用户名: 密码: 验证码:
对割频率对皇竹草产量及光合生理生态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验对研究对象皇竹草采用四个处理:每30天刈割一次(T1)、每60天刈割一次(T2)、每90天刈割一次(T3)、每120天刈割一次(T4)和对照(CK),刈割时留茬高度为15 cm。研究刈割频率与产量的关系,以及刈割频率对光合生理生态的影响,并系统的分析了皇竹草的光合特性。研究结果如下:
     (1)不同刈割频率对皇竹草的分蘖数和生长速度都有着很明显的影响。频繁刈割能增加皇竹草的分蘖数,但过度刈割其分蘖数则有减少的趋势。适度刈割不但可以促进生长还可以增加皇竹草的分蘖数。
     (2)皇竹草的刈割频率对产量有着至关重要的影响。在湛江地区,一般选择刈割频率为60天的刈割最适宜作为青饲料(产量高、适口性好、再生速度快);而作为青贮饲料或者作为种苗,刈割周期应该在90天左右。
     (3)不同刈割频率对皇竹草光合生理特性有一定的影响。本研究结果表明不同处理的皇竹草的同化能力强弱为T3>T2>T1>T4,T3处理的皇竹草产量最高,达到17.94 kg/株,为最佳刈割频率。
     (4)刈割能改变皇竹草净光合速率的日变化,能在一定程度上削弱皇竹草的“光合午休”现象。
     (5)T1和CK的暗呼吸速率比较高,分别为2.66μmol·m-2·s-1和2.19μmol·m-2·s-1。T2、T3、T4的暗呼吸速率在1.61~1.84μmol·m-2·s-1的范围内,低于T1和CK,说明适度的刈割能降低暗呼吸速率,频繁刈割反而使暗呼吸速率变大。
     (6)所有处理的CO2响应曲线都经历了在一开始线形增加后,紧跟着会拐向一个较缓慢增长的响应阶段。由此可知,皇竹草光合作用过程中主要为Pi再生的限制。随着刈割频率的增加,皇竹草的CO2补偿点降低,即随着刈割频率的增加,皇竹草的光合产物积累量增加。
     (7)T1羧化效率最高,0.256 mol·m-2·s-1,高于T2、T3、T4;T2、T3羧化效率相当;CK的羧化效率最低0.070 mol·m-2·s-1,故不同刈割频率下皇竹草对CO2的同化能力为T1>T2>T3,T4>CK。
     (8)皇竹草的光呼吸速率与其最大净光合速率的比值很小(0.06~0.13),因此皇竹草在合成的有机物时,光呼吸耗损较小,这有利于该类植物光合产物的积累。
There are 4 treatments of Pennisetum hydridum: every 30 days(T1), every 60 days(T2), every 90 days(T3) and every 120 days(T4) in this study, to analyze the relationship between different cutting frequency and yield, and the effect of different cutting frequency on Photosynthetic physioecologica and Analysis of photosynthetic characteristics of Pennisetum hydridum. The rusults can be summarized as follow:
     (1)The cutting frequency significantly influence the tillers and growth speed of Pennisetum Hydridun. Frequent cutting can increase the number of tillers,but the number of tillers under over-cutting display decreasing trend. Moderate cutting not only promote growth,but also increase the number of tillers.
     (2)The cutting frequency of Pennisetum Hydridun has a critical influence on the yield. In the region of Zhanjiang, T2 was the best treatment for storage(high yield,good palatability,rapid regrow speed); T3 was the best treatment for storage or seedlings.
     (3)Different cutting frequency of Pennisetum Hydridun have some certain impact on the physiological characteristics.The results show that: Different treatment of Pennisetum Hydridun in the strength of the assimilation capacity is T3>T2>T1>T4, T3 is best treatment for yield of Pennisetum Hydridun.Up to 17.94 kg/plant.
     (4)Cutting can change diurnal variation of photosynthetic rate of Pennisetum. It can also weaken the Napier in the "midday depression" phenomenon to some extent.
     (5)The dark respiration speed were higher in T1 and CK,they were 2.66μmol·m-2·s-1and 2.19μmol·m-2·s-1, The dark respiration of T2,T3,T4 in the scale 1.61~1.84μmol·m-2·s-1。Below T1 and CK,indicated that medium cutting can slow the dark respiration speed,frequent cutting accelerate the dark respiration speed.
     (6)CO2 respond curve of all treatment liner increase at beginning,following with slowly increase stage.We known that photosynthesis process will restrict the regrow of Pi.As the increase of cutting frequency,the light compensation point of Pennisetum lower.As the increasing of cutting frequence, the accumulation of photosynthetic products increasing.
     (7)The carboxylation efficiency under T1 is the highest than T2,T3,T4; The T2 carboxylation efficiency equivalent with T3; CK is lowest,is 0.070 mol·m-2·s-1,so assimilation order of different treatment is T1>T2>T3, T4>CK.
     (8)The ratio photorespiration rate of Pennisetum compare to net photosynthetic rate si small(0.06~0.13).So in the synthesis process of organic, The loss of photorespiration is smaller,it is helpful to the accumulation of photosynthetic products.
引文
[1]许大全,丁焕根,苏丽英,於新建,夏叔芳,张志芳,王素香,红豆草和苜蓿的光合效率比较研究[J],生态学报, 1991, 11(1):89-91.
    [2]贺东祥,沈允钢.几种常绿植物光合特性的季节变化[J].植物生理学报, 1995, 21: 1-7
    [3] Sage RF, Reid CD. Photosynthetic response mechanisms to environmental change in C3 plants[M]. In:Wilkinson R E(ed). Plant-Environment Interactions. New York: MarceL Dekker, 1994. 413- 499
    [4] Baker NR. Chilling stress and photosynthesis[J]. In: Foyer CH, Mullineaux P M(eds).Causes of Photooxidative Stress and Amelioration of Defense System in Plants. Boca Raton: CRC Press, 1994.127-154
    [5] Moon BY, Murata N.Fast recovery of photosynthetic machinery from low-temperature photoinhibi-tion in chilling-resistant plants[M]. In: Mathis P(ed). Photosynthesis: from Light to Biosphere Vol IV. Netherlands: Kluwer Academic Pub, 1995. 841-844
    [6]许大全,徐宝基,李德耀.冰冻对珊瑚树(Viburnum odoratissimum)叶片光合效率的影响[J].植物生理学报, 1988, 14: 199-202
    [7] Berry J A, Downton WJS. Environmental regulation of photosynthesis[M]. In: Govindjee (ed). Photo-synthesis Vol II Development, Carbon Metabolism and Plant Productivity. New York: Academic Press, 1982. 263-343
    [8] Dubey R S.Photosynthesis in plants under stressful conditions[M]. In: Pessarakli M(ed). Handbook of Photosynthesis. New York: Marcel Dekker, 1997. 859-875
    [9] Carpentier R.Effect of high-temperature stress on the photosynthetic apparatus[M]. In: Passarakli M (ed). Handbook of Plant and Crop Stress (Second Edition). New York: Marcel Dekker, 1999. 337-348
    [10] Crafts-Brandner SJ, Salvucci ME. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2[J]. Proc Natl Acad Sci USA, 2000, 97: 13 430-13 435
    [11] Sharkey TD. Some like it hot[J]. Science, 2000, 287: 435-436
    [12] Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, IbaK. Trienoic fatty acids and tolerance of high temperature[J]. Science, 2000, 287: 476-479
    [13] Stamp P.Photosynthetic traits of maize genotypes at constant and at fluctuating temperatures[J]. Plant Physiol Biochem, 1987, 25: 729-733
    [14] Holaday A S, Martindale W, Alred R, Brooks A, Leegood R C.Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature[J]. Plant Physiol, 1992, 98: 1105-1114
    [15]汪华,师生波,许大全.冬季小麦叶片光合作用对温度响应方式的变化[J],植物生理学报, 2000, 26:69-74
    [16]薛崧,汪沛洪,许大全,李立人.水分胁迫对冬小麦CO2同化作用的影响[J],植物生理学报, 1992, 18:1-7
    [17] Ebukanson G J. Retardation of chloroplast ATPase activity in maize seedlings by drought stress[J]. Plant Physiol,1987, 129: 187-189
    [18] Gimenez C, Mitchell V G, Lawlor D W. Regulation of photosynthetic rate of two sunflower hybrids under water stress[J]. Plant Physiol, 1992, 98: 516-524
    [19] Speer M, Schmidt J E, Kaiser W M. Effects of water stress on photosynthesis and related processes[M]. In: Harwood J L, Walton T J (eds). Plant Membranes-Structure, Assembly and Function. London: The Biochemical Society, 1988. 209-221
    [20] Schulze E D.Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil[J]. Ann Rev Plant Physiol, 1986, 37: 247-274
    [21]叶济宇,李德耀,沈允钢.低渗膨胀对菠菜完整叶绿体光合作用的影响[J].植物生理学报, 1995, 21:73-79
    [22] Farquhar G D, von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta ,1980,149 :78-90 103-109
    [23]许大全,沈允钢,王书锦.大豆-根瘤菌共生体系光合与固氮关系研究.植物学报, 1989, 31: 73-79
    [24] Warren C R, Adams M A, Chen Z L. Is photosynthesis related to concentration of nitrogen and Rubisco in leaves of Australian native plants[J]? Aust J Plant Physiol , 2000 , 27 : 407-416
    [25] Rao I M. The role of phosphorus in photosynthesis[M]. In: Passarakli M (ed). Handbook of Photosyn- thesis. New York: Marcel Dekker, 1997. 173-194
    [26] Bhagwat A S. Activation of spinach ribulose l,5-bisphosphate carboxylase by inorganic phosphate[J]. PLant Sci Lett , 1981, 23: 197-206
    [27] Portis A R Jr. Regulation of ribulose l, 5-biphosphate carboxylase/oxygenase activity[J]. Annu Rev Plant Physiol Plant Mol Biol , 1992, 43 : 415-437
    [28] Jacob J. Phosphate deficiency increases the rate constant of thermal dissipation of excitation energy by photosystem II in intact leaves of sunflower and maize[J]. Aust J Plant Physiol , 1995, 22 :417- 424
    [29] Plesnicar M, Kastori R, Petrovic N, Pankovic D. Photosynthesis and chlorophyll fluorescence in sunflower (llelianthus annuus L. ) leaves as affected by phosphorus nutrition[J]. J Exp Bot, 1994, 45 :919-924
    [30] Longstreth D J, Nobel P S. Salinity effects on leaf anatomy[J]. Ptant Physiol ,1979,63: 700-703
    [31] Spiller S, Terry N. Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units[J]. Plant Physiol , 1980, 65 : 121-125
    [32] Morales F, Abadia A, Belkhodia R, Abada J. Iron deficiency-induced changes in the photosynthetic pigment composition of field-grown pear (Pyrus communis L. ) leaves[J]. Plant Cell Environ, 1994, 17 : 1153
    [33] Vassiliev II R, Kolber Z, Wyman K D, Mauzerall D, Shukla V K, Falkowski P G. Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertioLecta[J]. Plant Physiol, 1995, 109: 963-972
    [34] Flanagan L B, Jeffries R L. Effect of increased saljnity on CO2 assimilation, O2 evolution and theδ13C values of leaves of Plantago maritima L[J]. Developed at low and high NaCl levels. Planta, 1989, 178: 377-384
    [35] Downton W J S, Grant W J R, Robinson S P. Photosynthetic and stomatal responses of spinach leaves to salt stress[J]. Plant Physiol, 1985, 78: 85-88
    [36] Brugnoli Eg Lautery M. An evaluation of the effect of salinity on photosynthesis[M]. In: Baltscheffsky M (ed). Current Research in Photosynthesis Vol IV. Dordrecht: Kluwer Academic Pub, 1990. 741-744
    [37] Mteva T S, Zhelev N Z, Popova L P. Effect of salinity on the synthesis of ribulose-l,5-bisphosphate carboxylase/oxygenase in barley leaves[J]. Plant Physiol, 1992, 140 : 46-51
    [38] Nobel P S. Physiochemical & Environmental Plant Physiology (Second Edition)[J]. San Diego: Academic Press, 1999. 293-349
    [39] Jiang H, Xu D-Q. Physiological basis of the difference in net photosynthetic rate of leaves between two maize strains[J]. Photosynthetica , 2000, 38(2) : 199-204
    [40] Jiang H, Xu D-Q. The cause of the difference in leaf photosynthetic rate between two soybean cultivars[J]. Photosynthetica , 2001, 39(3): 453-459
    [41] Jiang H, Wang X-H, Deng Q-Y, Yuan L-P, Xu D-Q. A comparative study on some photosynthetic characters between two hybrid rice combinations differing in yield potential[J]. Photosynthetica, 2002
    [42] Xu D-Q, Chen X-M, Zhang L-X, Wang R-F, Hesketh J D. Leaf photosynthesis and chlorophyll fluorescence in a chlorophyll-deficient soybean mutant[J]. Photosynthetica, 1993, 29(1) :103-112
    [43]诨新星,许大全,汤泽生.叶绿素缺乏的大麦突变体的光合作用和叶绿素荧光[J].植物生理学报, 1996, 22 :51-57
    [44] Shen Y-G, Qiu G-X, Xu D-Q, Huang Q-M, Yang D-D, Gao A-X, Long S P, Hall D O. Studies on the photosynthesis of bamboo[J]. Chinese J Bot, 1991, 3: 116-121
    [45] Andrews T J, Lorimer G M. Rubisco: structure, mechanism and prospects for improvement[M]. In: Hatch M D, Boardman N K (eds). The Biochemisty of Plants Vol 10. New York : Academic Press, 1987. 131-218
    [46] Woodrow I E, Berry J A. Enzymatic regulation of photosynthetic CO2 fixation in Ca plants[J]. Annu Rev Plant Physiol Plant Mol Biol , 1988, 39 : 533-594
    [47] Bernacchi C J, Singsaas E L, Pimentel C, Portis A R, Long S P. Improved temperature response functions for models of Rubisco-Iimited photosynthesis[J]. Plant Cell Environ, 2001, 24 : 253-259
    [48] Stitt M, Schulze E-D. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology[J]. Plant Cell Environ, 1994, 17: 465-487
    [49] Chen L, Fuchigami L H. Rubisco activation state decreases with increasing nitrogen content in apple leaves[J]. J Exp Bot, 2000, 51: 1687-1694
    [50] Neales T F, Incoll L D. The control of leaf photosynthesis rate by the level of assimilate concentra- tion in the leaf : a review of the hypothesis[J]. Bot Rev, 1968, 34: 107-125
    [51]许大全,沈允钢.光合产物水平与光合机构运转关系的探讨[J].植物生理学报, 1982, 8: 173-186
    [52]许大全,沈允钢.甘薯(Ipomoea batatas)叶光合作用“午睡”现象初探[J].植物生理学报, 1985,11 : 423-426
    [53] Jesko T, Vizarova G. Changes of free endogenous cytokinins during transitorily increased photosynthetic rate initiated by formation of the first two whorls of nodal roots in Zea mays L[J]. Photosynthetica . 1980 , 14 : 83-85
    [54] Nath N, Mishra S D. Stimulation of ribulose-l,5-bisphosphate carboxylase activity in barley flag leaf by plant growth regulators[J]. Photosynthetica , 1990, 24 : 266-269
    [55] Chernyadv II. Effect of 6-benzylaminopurine and thidiazuron on photosynthesis in crop plants[J]. Photosynthetica, 1994, 30: 287-292
    [56] Yuan L, Xu D-Q. Stimulation effect of gibberellic acid short-term treatment on leaf photosynthesis related to the increase in Rubisco content in broad bean and soybean[J]. Photosynth Res, 2001, 68: 39-47.
    [57] Catsky J, Sestak Z. Photosynthesis during leaf development[M]. In: Pessarakli M (ed). Handbook of Photosynthesis[J]. New York: Marcel Dekker, 1997. 633-660
    [58] Thomas H, Stoddart J L. Leaf senescence[J]. Ann Rev PLant Physiol, 1980, 31: 83-111
    [59]许大全,薛德林.大豆叶片的一些光合特性[J].植物理学通讯, 1985, 6: 34-37
    [60]杨巧凤,江华,许大全.小麦旗叶发育过程中光合效率的变化[J].植物生理学报, 1999, 25: 408-412
    [61] Hennessey T L, Field C B. Circadian thythms in photosynthesis[J]. Plant Physiol, 1991, 96: 831- 836
    [62] Hennessey T L, Freeden A L, Field C B. Environmental effects on circadian thythms in photosynthesis and stomatal opening[J]. Planta, 1993, 189: 369-376
    [63] Samuelsson G, Sweeney B M, Matlik H A, Prezelin B B. Changes in photosystem II account for the circadian thythm in photosynthesis in Gonyaulax polyedra[J]. Plant Physiol, 1983, 73: 329-331
    [64] Lonergan T A. A circadian thythm in the rate of light-induced electron flow in three leguminous species[J]. Plant Physiol, 1981, 68: 1041-1046
    [65] Fredeen A L, Hennessey T L, Field C B. Biochemical correlates of the circadian thythm in photosynthesis in Phaseolus vulgaris[J]. Plant Physiol, 1991, 97: 415-419
    [66] Spiller S C, Kaufman L S, Thompson W F, Briggs W R. Specific mRNA and rRNA levels in greening pea leaves during recovery from iron stress[J]. Plant Physiol, 1987, 84: 409-414
    [67] Giuliano G, Hoffman N E, Ko K, Scolnik P A, Cashmore A R. A light-entrained circadian clock controls transcription of several plant genes[J]. EMBOJ, 1988, 7: 3635-3642
    [68] Jones T L, Ort D R. Circadian regulation of sucrose phosphate synthase activity in tomato by protein phosphatase activity[J]. Plant PhysioL, 1997, 113: 1167-1175
    [69] Vanden Dressche T. Photosynthesis: a post-transcriptionally regulated circadian rthythm in some lower eukaryotes[M]. In: Vanden Dressche T, Guisset J-L, Petiau-de Vries G M(eds). Membranes and Circadian Rhythms. Berlin: Springer-Verlag, 1996. 171-185
    [70]殷宏章.光合作用研究的历程[M].见:上海植物生理研究所和中国科学院北京植物研究所编著,光合作用研究进展,北京:科学出版社, 1976. 1-21
    [71]汤佩松,阎龙飞.光合作用机理研究进展概况[M],见:上海植物生理研究所和中国科学院北京植物研究所编著.光合作用研究进展,北京:科学出版社, 1976. 22-70
    [72] Emerson R, Chalmers R, Cederstrand C. Some factors influencing the iong-wave limit of photosynthesis[J]. Proc Natl Acad Sci USA , 1957, 43: 133-143
    [73]鄣连旺,许大全,沈允钢.田间棉花叶片光合效率中午降低的原因[J],植物生理学报, 1994, 20: 360-366
    [74] Xu D-Q. Progress in photosynthesis research: from molecular mechanisms to Green Revolution[J]. Acta Phytophysiol Sin, 2001, 27(2): 97-108
    [75]曾昭璇,黄伟峰.广东自然地理[M].广州:广东人民出版社, 2001, 116-158.
    [76]刘金祥,陈伟云,肖生宏.黑籽雀稗的光合生理特性研究[J].草业学报, 2009, 18(6): 254-258.
    [77]郭智慧,董树亭等.刈割对不同类型玉米再生分蘖及产量和品质的影响[J].玉米科学, 2008, 16(3): 104-108。
    [78]肖虎善,杨锦忠.刈割高度对和草丛分蘖高度的影响[J].山西农业大学学报, 2007, 27(2): 153-157
    [79] Parsons A J, Penning P D. The effects of the duration of regrowth on photosynthesis, leaf death and average rate of growth in a rotationally grazed sward[J].Grass and forage science, 1988, 44: 16-38.
    [80] Parsons A J, Leafe E L, Collett Betal. The physiology of grass production under grazingⅠ. Characteristics of leaf and canopy photosynthesis of continuouslygrazed swards[J]. Journal of applied ecology, 1983, 20:117-126.
    [81]来强,李青丰等.草地牧草含水量测定暨干鲜比估测方法研究[J].内蒙古草业, 2008, 9(3): 4-7.
    [82]韩清芳,贾志宽.紫花苜蓿种植资源评价与筛选[M].杨凌:西北农林科技大学出版社, 2004. 8.
    [83] R.0.怀特,等.粮农组织农业研究文集一禾本科牧草.北京:中国农业科技出版社, 1988, 126-133.
    [84]白玉龙,乌艳红,韩晓华.紫花苜蓿株龄与其营养成分关系的研究[J].草业科学, 1999, 16(1)18: 21
    [85]马春晖.等.播种比例、施氮量和刈割期对混播草地牧草产量和质量的影响[J].中国草地, 1999, (4): 9-16
    [86]韦家少,蒋候明.王草刈割时期探讨[J].草业科学, 1994, 11(2): 52-54
    [87]廖建雄,王根轩.谷子叶片光合速率日变化及水分利用效率[J].植物生理学报, 1999, 25(4): 362-368.
    [88]许大全.光合作用效率[M].上海科学技术出版社
    [89] Fraquhar G D, Sharkey T D. Stomatal conductance and photosynthesis.Ann Rev Plant Physiol[J], 1982, 33: 317-345
    [90]许大全,丁勇.田间小麦叶片光合速率日变化与光合午睡的关系[J].植物生理学报. 1992, 18: 279-284.
    [91]薛松,汪沛宏.水分胁迫对冬小麦CO2同化作用的影响[J].植物生理学报. 1992, 18: 1-7
    [92]刘金祥.三裂叶蟛蜞菊光合生理特性对光合有效辐射增强的响应[J].草原与草坪. 2005. 2: 27-31
    [93]刘怀年,邓晓建,李平.水稻品种资源光合速率研究[J].四川农业大学学报, 2007, 25(4): 379-383, 387.
    [94]刘金祥,李文送,刘家琼.模拟光条件下有性繁殖香根草光合生理的研究[J].生态学杂志, 2005, 24(4): 390-394.
    [95]刘金祥,邝宴筹,肖生鸿.模拟酸雨对种子繁殖香根草生理特性的影响[J].草业学报, 2005, 14(5) 54-58.
    [96]刘金祥,邓连芳,刘家琼.香根草及其伴生种圆果雀稗光合特性比较研究[J].亚热带植物科学, 2005, 34(1): 21-24.
    [97]刘金祥,王铭铭.淹水胁迫对香根草生长及光合生理的影响[J].草业科学, 2005, 22(7): 71-73.
    [98]林保花,刘金祥,肖生鸿,等.粤西乡土香根草光合生理生态特征日动态分析[J].应用生态学报, 2006, 17(11): 2041-2045
    [99]邱国雄.植物光合作用的效率[M].余叔文.植物生理学和分子生物学.北京:科学出版社, 1992: 236-243.
    [100]师生波,李惠梅,王学英等.青藏高原几种典型高山植物的光合特性比较[J].植物生态学报, 2006, 30(1): 40-46.
    [101] XuDQ(许大全), ShenYG(沈允钢)(2001). Limiting factors in photosynthesis[M]. In: YuSW(余叔文), TangZC(汤章城)eds. Plant physiology and Plant Molecular Biology (植物生理和植物分子生物学)2nd edn. Science press, Beijing, 262-276.(in Chinese)
    [102] Farquhar, GD&Sharke, T.D. Stomatal conductance and photosynthesis[J]. Annals Review of Plant Physiology. 1982, 33: 317-345.
    [103] Farquhar P.J, CowanIR, Farquhar GD. The apparent feed-forward response of stomata to airvapor pressure deficit: information reveales by different experimental techniques with two rain forest trees[J]. Plant cell and environment. 1998, 21: 94-100.
    [104] Sharkey T.D. Estimation the rate of photorespiration in leaves[J]. physiolplant. 1988, 73: 47-52.
    [105]许大全,沈允钢.植物光合作用效率的日变化[J].植物生理学报, 1997, 23(4): 410-416.
    [106]潘瑞炽,王小首,李娘辉.植物生理学[M].第五版.北京:高等教育出版社, 2004: 142-155.
    [107]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992. 28(4): 237-243.
    [108]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯[J], 1997, 33(4): 241-244.
    [109] Blanke E B & Pohlan J. Impaet of hemal stress and high VPD on gas exehange and chorophyll fluoreseenee of Citrus Brandis under desert conditions[J]. Acta Hort. 2000. 531: 143-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700