用户名: 密码: 验证码:
福建万木林优势植物叶热值、养分及化学组分特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
测定福建万木林自然保护区12种优势植物叶片的热值、灰分含量和C、N浓度、化学组分,并比较分析热值、养分和化学组分在乔木层、灌木层、草本层的分配情况及其季节动态,以及相互间的关联,探讨万木林中亚热带常绿阔叶林生态系统能量及物质分配特征。结果表明:
     (1)12种优势植物叶去灰分热值(年均值21.04 kJ·g-1)显著高于世界陆生植物(年均值17.77 kJ·g-1),与中亚热带其他常绿阔叶林相比,介于纬度较高的浙江与纬度较低的广东之间,从大范围空间尺度看,遵循纬度升高热值递减的规律,表明经600多年封禁保护的万木林常绿阔叶林植物热值达到较高水平;叶C、N浓度年均值分别为47.79%(变幅44.30%~50.70%)和1.77%(变幅1.21%~2.82%)与全球陆生植物或其他地区相比,表现为C浓度高,N浓度低,即N素受限,高的C/N表明该地区植物养分利用效率高。
     (2)12种优势植物叶干重热值、灰分含量、去灰分热值季节变化均表现为:冬季>秋季>夏季>春季,而C、N浓度呈:夏季>春季>秋季>冬季,C/N呈:秋季>冬季>春季>夏季,且除N浓度和C/N外,其他4项指标季节间的差异达显著或极显著水平;不同植被层次植物叶干重热值、去灰分热值、C浓度均为:乔木层>灌木层>草本层,且层次间的差异达显著或极显著水平,而灰分、N素在乔木层、灌木层、草本层的分配呈多元格局。
     (3)12种优势植物叶干重热值、去灰分热值与C浓度极显著正相关,灰分含量与C浓度显著负相关;去灰分热值与N浓度显著正相关,干重热值、灰分含量与N浓度相关均不显著;干重热值、灰分含量和去灰分热值与C/N相关均不显著。
     (4)比较分析表明,富含芳香油类物质的樟科植物叶灰分含量和去灰分热值极显著高于壳斗科,干重热值也高于壳斗科,但差异不显著。
     (5)12种优势植物叶FTIR存在细微差异。由FTIR表征的(纤维素+半纤维素)/木质素(1154/1220)和(纤维素+半纤维素)/脂类(1154/1733)在不同植被层次均表现为:乔木层>灌木层>草本层,前者层间差异达显著水平,后者达极显著水平,结果提示,FTIR表征的上述2项指标具有区分层间植物的作用。
Caloric value, ash content (AC), C and N concentration, chemical composition in leaves of 12 dominant species in Fujian Wanmulin Nature Reserve were investigated, and the allocation of which among tree layer, shrub layer, herbaceous layer and the seasonal dynamics were analyzed. Then discussed the relationships between them, in order to reveal the characteristics of the energy and matter distribution in mid-subtropical evergreen broad-leaved forest ecosystems.
     The results showed that:
     (1) The ash free caloric value (AFCV) in leaves of 12 dominant species (21.04 kJ·g-1 per year) were higher than the terrestrial plant of the whole world significantly (17.77 kJ-g-1 per year), compared with other evergreen broad-leaved forests in mid-subtropical areas of China, which was between Zhejiang province in high latitude and Guangdong province in low latitude. Considered from spatial distribution pattern, the AFCV had decreased with increasing latitude, proved that the caloric value of evergreen broad-leaved forest of Wanmulin under integrated protection system of land prohibition had got a higher level. C and N concentration in leaves of 12 dominant species were 47.79%(range from 44.30% to 50.70%) and 1.77%(range from 1.21% to 2.82%), respectively. Compared with the terrestrial plant of the whole world or other areas, C concentration was higher, N concentration was lower, appeared limited N. The ratio C to N was high revealed the nutrient use efficiency got a good level.
     (2) The gross caloric value(GCV), AC and AFCV of 12 dominant species had the same seasonal change patterns decreased in the following order:winter, autumn, summer and spring, then C and N concentration decreased from summer, spring, winter and autumn, and the ratio C to N was autumn> winter> spring> summer. Except N and the ratio C to N, others at least differed significantly. Under different layers in the forest, the GCV, AFCV and C content all showed tree layer> shrub layer> herbaceous layer at the significant level, and the distribution of AC and N content in different layers were more and more diversified.
     (3) Both GCV and AFCV in leaves of 12 dominant species were found to be significantly positive correlated with C concentration, and AC was significantly negative correlated with C concentration. The AFCV was significantly positive correlated with N content, the GCV and AC were not to be significantly with nitrogen. The GCV, AC and AFCV were not to be significantly with the ratio C to N.
     (4) Because of Lauraceae was rich in lipid and volatile aroma compounds, the results showed that the AC and AFCV of Lauraceae were higher than Fagaceae significantly, the GCV of Lauraceae was higher than Fagaceae but not siginificant,
     (5) The Fourier transform infrared Spectroscopy (FTIR) of 12 dominant species had some differences. The targets (1154/1220,1154/1733) by FTIR both showed that tree layer> shrub layer> herbaceous layer, the differences of the target (1154/1220) and (1154/1733) among layers had a significant and highly significant, respectively. Therefore, it was suggested that the two targets with FTIR, could distinguish plants from layers.
引文
Adamandiadou S, Siafaca L, Margaris NS. Caloric content of plants dominating phry-ganic (East Mediterranean) ecosystems in Greece. Flora,1978,167:514-584.
    Amthor JS. Efficiency of lignin biosynthesis:a quantitative analysis. Annals of Botany, 2003,91:673-695.
    Andersen DC, Armitage KB. Caloric value of Rocky Mountain subalpine and alpine plants. Journal of range management,1976,29(4):344-345.
    BlaschkeL, ForstreuterM, SheppardLJ, etal. Ligniflcation in beech (Fagus sylvatica) grown at elevated CO2 concentrations:interaction with nutrient availability and leaf maturation. Tree Physiology,2002,22:469-477.
    Bliss LC. Caloric value and lipid content in alpine tundra plants. Ecology,1962,43: 753-757.
    Bobkova KS, Tuzhilkina VV.Carbon concentrations and caloric value of organic mater in northern forest ecosystems. Russian Journal of Ecology,2001,32(1):63-65.
    Brinkmann K, Blaschke L, Polle A. Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lingo-proteins. Journal of Chemical Ecology,2002,28: 2483-2501.
    Cernusak LA, Aranda J, Marshall JD, et al. Large variation in whole-plant water-use efficiency among tropical tree species. NewPhytologist,2007,173:294-305.
    Chadwick OA, DerryLAitousek PM, et al. Changing sources of nutrients during four million years of ecosystem development. Nature,1999,397:491-497.
    ChernyadevII, MonakhovaOF. The activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase in wheat plants as affected by water stress and kartolonn-4. Photosynthetica,1998,35:603-610.
    Demirbas A. Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Sources,2003,25: 629-635.
    DuanBL, LuYW, YinCY, etal. Morphological and physiological plasticity of woody plant in response to high light and low light. Chinese Journal of Applied and Environmental Biology,2005,11(2):238-245.
    Elser JJ, Fagan WF, Denno RF, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature,2000,408:578-580.
    European Environmental Agency (EEA). How much bioenergy can Europe produce without harming the environment? EEA Report,2006,7.
    FaixO. Fourier transform infrared spectroscopy. In:Methods in Lignin Chemistry (eds Lin SY, Dence CW), Berlin:Springer-Verlag,1992,83-109.
    Falkengren-Grerup U, Diekmann M. Use of a gradient of N-deposition to calculate effect-related soil and vegetation measures in deciduous forests. Forest Ecology and Management,2003,180:113-124.
    Finzi AC, Norby RJ, Calfapietra C, et al. Increases in nitrogen uptake rather than nitrogen use efficiency support higher rates of temperate forest productivity under elevated CO2. Proceedings of the National Academy of Sciences of the United states of America,2007,104:14014-14019.
    GolleyFB. Caloric of wet tropical forest vegetation. Ecology,1969,50(3):517-519.
    GolleyFB. Energy values of ecological materials. Ecology,1961,42(3):581-584.
    Gorham E, Sanger J. Caloric value of organic matter in woodland, swamp and lack soils. Ecology,1967,48(3):492-494.
    Griffin KL. Calorimetric estimates of construction cost and their use in ecological studies. Functional Ecology,1994,8:551-562.
    GusewellS. N:P ratios in terrestrial plants:Variation and functional significance. New phytologist,2004,164:243-266.
    Hadley NF, Tinkle DW. Lizard reproductive effects:calorie estimates and comments on its evolution. Ecology,1975,56(3):427-434.
    HanWX, FangJY, Guo DL, etal. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist,2005,168:377-385.
    Himmelsbach DS, Khalili S, Aitkin DE. FTIR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Cellular and Molecular Biology,1998,44:99-108.
    Ivask M. Caloric value of Norway spruce organs and its seasonal dynamics. Baltic Forestry,1999,5(1):44-49.
    Jakl T, Bolhar-Nordenkampf HR. Energy conversion efficiency and energy partitioning of white lupins(Lupinus alb us L). Bioresource Technol,1991,36:193-197.
    James TDW, Smith DW. Seasonal changes in the caloric values of the leaves and twigs of Papulus remuloides. Can.J.Bot,1978,56:1804-1805.
    Jiang CZ, Ishihara K, Satoh K, et al. Loss of the photosynthetic capacity and protein in senescing leaves at top positions of two cultivars of rice in relation to source capacities of the leaves for carbon and nitrogen. Plant and Cell Physiology,1999, 40:496-503.
    Jordan CF. A world pattern in plant energetics. American Scientist,1971,59:426-433.
    Kacurakova M, Capek P, Sasinkova V, et al. FTIR study of plant cell wall model compounds:pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 2000,43:195-203.
    Kataki R, Konwer D. Fuelwood characteristics of some indigenous woody species of north-east India. Biomass and Bioenergy,2001,20:17-23.
    Korner C, Asshoff R, Bignucolo O, et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science,2005,309:1360-1362.
    Lamprell H, Mazerolles G, Kodjo A, et al. Discrimination of staphylococcus aureus strains from different species of staphylococcus using Fourier transform infrared spectroscopy (FTIR). International Journal of Food Microbiology,2006,108: 125-129.
    Larcher W. Physiologiacal Plant Ecology 2nd ed. Berling:Science Press,1980.
    Larcher W. Physiological Plant Ecology 4nd ed. Berlin-Verlag:Springer,2003.
    Lieth H, Whittaker RH (Trans. Wang Y-Q). Primary Productivity of the Biosphere.1975, Beijing:Science Press (in Chinese).
    Livingston NJ, Guy RD, Sun ZJ, et al. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce(Piceaglauca (Moench) Voss) seedlings.Plant Cell and Environment,1999, 22:281-289.
    Long FL. Application of calorimetric methods to ecological research. Plant Physiol, 1934,9(2):323-327.
    Long SP,Zhu XG, Naidu SL, et al. Can improvement in photosynthesis increase crop yield? Plant,Cell and Environment,2006,29:315-330.
    Luo ZB, Polle A. Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Global Change Biology,2009,15:38-47.
    Luo ZB, Calfapietra C, Scarascia-Mugnozza G, et al. Carbon-based secondary metabolites and internal nitrogen pools in populus nigra under Free Air CO2 Enrichment (FACE) and nitrogen fertilisation. Plant andSoil,2008,304:45-57.
    MattsonWJ, Julkunen-Tiito R, Herms DA. CO2 enrichment and carbon partitioning to phenolics:do plant responses accord better with the protein competiton or the growth differentiation balance models? Oikos,2005,111:337-347.
    McGroddyME, DaufresneT, HedinLO. Scaling of C:N:P stoichiometry in forests worldwide:Implication of terrestrial red field-type rations. Ecology,2004,85(9): 2390-2401.
    Neitzke M. Changes in energy fixation and efficiency of energy capture in above-ground biomass along an environmental gradient in calcareous grasslands. Flora,2002, 197:103-117.
    Nelson WH. Modern techniques for rapid microbiological analysis. VCHpublishers, New York, USA,1991.
    Nicotra AB, Chazdon RL, Iriarte SVB. Spatial heterogeneity of light and woody seeding regeneration in tropical wet forests. Ecology,1999,80(6):1908-1926.
    Ovigton JD, Lawrence DB. Comparative chlorophyll and energy studies of prairie, savanna, oakwood and maize field ecosystems. Ecolgy,1967,48:515-524.
    Paine RT. The measurement and application of the calorie to ecological problem. Annual Review Ecology Systematics,1971,2:145-164.
    Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature an latitude. PNAS,2004,101:11001-11006.
    Runge M. Energieumsatze in den Biozonosen terrestrischer Okosysteme. Scripta Geobot,1973,4:1-77.
    Sicher RC, Bunce JA. Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide. Photosynthesis Research,1997,52:27-38.
    Singh A K, MisraKN, Ambasht RS.Energy dynamics in a savanna ecosystem in India. JapJEcol,1980,3:295-305.
    Smith DW, TumeyPR. Specific density and caloric value of the trunk wood of white birch, black cherry and sugar maple, and their relation to forest succession. Canadian Journal of Forest Research,1982,12(2):186-190.
    Solomonson LP, Barber MJ. Assimilatory nitrate reductase:functional properties and regulation. Annual Revies of Plant Physiology and Plant Molecular Biology,1990, 41:225-253.
    Sultan SE. Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 1995,44:363-383.
    Sundriyal RC. Structure, productivity and energy flow in an alpine grassland in the Garhwal Himalaya. Journal of Vegetation Science,1992,3:15-20.
    TakashimaT, HikosakeK, HiroseT. Photosynthesis or persistence:Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell and Environ-ment,2004,27:1047-1054.
    Tingey DT, Rodecap KD, Lee EH, et al. Pod development increases the ozone sensitivity of Phaseolus vulgaris. Water, Air and Soil Pollution,2002,139: 325-341.
    Trossero MA. Wood energy:the way ahead. Unasylva,2002,211:3-10.
    Warren CR, Adams MA. Evergreen trees do not maximize instantaneous photosynthesis. Trends in plant science,2004,9:270-274.
    Whittaker R H, Niering W A. Vegetation of the santa Catalina Mountains, Arizona Biomass, production and diversity along the elevation gradient. Ecology,1975, 56:771-790.
    Wielgolaski FE, Kjelvik S. Energy content and use of solar radiation of Fennoscandian Tundra plants. In:Wielgolaski FE, ed. Feunoseandian Tundra Ecosystem, Part I: Plant and microorganisms. New York, Berlin-Heidelberg:springer,1975:201-206.
    Williams DH, Fleming I. Spectroscopic methods in organic chemistry.5th ed. McGraw-Hill international, London, UK,1996.
    Wright IJ, Reich PB, Cornelissen JHC, etal. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography,2005,14: 411-421.
    Yang J P, Boniface W, Jiang N, et al Analysis of climatic factor effects on the caloric value of two rice varieties under different nitrogen levels. Chinese Journal of Rice science,2001,15(3):233-266.
    Zeroual W, Choisy C, Doglie SM, et al. Monitoring of bacterial growth and structural analysis as probed by FTIR spectroscopy. Biochimica BiophysicaActa,1994,1222: 171-178.
    鲍雅静,李政海,韩兴国,等.植物热值及其生物生态学属性.生态学杂志,2006,25(9):1095-1103.
    鲍雅静,李政海.内蒙古锡林河流域草原植物种群和功能群热值研究.大连民族学院学报,2008,10(3):197-202.
    毕玉芬,车伟光.几种苜蓿属植物植株热值研究.草地学报,2002,10(4):265-269.
    陈波,杨永川,周莹.浙江天童常绿阔叶林内七种优势植物的热值研究.华东师范大学学报(自然科学版),2006,2:105-111.
    陈登龙,房乾,姚清华,等.傅里叶红外光谱研究重组蛛丝蛋白分子构象的影响因素.高分子材料科学与工程,2009,25(1):104-110.
    陈坚,高峻,杨斌生,等.福建建瓯市万木林罗浮栲群落特征的研究.上海师范大学学报(自然科学版),1996,25(2):67-73.
    陈美玲,上官周平.黄土高原子午岭林区6个典型群落优势树种的热值和养分特征.林业科学,2009,45(3):140-144.
    陈美玲,上官周平.黄土高原子午岭大披针苔草能量与养分特征.应用生态学报,2008a,19(1):50-56.
    陈美玲,上官周平.四种园林植物的热值与养分特征.应用生态学报,2008b,19(4):747-751.
    陈章和,王伯荪,张宏达.黑石顶自然保护区南亚热带常绿阔叶林生物量与生产量研究.Ⅱ.马尾松生长分析.中山大学学报(自然科学版),1993,32(4):81-86.
    陈子林,康华靖,刘鹏,等.浙江大盘山香果树群落各层优势树种叶片热值研究.中南林业科技大学学报,2009,29(3):33-37.
    程建中,李心清,刘钟龄,等.中国北方草地植物群落碳、氮元素组成空间变化及其与土壤地球化学变化的关系.地球化学,2008,37(3):265-274.
    达良俊,杨永川,宋永昌.浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型.植物生态学报,2004,28(3):376-384.
    邓芹英,刘岚.邓慧敏.波谱分析教程.科学出版社,2003:40-48.
    方运霆,莫江明,周国逸,等.鼎湖山南亚热带常绿阔叶林植物和土壤微量元素含量.广西植物,2005,25(6):504-510.
    福建省科学技术委员会《福建植物志》编写组.福建植物志.福建科学技术出版社,1982.
    官丽莉,周小勇,罗艳.我国植物热值研究综述.生态学杂志,2005,24(4):425-457.
    郭继勋,王若丹.松嫩草原碱矛(Puccinellia tenuiflora)热值和能量动态的研究.生态学报,2001,21(6):896-899.
    郭继勋,王若丹,包国章.东北羊草草原主要植物热值.植物生态学报,2001,25(6):746-750.
    郭剑芬,陈光水,钱伟,等.万木林自然保护区2种天然林及杉木人工林凋落量及养分归还.生态学报,2006,26(12):4091-4098.
    郝朝运,刘鹏.浙江北山七子花群落主要植物叶热值.生态学报,2006,26(6):1709-1717.
    黄钰辉,官丽莉,周国逸,等.西双版纳热带季节雨林和哀牢山中山湿性常绿阔叶林优势植物及地表凋落物层的热值.植物生态学报,2007,31(3):457-463.
    何亚婷,刘文治,党高弟,等.秦岭亚高山草甸30种草本植物的碳、氮分布研究.草业科学,2008,25(10):1-5.
    黄建军,王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征.华东师范大学学报(自然科学版),2003,3(1):92-97.
    旷远文,温达志,周国逸,等.鼎湖山季风常绿阔叶林各层次优势种热值研究.北京林业大学学报,2005,27(2):6-12.
    李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林主要种类能量背景值测定分析.植物生态学报,1996,20(1):1-10.
    林承超.福州鼓山季风常绿阔叶林及其林缘几种植物叶热值和营养成分.生态学报,1999,19(6):832-836.
    林光辉,林鹏.红树植物秋茄热值及其变化的研究.生态学报,1991,11(1):44-48.
    林鹏,邵成,郑文教.福建和溪亚热带雨林优势植物叶的热值研究.植物生态学报,1996,20(4):303-309.
    林鹏,林光辉.几种红树植物的热值和灰分含量研究.植物生态学与地植物学学报,1991,15(2):114-120.
    林鹏,王文卿.盐胁迫下红树植物秋茄热值变化的研究.植物生态学报,1999,23(5):466-470.
    林益明,林鹏.福建武夷山2个典型植物群落建群种的热值研究.武夷科学,1999,15(12):118-123.
    林益明,黎中宝,陈奕源,等.福建华安竹园一些竹类植物叶的热值研究.植物学通报,2001,18(3):356-362.
    林益明,郭启荣,叶功富,等.福建东山几种木麻黄的物质与能量特征.生态学报,2004,24(10):2217-2224.
    林益明,林鹏.华安县绿竹林能量的研究.厦门大学学报,1998,37(6):908-914.
    林益明,林鹏,李振基,等.福建武夷山甜槠群落能量的研究.植物学报,1996,38(12):989-994.
    林益明,林鹏,王通.几种红树植物木材热值和灰分含量的研究.应用生态学报,2000,1(2):181-184.
    林益明,王湛昌,柯莉娜,等.四种灌木状与四种乔木状棕榈植物热值的月变化.生态学报,2003,23(6):1117-1124.
    刘刚,刘剑红,宋鼎珊,等.野生食用蕈菌不同部位的红外光谱研究.光谱学与光谱分析,2005,25(7):1053-1056.
    刘茂松,冯霞,姜志林,等.万木林主要森林群落特征及演替动态.南京林业大学学报,1998,22(2):5-10.
    刘世荣,蔡体久,柴一新,等.落叶松人工林群落能量积累、分配、固定和转化的研究.生态学杂志,1990,9(6):7-10.
    刘世荣,王文章,王明启.落叶松人工林生态系统净初级生产力形成过程中的能量特征.植物生态学与地植物学学报,1992,16(3):209-218.
    龙瑞军,徐长林,胡自治,等.天祝高山草原15种饲用灌木的热值及季节动态.生态学杂志,1993,12(5):13-16.
    罗庇荣,刘刚,时有明,等.FTIR结合主成分分析对杜鹃花植物鉴别分类研究.红外技术,2009,31(1):38-43.
    彭勇,孙素琴,赵中振,等.国产枸杞属植物的红外指纹图谱无损快速鉴别研究.光谱学与光谱分析,2004,25(6):679-681.
    乔秀娟,曹敏,林华.西双版纳不同林龄次生植物群落优势树种的热值.植物生态学报,2007,31(2):326-332.
    任海,彭少麟,刘鸿先,等.鼎湖山植物群落及其主要植物的热值研究.植物生态学报,1999,23(2):148-154.
    宋永昌,王祥荣.浙江天童国家森林公园的植被与区系.上海:上海科学技术文献出版社,1995.
    唐旭利,周国逸,温达志,等.鼎湖山南亚热带季风常绿阔叶林C贮量分布.生态学报,2003,23(1):90-97.
    苏智先,钟章成,廖咏梅,等.慈竹克隆种群能量动态研究.生态学报,1994,14(2):142-148.
    孙国夫,郑志明,王兆骞.水稻热值的动态变化研究.生态学杂志,1993(12):1-4.
    孙吉利.松嫩草地黄蒿种群热值和能量季节动态研究.东北师范大学硕士学位论文,2006.
    谭忠奇,林益明,向平,等.5种榕属植物不同发育阶段叶片的热值与灰分含量动态.浙江林学院学报,2003,20(3):264-267.
    王得祥,雷瑞德,尚廉斌,等.秦岭林区主要乔、灌木种类能量背景值测定分析.西北林学院学报,1999,14(1):54-58.
    王立海,孙墨珑.小兴安岭主要树种热值与碳含量.生态学报,2009,29(2):953-959.
    吴厚水,刘慧屏,黄大基,等.鼎湖山自然保护区3种群落的能量流和能量利用效率.生态学报,1998,18(1):82-89.
    向平,林益明,彭在清,等.厦门园林植物园10种榕属植物叶热值与灰分含量的研究.林业科学,2003,39(专刊):68-73.
    许振柱,周广胜.全球变化下植物的碳氮关系及其环境调节研究进展—从分子到生态系统.植物生态学报,2007,31(4):738-747.
    徐世健,安黎哲,冯虎元,等.两种沙生植物抗旱生理指标的比较研究.西北植物学报,2000,20(2):224-228.
    徐永荣,张万钧,冯宗炜,等.天津滨海盐渍土上几种植物的热值和元素含量及其相关性.生态学报,2003,23(3):450-455.
    徐永荣,冯宗炜,朱敬恩.武汉和天津园林植物叶片热值比较研究.生态学杂志,2004,23(6):11-14.
    许春霞,李向民,张一平,等.陕西银杏叶黄酮含量和热值的时空分布规律研究.西北植物学报,2003,23(9):1522-1527.
    闫淑君,洪伟,吴承祯.万木林中亚热带常绿阔叶林林隙边缘效应的研究.江西农业大学学报,2006,28(5):718-722.
    杨福囤,何海菊.高寒草甸地区常见植物热值的初步研究.植物生态学与植物学丛刊,1983,7(4):280-288.
    于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社,2003:44-77.
    曾小平,蔡锡安,赵平,等.广东鹤山人工林群落主要优势植物的热值和灰分含量.应用生态学报,2009,20(3):485-492.
    张鸿芳,陈佐忠.大针茅典型草原几种主要植物含热值的季节变化.植物学通报,1993,10(1):51-53.
    赵廷宁,杨维西,陈涛,等.黄土高原主要树种的两种化学成分含量及其对树木热值的影响.北京林业大学学报,1993,15(2):54-62.
    赵育民,王军邦,牛树奎,等.内蒙古典型草原羊草和大针茅群落热值研究.草业科学,2008,25(8):7-12.
    郑淑霞,上官周平.黄土高原地区植物叶片养分组成的空间分布格局.自然科学进展,2006,16(8):965-973.
    郑帷婕,包维楷,辜彬.陆生高等植物碳含量及其特点.生态学杂志,2007,26(3):307-31.
    周长玉.傅立叶变换红外光谱仪的定量分析方法.内蒙古石油化工,2004,30:81-82.
    周延锋.福建长汀重建生态系统先锋植物热值和能量特征研究.福建师范大学硕士学位论文,2009.
    朱锦懋,姜志林,郑群瑞,等.福建万木林自然保护区森林群落物种多样性.生态学杂志,1997,16(2):1-6.
    朱蕾,苏艳.傅里叶红外光谱分析在环境试验中的应用.环境技术,2002,3:5-9.
    祖元刚.能量生态学引论.长春:吉林科学技术出版社,1990:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700