminescent Copolymers of Fluorene and Carbazole with Conjugated or Delta-Si Interrupted Structures:Steric Effects", Macromolecules,2006,39,1397-1402.
    30. X. Y. Cao, X. H. Zhou, H. Zi, J. Pei, "Novel Blue-Light-Emitting Truxene-Containing Hyperbranched and Zigzag Type Copolymers:Synthesis, Optical Properties, and Investigation of Thermal Spectral Stability", Macromolecules,2004,37,8874-8882.
    31. C.-W. Wu, H.-C. Lin, "Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers", Macromolecules,2006,39,7232-7230.
    32. M. Halussler, J. Liu, R. Zheng, J. W. Y. Lam, A. Qin, B. Tang, "Synthesis, Thermal Stability, and Linear and Nonlinear Optical Properties of Hyperbranched Polyarylenes Containing Carbazoleand/or Fluorene Moieties", Macromolecules,2007,40,1914-1925
    33. J. Li, Z. Bo, ""AB2+AB" Approach to Hyperbranched Polymers Used as Polymer Blue Light Emitting Materials", Macromolecules,2004,37,2013-2015.
    34. M. Ranger, D. Rondeau, M. Leclerc, "New Well-Defined Poly(2,7-fluorene) Derivatives:Photo luminescence and Base Doping", Macromolecules,1997,30, 7686-7691.
    35.X. M. Liu, J. Xu, X. Lu, C. H, "Novel Glassy Tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as Building Blocks for Efficient and Nonaggregating Blue-Light-Emitting Tetrahedral Materials", Org. Lett.,2005,14, 2829-2832.
    36. J.G. Rodriguez, J. L. Tejedor, T. L. Parra, C. Diaz, "Synthesis of Conjugated 2,7-bis(trimethylsilylethynyl)-(phenylethynyl)n fluoren-9-one and 9-(p-methoxyphenyl)-9-methyl Derivatives:Optical Properties", Tetra. Lett.,2006,62,3355-3361.
    37. G. Y. Han, L. A. Carpino, "The 9-fluorenylmethoxycarbonyl Function, a New Base-sensitive Amino-protecting Group",J. Am. Chem. Soc.,1970,92,5748-5749.
    38. B. P. Cho, "A Novel and Practical Synthesis of Polycyclic Fluoranthenes", Tetra. Lett., 1995,36,2303-2306.
    39. T. Nakano, T. Yade, Y. Fukuda, T. Yamaguchi, S. Okumura, "Free-Radical Polymerization of Dibenzofulvene Leading to a π-Stacked Polymer:Structure and Properties of the Polymer and Proposed Reaction Mechanism", Macromolecules,2005, 38,8140-8148.
    40. T. Nakano, T. Yade, "Synthesis, Structure, and Photophysical and Electrochemical Properties of a π-Stacked Polymer", J. Am. Chem. Soc.,2003,125,15474-15484.
    41. Y. H. Kim, "Lyotropic Liquid Crystalline Hyperbranched Aromatic Polyamides", J. Am. Chem. Soc.,1992,114,4947-4948.
    42. K. E. Uhrich, C. J. Hawker, J. M. J. Frechet, S. R.Turner, "One-pot Synthesis of Hyperbranched Polyethers", Macromolecules,1992,25,4583-4587.
    43. E. Malmstroem, M. Johansson, A. Hult, "Hyperbranched Aliphatic Polyesters", Macromolecules,1995,28,1698-1703.
    44. M. Sun, J. Li, B. Li, F. Yu, Z. Bo, "Toward High Molecular Weight Triphenylamine-Based Hyperbranched Polymers", Macromolecules,2005,38, 2651-2658.
    45. X. M. Liu, T. Lin, J. Huang, X. T. Hao, K. S. Ong, C. He, "Hyperbranched Blue to Red Light-Emitting Polymers with Tetraarylsilyl Cores:Synthesis, Optical and Electroluminescence Properties, and ab Initio Modeling Studies", Macromolecules, 2005,38,4157-4168.
    46. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Haussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, L. D. Williams, H. S. Kwok, B. Z. Tang, "Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials",J. Phys. Chem. B.2005,109,10061-10066.
    1. J. Berresheim, M. Muller, K. Mullen, "Polyphenylene Nanostructures", Chem. Rev., 1999,99,1747-1785.
    2. M. D. Watson, A. Fechtenkotter, K. Mullen, "Big Is Beautiful-"Aromaticity" Revisited from the Viewpoint of Macromolecular and Supramolecular Benzene Chemistry", Chem. Rev.,2001,101,1267-1300.
    3. M. Schlupp, T. Weil, A. J. Berresheim, U. M. Wiesler, J. Bargon, K. Mullen, "Polyphenylene Dendrimers as Sensitive and Selective Sensor Layers", Angew. Chem. Int. Ed.2001,40,4011-4015.
    4. T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Mullen, A.Yasuda, "Gold Nanoparticle/Polyphenylene Dendrimer Composite Films:Preparation and Vapor-Sensing Properties", Adv. Mater.,2002,14,238-242.
    5. J. Wu, W. Pisula, K. Mullen, "Graphenes as Potential Material for Electronics", Chem. Rev.,2007,107,718-747.
    6. S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Mullen, F. Meghdadi, E. J. W. List, G. Leising, "Polyfluorenes with Polyphenylene Dendron Side Chains:Toward Non-Aggregating, Light-Emitting Polymers", J. Am. Chem. Soc.,2001,123,946-953.
    7. B. C. Englert, M. D. Smith, K. I. Hardcastle, U. H. F. Bunz, "Jacketed Poly(p-phenyleneethynylene)s:Nonaggregating Conjugated Polymers as Blue-Emitting Rods", Macromolecules,2004,37,8212-8221.
    8. K. Dinakaran, S.-M. Hsiao, C.-H. Chou, S.-L. Shu, K.-H. Wei, "Synthesis and Characterization of an Efficiently Fluorescent Poly(phenylenevinylene) Possessing Pendant Dendritic Phenyl Groups", Macromolecules,2005,38,10429-10435.
    9. G. Kodis, Y. Terazono, P. A. Liddell, J. Andreasson, V. Garg, M. Hambourger, T. A. Moore, A. L. Moore, D. Gust, "Energy and Photoinduced Electron Transfer in a Wheel-Shaped Artificial Photosynthetic Antenna-Reaction Center Complex", J. Am. Chem. Soc,2006,128,1818-1827.
    10. R. Rathore, C. L. Burns, S.A. Abdelwahed, "Hopping of a Single Hole in hexakis-[4-(1,1,2-Triphenyl-ethenyl)phenyl]benzene Cation Radical through the Hexaphenylbenzene Propeller", Org. Lett.,2004,6,1689-1692.
    11. S. M. Waybright, K. McAlpine, M. Laskoski, M. D. Smith, U.H. F. Bunz, J. Am. Chem. Soc.,2002,124,8661-8666.
    12.程格,赵凌,王跃川,“含六苯基苯结构单元桨型分子的合成及光致发光特性”,高等化学学报,2008,11,2321-2325.
    13. X.-C. Li, Y. Liu, M. S. Liu, A. K.-Y. Jen, "Synthesis, Properties, and Application of New Luminescent Polymers with Both Hole and Electron Injection Abilities for Light-Emitting Devices", Chem. Mater.,1999,11,1568-1575.
    14. J. A. Mikroyannidis, K. M. Gibbons, A. P. Kulkarni, S. A. Jenekhe, "Poly(fluorenevinylene) Copolymers Containing Bis(phenyl)oxadiazole and Triphenylamine Moieties:Synthesis, Photophysics, and Redox and Electroluminescent Properties", Macromolecules,2008,41,663-674.
    15. S. W. Kim, S. C. Shim, B.-J. Jung, H.-K. Shim, "Synthesis and properties of new electroluminescent polymers processing both hole and electron-transporting units in the main chain", Polymer,2002,43,4297-4305.
    16. S.-H. Chen, Y. Chen, "Poly(p-phenylenevinylene) Derivatives Containing Electron-Transporting Aromatic Triazole or Oxadiazole Segments", Macromolecules, 2005,38,53-60.
    17. Y. Xin, G. Wen, W. Zeng, L. Zhao, X. Zhu, Q. Fan, J. Feng, L. Wang, W. Wei, B. Peng, Y. Cao, W. Huang, "Hyperbranched oxadiazole-containing polyfluorenes:toward stable blue light PLEDs", Macromolecules,2005,38,6755-6758.
    18. G. Wen, Y. Xin, X. Zhu, W. Zeng, R. Zhu, J. Feng, Y. Cao, L. Zhao, L. Wang, W. Wei, B. Peng, W. Huang, "Hyperbranched triazine-containing polyfluorenes:efficient blueemitters for polymer light-emitting diodes (PLEDs)", Polymer,2007,48,1824-1829.
    19. Z. Ma, S. Lu, Q.-L. Fan, C.-Y. Qing, Y.-Y. Wang, P. Wang, W. Huang, "Syntheses, characterization, and energy transfer properties of benzothiadiazole-based hyperbranched polyfluorenes", Polymer,2006,47,7382-7390.
    20. L.-R. Tsai, Y. Chen, "Novel Hyperbranched Polyfluorenes Containing Electron-Transporting Aromatic Triazole as Branch Unit", Macromolecules,2007,40,2984-2992.
    21. D.Y. Kim, H. N. Cho, C.Y. Kim, "Blue light emitting polymers", Prog. Polym. Sci.,2000, 25,1089-1139.
    22. K. E. Maly, E. Gagnon, T. Maris, J. D. Wuest, "Engineering Hydrogen-Bonded Molecular Crystals Built from Derivatives of Hexaphenylbenzene and Related Compounds", J. Am. Chem. Soc.,2007,129,4306-4322.
    23. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, "Chain-Length Dependence of Electronic and Electrochemical Properties of Conjugated Systems:Polyacetylene, Polyphenylene, Polythiophene, and Polypyrrole", J. Am. Chem. Soc.1983,105, 6555-6559.
    24. D. W. De Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, "Stability of n-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices", Synth. Met.1997,87,53-59.
    25. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, J. Daub, "Efficient Two Layer LEDs on a Polymer Blend Basis", Adv. Mater.,1995,7,551-554.
    1. C. W. Tang, S. A. Vanslyke, "Organic electroluminscent diodes", Appl. Phys. Lett. 1987,51,913-915.
    2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, "Light-emitting-diodes based on conjugated polymers", Nature,1990,347,539-541.
    3. F. Hide, M. A. Diaz-Garcia, B. J. Schartz, A. J. Heeger, "New Developments in the Photonic Applications of Conjugated Polymers", Acc. Chem. Res.,1997,30,430-436.
    4. S. A. Jenekhe, "Excited-state complexes of conjugated polymers", Adv. Mater.,1995,7, 309-311.
    5. M. Strukelj, F. Papadimitrakopoulos, M. T. Miller, L. J. Rothberg, "Design and application of electron-transporting organic materials", Science,1995,257,1969-72.
    6. Q. X. Tong, S. L. Lai, M. Y. Chan, K. H. Lai, J. X. Tang, H. L. Kwong, C. S. Lee, S. T. Lee, "High Tg Triphenylamine-Based Starburst Hole-Transporting Material for Organic Light-Emitting Devices", Chem. Mater.,2007,19,5851-5855.
    7. J. Kido, M. Kimura, K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device", Science,1995,257,1332-1334.
    8. L. S. Hung, C. W. Tang, M. G Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode", Appl. Phys. Lett.,1997,70, 152-154.
    9. J. Kido, Y. Iizumi, "Fabrication of highly efficient organic electroluminescent devices", Appl. Phys. Lett.,1998,73,2721-2723.
    10. T. Dantas de Morais, F. Chaput, K. Lahlil, J. P. Boilot, "Hybrid Organic-Inorganic Light-Emitting Diodes", Adv. Mater.,1999,11,107-112.
    11.K. Katsuma, Y. Shirota, "A Novel Class of π-Electron Dendrimers for Thermally and Morphologically Stable Amorphous Molecular Materials", Adv. Mater.,1998,10, 223-225.
    12. D. F. O'Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E. Thompson, "Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light-Emitting Devices", Adv. Mater.,1998,10,1108-1112.
    13. P. Kundu, K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. H. Chein, "High-Tg Carbazole Derivatives as Blue-Emitting Hole-Transporting Materials for Electroluminescent Devices", Adv. Funct. Mater.,2003,13,445-452.
    14. S. C. Lo, P. L. Burn, "Development of Dendrimers:Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells", Chem. Rev.,2007,107,1097-1116.
    15. N. Satoh, J. S. Cho, M. Higuchi, K. Yamamoto, "Novel Triarylamine Dendrimers as a Hole-Transport Material with a Controlled Metal-Assembling Function", J. Am. Chem. Soc.,2003,125,8104-8105.
    16. A. Kimoto, J. S. Cho, M. Higuchi, K. Yamamoto, "Synthesis of Asymmetrically Arranged Dendrimers with a Carbazole Dendron and a Phenylazomethine Dendron", Macromolecules 2004,37,5531-5537.
    17. V. Promarak, M. Ichikawa, T. Sudyoadsuk, S. Saengsuwan, S. Jungsuttiwong, T. Keawin, "Synthesis of electrochemically and thermally stable amorphous hole-transporting carbazole dendronized fluorene", Synth. Met.,2007,157,17-22.
    18. M. HauBler, B. Z. Tang, "Functional Hyperbranched Macromolecules Constructed from Acetylenic Triple-Bond Building Blocks", Adv. Polym. Sci.,2007,209,1-58.
    19. G. K. Paul, J. Mwaura, A. A. Argum, P. Taranekar, J. R. Reynolds, "Cross-Linked Hyperbranched Arylamine Polymers as Hole-Transporting Materials for Polymer LEDs", Macromolecules,2006,39,7789-7792.
    20. J. Y. Shen, X. L. Yang, T. H. Huang, J. T. Lin, T. H. Ke, L. Y. Chen, C. C. Wu, M. C. P. Yeh, "Ambipolar Conductive 2,7-Carbazole Derivatives for Electroluminescent Devices", Adv. Funct. Mater.,2007,17,983-995.
    21. K. R. J. Thomas, M. Velusamy, J. T. Lin, Y. T. Tao, C. H. Chuen, "Cyanocarbazole Derivatives for High-Performance Electroluminescent Devices", Adv. Funct. Mater., 2004,13,387-392.
    22. J. Li, D. Liu, Y. Li, C. S. Lee, H. L. Kwong, S. T. Lee, "A High Tg Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices", Chem. Mater.,2005, 17,1208-1212.
    23. Z. Zhao, X. Xu, H. Wang, P. Lu, Gui, Yu, Y. Liu, "Zigzag Molecules from Pyrene-Modified Carbazole Oligomers:Synthesis, Characterization, and Application in OLEDs", J. Org. Chem.,2008,73,594-602.
    24. K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. W. Ko, "Light-Emitting Carbazole Derivatives:Potential Electroluminescent Materials",J. Am. Chem. Soc.,2001,123, 9404-9411.
    25. S. Grigalevicius, L. M. G Qian, Z. Xie, M. Forster, U. Scherf, "New Carbazole-Based Copolymers as Amorphous Hole-Transporting Materials for Multilayer Light-Emitting Diodes", Macromol. Chem. Phys.,2007,208,349-355.
    26. V. Vaitkeviciene, S. Grigalevicius, J. V. Grazulevicius, V. Jankauskas, V. G Syromyatnikov, "Hole-transporting [3,3']bicarbazolyl-based polymers and well-defined model compounds", Eur. Polym. J.,2006,42,2254-2250.
    27. A.Tsumura, H.Koezuka, and T.Ando, "Macromolecular electronic device:Field-effect transistor with a polythiophene thin film", Appl. Phys. Lett.,1986,49,1210-1212.
    28. J. Veres, S. Ogier, G Lloyd, "Gate Insulators in Organic Field-Effect Transistors", Chem. Mater.,2004,16,4543-4555.
    29. D. A. Di, G Yu, Y. Liu, D. Zhu, "High-Performance Organic Field-Effect Transistors:Molecular Design, Device Fabrication, and Physical Properties", J. Phys. Chem. B,2007,111,14083-14096.
    30. N. Drolet, J. F. Morin, N. Leclerc, S. Wakim, Y. Tao, Mario. Leclerc, "2,7-Carbazolenevinylene-Based Oligomer Thin-Film Transistors:High Mobility Through Structural Ordering", Adv. Funct. Mater.,2005,15,1671-1682.
    31. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G Durocher, Y. Tao, M. Leclerc, "Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells", J. Am. Chem. Soc.,2008,130,732-742.
    32. Y. Li, Y. Wu, S. Gardner, B. S. Ong, "Novel Peripherally Substituted Indolo[3,2-b]carbazoles for High-Mobility Organic Thin-Film Transistors", Adv. Mater., 2005,17,849-853.
    33. Y. Wu, Y. Li, S. Gardner, B. S. Ong, "Indolo[3,2-b]carbazole-Based Thin-Film Transistors with High Mobility and Stability", J. Am. Chem. Soc.,2005,127,614-618.
    34. H. Nakanotani, S. Akiyama, D. Ohnishi, M. Moriwake, M. Yahiro, T. Yoshihara, S. Tobita, C. Adachi, "Extremely Low-Threshold Amplified Spontaneous Emission of 9,9'-Spirobifluorene Derivatives and Electroluminescence from Field-Effect Transistor Structure", Adv. Funct. Mater.,2007,17,2328-2335.
    35. M. Sonntag, K. Kreger, D. Hanft, P. Strohriegl, "Novel Star-Shaped Triphenylamine-Based Molecular Glasses and Their Use in OFETs", Chem. Mater., 2005,17,3031-3039.
    36. Y. Wang, L. Hou, K. Yang, J. Chen, F. Wang, Y. Cao, "Conjugated Silole and Carbazole Copolymers:Synthesis, Characterization, Single-Layer Light-Emitting Diode, and Field Effect Carrier Mobility", Macromol. Chem. Phys.,2005,206,2190-2198.
    37. V. Promarak, M. Ichikawa, D. Meunmart, T. Sudyoadsuk, S. Saengsuwan, T. Keawin, "Synthesis and properties of stable amorphous hole-transporting molecules for electroluminescent devices", Tetra. Lett.,2006,47,8949-8952.
    38. S. H. Tucker, "Iodination in the Carbazole Series", J. Chem. Soc.,1925,1,546-553.
    39. J. Qu, M. Shiotsuki, N. Kobayashi, F. Sanda, T. Masuda, "Synthesis and properties of carbazole-based hyperbranched conjugated polymers", Polymer,2007,48,6481-6490.
    40. K. Li, Q. Wang, "Synthesis and Solution Aggregation of Polystyrene-Oligo (p-phenyleneethynylene)-Polystyrene Triblock Copolymer", Macromolecules 2004,37, 1172-1174.
    41. J. Bouchard, M. Belletete, G Durocher, M. Leclerc, "Solvatochromic Properties of 2,7-Carbazole-Based Conjugated Polymers", Macromolecules,2003,36,4624-4630.
    42. C. L. Chiang, C. F. Shu, "Synthesis and Characterization of New Polyquinolines Containing 9,9'-Spirobifluorene Units", Chem. Mater.,2002,14,682-687.
    43. P. D'Angelo, M. Barra, A. Cassinese, M. G Maglione, P. Vacca, C. Minarini, A. Rubino, "Electrical transport properties characterization of PVK (poly N-vinylcarbazole) for electroluminescent devices applications", Solid-State Electron.,2007,51,123-129.
    44. S. Barth, P. Muller, H. Riel, P. F. Seidler, W. Riea, H. Vestweber, H. Bassler, "Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes", J. Appl. Phys.,2001,89,3711-3719.
    45. S. M. Sze, Physics of Semiconductor Devices,2nd ed. John Wiley New York 1981.
    1. X. Y. Cao, X. H. Zhou, H. Zi, J. Pei, "Novel Blue-Light-Emitting Truxene-Containing Hyperbranched and Zigzag Type Copolymers:Synthesis, Optical Properties, and Investigation of Thermal Spectral Stability", Macromolecules,2004,37,8874-8882.
    2. J. Li, Z. Bo, ""AB2+AB" Approach to Hyperbranched Polymers Used as Polymer Blue Light Emitting Materials", Macromolecules,2004,37,2013-2015.
    3. M. Sun, Z. Bo, "Tuning the optical properties of hyperbranched polymers through the modification of the end groups",J. Polym. Sci., Part A:Polym. Chem.,2007,45,111-124.
    4. Y. Xin, G. Wen, W. Zeng, L. Zhao, X. Zhu, Q. Fan, J. Feng, L. Wang, W. Wei, B. Peng, Y. Cao, W. Huang, "Hyperbranched oxadiazole-containing polyfluorenes:toward stable blue light PLEDs", Macromolecules,2005,38,6755-6758.
    5. G. Wen, Y. Xin, X. Zhu, W. Zeng, R. Zhu, J. Feng, Y. Cao, L. Zhao, L. Wang, W. Wei, B. Peng, W. Huang, "Hyperbranched triazine-containing polyfluorenes:efficient blueemitters for polymer light-emitting diodes (PLEDs)", Polymer,2007,48,1824-1829.
    6. D. Tang, G. Wen, X. Qi, H. Wang, B. Peng, W. Wei, W. Huang, "Spectrum-stable hyperbranched polyfluorene with photocrosslinkable group", Polymer,2007,48, 4412-4418.
    7. X. Liu, J. Xu, X. Lu, C. He, "Novel glassy tetra(N-alkyl-3-bromocarbazole-6-yl)silanes as building blocks for efficient and nonaggregating blue-light-emitting tetrahedral materials", Org. Lett.,2005,7,2829-2832.
    8. X.-M. Liu, J. Xu, X. Lu, C. He, "A Comparative Study on Luminescent Copolymers of Fluorene and Carbazole with Conjugated or a-Si Interrupted Structures:Steric Effects", Macromolecules,2006,39,1397-1402
    9. Z. Zhao, X. Xu, H. Wang, P. Lu, G. Yu, Y. Liu, "Zigzag Molecules from Pyrene-Modified Carbazole Oligomers:Synthesis, Characterization, and Application in OLEDs", J. Org. Chem.,2008,73,594-602.
    10. J. Li, D. Liu, Y. Li, C.-S. Lee, H.-L. Kwong, S. Lee, "A High Tg Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices, Chem. Mater.,2005,17, 1208-1212
    11. N. Blouin, M. Leclerc, "Poly(2,7-carbazole)s:Structure-Property Relationships", Acc. Chem. Res.,2008,41,1110-1119.
    12. C.-W. Wu, H.-C. Lin, "Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers", Macromolecules,2006,39,7232-7240.
    13. J. Qu, M Shiotsuki, N. Kobayashi, F. Sanda, T. Masuda, "Synthesis and properties of carbazole-based hyperbranched conjugated polymers", Polymer,2007,48,6481-6490.
    14. L. Zou, Y. Fu, X. Yan, X. Chen, J. Qin, "Linear-conjugated polymers containing 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine unit:synthesis and optical properties", J. Polym. Sci. Part A:Polym. Chem.,2007,46,702-712.
    15. T. Zhao, Z. Liu, Y. Song, W. Xu, D. Zhang, D. Zhu, "Novel Diethynylcarbazole Macrocycles:Synthesis and Optoelectronic Properties", J. Org. Chem.,2006,71, 7422-7432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700