用户名: 密码: 验证码:
流沙河流域土地退化与土壤有机碳密度变化关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据流沙河流域2005年样样点调查资料,采用采用主成分、判别分析与K均值聚类分析相结合的方法对研究区土地退化进行评价,利用传统统计和方差分析等研究方法,对不同土地退化程度下土壤总有机碳密度和水溶性有机碳密度的变化过程及其变化特征进行了研究。分析了土壤类型、地形因子、植被(物)类型、土壤母质(岩)、土地利用类型等对土地退化和土壤有机碳密度变化的影响。研究结果分述如下:
     流沙河流域土壤总有机碳密度(TOCD)随着退化程度的加深,其值分别为5.42±1.21kg m~(-2)、3.61±0.94kg m~(-2)、1.78±0.30 kg m~(-2)、0.77±0.16kg m~(-2),呈递减趋势。不同土地退化程度下TOCD之间存在极显著差异F=13.55~(**)(P<0.01)。
     土壤水溶性有机碳(WSOC)是土壤有机碳的重要组成部分,土壤总有机碳密度与土壤水溶性有机碳密度呈极显著正相关(R~2=0.91)。流域土壤水溶性有机碳密度(WSOCD)随着退化程度的加深,其值分别为43.79±7.63 g m~(-2)、38.21±9.31g m~(-2)、18.34±2.82 g m~(-2)、9.56±2.17 g m~(-2),呈递减趋势。不同土地退化程度下WSOCD之间存在极显著差异F=12.83~(**)(P<0.01)。
     母质(岩)类型、土壤类型、海拔、植被(物)类型以及土地利用类型是主要的影响因素。
     不同母质(岩)类型时,TOCD之间存在极显著差异F=5.35~(**)(P<0.01),WSOCD之间存在显著差异F=3.58~*(P<0.05)。
     不同土壤类型时,TOCD和WSOCD在不同土壤类型之间均存在极显著差异,F=5.20~(**)(P<0.01)和F=5.25~(**)(P<0.01)。
     地形因素从坡度、坡向和海拔等3个方面分析了它们的影响。方差分析表明,不同坡度和坡向时,TOCD和WSOCD均不存在显著差异。不同海拔时,TOCD之间存在显著差异F=3.33~*(P<0.05),WSOCD之间存在极显著差异F=4.60~(**)(P<0.01)。
     植被(物)类型,从植被群落和生物量两个方面进行分析。植物群落呈乔-灌-草的逆行演替,随着土地退化程度的加剧,土壤有机碳密度逐渐降低。地表生物量呈现随着土地退化程度的加剧而急剧减少的趋势。方差分析表明不同土地退化程度下生物量之间存在极显著差异F=59.79~(**)(P<0.01),土壤有机碳密度与地表生物量成极显著正相关(R~2=0.95),地表生物量低的区域是土地退化防治和治理的重点。
     不同土地利用类型时,不同土地利用类型下土壤有机碳密度存在极显著差异,F=9.55~(**)(P<0.01)和F=9.70~(**)(P<0.01)。
According to the data of field investigation about plant identification and soil chemical analysis of 57 samplings in 2005 in the Liusha Basin,Hanyuan County,Sichuan Province.Land degradation of the Liusha Basin were assessed by main component analysis method,discriminant analysis and K-means cluster.This paper studied on the soil organic carbon density characteristics under different land degradation degrees by statistic methods and variance analysis,discussing the influence of soil type,orographic factor, plant type,parent material,land using type on land degradation and soil organic carbon density.The main results were as follows.
     The results showed that the average of TOCD in Basin declined with the degree of land degeneration were 5.42±1.21 kg m~(-2),3.61±0.94 kg m~(-2),1.78±0.30 kg m~(-2),0.77±0.16 kg m~(-2),respectively.Variance analysis indicated that TOCD highly significantly decreased, F=13.55~(**)(P<0.01).
     WSOC took an important part in soil organic carbon,TOeD and WSOCD had singnificant positive relationship(R~2=0.91).WSOCD in the topsoil declined with the degree of soil degeneration were 43.79±7.63 g m~(-2),38.21±9.31 g m~(-2),18.34±2.82 g m~(-2), 9.56±2.17 g m~(-2),respectively.The results of variance analysis showed that the different land degradation degree had the extremely difference with WSOCD,F=12.83~(**)(P<0.01).
     The main influential factors of land degradation in Liusha Basin were parent material(rock),soil type,altitude,the types of vegetation and land use types.Under different types of parent material(rock),the results of variance analysis showed that the different land degradation degree had both the extremely difference with TOeD F= 5.35~(**)(P<0.01) and WSOCD,F=3.58~(**)(P<0.05).
     Different soil type,the variance analysis showed that TOeD and WSOCD both were the extremely significant differences F=5.20~(**)(P<0.01) and F=5.25~(**)(P<0.01) in different soils.
     The orographic factor analyses from slope,slope aspect and altitude.The results of variance analysis showed that both TOCD and WSOCD had no singnificant difference under different slope,F=0.12 and F=0.44(P>0.05).Analysis of variance showed that there were no significant differences of WSOCD and TOeD in different slopes,F=0.83 and F=1.57(P>0.05),respectively.Under different altitudes,the analysis of variance showed that there wre extremely significant differences of WSOCD,F=4.60~(**)(P<0.01) and significant differences of TOeD F= 3.33~*(P<0.01).
     The types of vegetation can be analyzed in terms of vegetation community and biomass.The retrograde succession like Joe-irrigation-grasslands existed in vegetation community in investigative area,with the aggravation of land degradation,the density of soil organic carbon gradually decreases,and the plant evolves gradually from arbors and shrub into herbage as the main type,and the structure of community gradually become simpler,which also noted the range of the density of soil organic carbon.There was a trend that the surface biomass decreases with the aggravation of land degradation.Analysis of variance showed that there were extremely significant differences between different extents of land degradation and the biomass with the value of F=59.79~(**)(P<0.01).The value of TOCD was positively correlated to surface biomass.So the area of low biomass was the focus of regions under land degradation governance.
     Different soil type,the variance analysis showed that TOCD and WSOCD both were the extremely significant differences F=5.20~(**)(P<0.01) and F=5.25~(**)(P<0.01) in different soils.
     Different types of land use,the variance analysis showed that TOeD and WSOCD both were the extremely significant differences F=9.55~(**)(P<0.01) and F=9.70~(**)(P<0.01) in different types of land use.
引文
[1]程水英,李团胜.土地退化的研究进展[J].干旱区资源与环境,2004,18(3):38-43.
    [2]陈奇伯,王克勤,李金洪.谷坡耕地土壤侵蚀造成的土地退化[J].山地学报,2004,22(5):528-532.
    [3]陈奇伯,王克勤,李金洪,等.元谋干热河谷坡耕地土壤侵蚀造成的土地退化[J].山地学报,2004,22(5):528-532.
    [4]邓良基,凌静,张世熔,等.四川早耕地生产、生态问题及水土流失综合治理研究[J].水土保持学报,2002,16(2):8-11.
    [5]方华军,杨学明,张晓平,等.土壤侵蚀对农田中土壤有机碳的影响[J].地理科学进展,2004,23(2):77-87.
    [6]郭广芬,张称意,徐影.气候变化对陆地生态系统土壤有机碳储量变化的影响[J].生态学杂志,2006,25(4):435-442.
    [7]高尚武,王葆芳,朱灵益,等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998,34(2):1-10.
    [8]甘海华,吴顺辉,范秀丹.广东土壤有机碳储量及空间分布特征[J].应用生态学报,2003,14(9):1499-1502.
    [9]郭晓鸣.四川干旱河谷地区生态建设的主要问题与对策建议[J].社会科学研究,2001,5:33-36.
    [10]关世英,齐沛饮,康师安,等.不同牧压强度对草原土壤养分含量的影响初析[M].草原生态系统研究(第5集),北京:科学出版社,17-22.
    [11]郭建军,李惠卓.不同母岩母质上土壤特性的分析与研究[J].内蒙古林业科技,2003,1,21-23.
    [12]何锦峰,樊宏,叶延琼.岷江上游生态重建的模式[J].生态经济,2002(3):35-37.
    [13]黄雪夏,倪九派,高明,等.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保持学报,2005,19(1):54-58.
    [14]郝黎仁,樊元,郝哲欧,等.SPSS实用统计分析.北京中国水利水电出版社,2003,155-182.
    [15]胡玉福,邓良基,张世熔,等.四川雨城区主要土壤母质上的耕地土壤性质变异研究[J].土壤通报,2004,35(3):246-250.
    [16]黄元仿,周志宇,苑小勇,等.干旱荒漠区土壤有机质空间变异特征[J].生态学报,2004,24(12):2776-2781.
    [17]胡玉福,邓良基,张世熔,等.川中丘陵区不同利用方式的土壤养分特征研究[J].水土保持学报,2006,20(6):75-78.
    [18]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003,20(1):8-11.
    [19]贾松伟,贺秀斌,陈云明,等.黄土丘陵区土壤侵蚀对土壤有机碳流失的影响研究[J].水土保持研究,2004,11(4):88-90.
    [20]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间定量化研究[J].土壤侵蚀与水土保持学报,1996,2(1):1-9.
    [21]靳长兴.坡度在坡面侵蚀中的作用[J].地理研究,1996,15(3):57-62.
    [22]刘国华,傅伯杰_中国生态退化的主要类型、特征及分布[J].生态学报,2000,20(1):13-19.
    [23]吕超群,孙书存.陆地生态系统碳密度格局研究概述[J].植物生态学报,2004,28(5):692-703.
    [24]李忠,孙波,赵其国.我国东部土壤有机碳的密度和储量[J].农业环境保护,2001,20(6):385-389.
    [25]李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    [26]李月梅,王跃思,曹广民.开垦对高寒草甸土壤有机碳影响的初步研究[J].地理科学进展,2005,24(6):59-64.
    [27]冷疏影,李秀彬.土地质量指标体系国际研究的新进展地理研究[J].地理学报,1999,54(2):177-185.
    [28]卢金发.中国南方化丘陵地区土地退化动态变化及人类活动影响[J].地理科学进展,1999,18(3):215-221.
    [29]李阳兵.大渡河流域生态环境建设问题[J].云南地理环境研究,2004,16(4):5-9.
    [30]刘孝宝,邓良基,高吉喜,等.雅安山区耕地后备资源综合生产力评价[J].山地学报,2004,22(3):303-309.
    [31]鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,2000.
    [32]吕栋雷,曹志耀,邓宝,等.利用方差分析法进行模型验证[J].计算机仿真,2006,23(8):46-48.
    [33]连纲,郭旭东,傅伯杰,等.黄土丘陵沟壑区县域土壤有机质空间分布特征及预测[J].地理科学进展,2006,25(2):113-121.
    [34]刘国华,马克明,傅伯杰,等.岷江干旱河谷主要灌丛类型地上生物量研究[J].生态学报,2003,23(9):1758-1764.
    [35]梁文举,闻大中,李维光,等.开垦对农业生态系统土壤有机碳动态变化的影响[J].农业系统科学与综合研究,2000,16(4):241-244.
    [36]Moseley R K,唐亚.云南干旱河谷150年来的植被变化研究及其对生态恢复的意义[J].植物生态学报,2006,30(5):713-722.
    [37]倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境,2003,12(1):71-75.
    [38]彭文英,张科利,杨勤科.退耕还林对黄土高原地区土壤有机碳影响预测[J].地域研究与开发,2006,25(3):94-99.
    [39]秦松,樊燕,刘洪斌,等.地形因子与土壤养分空间分布的相关性研究[J].水土保持学报,2007,14(4):275-279
    [40]孙华,倪绍祥,张桃林.退化土地评价及其生态重建方法研究[J].中国人口·资源与环境,2003,13(6):45-48.
    [41]舒建英,张世熔,孙波,等.江西兴国水土流失治理区土壤有机质动态变化[J].生态学报,2005,25(6):1240-1246.
    [42]山钢,彭锦.大渡河流域退耕还林与综合治理探讨[J].四川林业科技,2001,22(2):36-38.
    [43]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220-228.
    [44]孙华,张桃林,王兴祥.土地退化及其评价方法研究概述[J].农业环境保护,2001,20(4):283-285.
    [45]孙武,李森.土地退化评价与监测技术路线的研究[J].地理科学,2000,20(1):92-96.
    [46]苏永中,赵哈林.农田沙漠化过程中土壤有机碳和氮的衰减及其机理研究[J].中国农业科学,2003,36(8):928-934.
    [47]孙影,贾卫国.利用SPSS13.0软件实现化学实验数据的方差分析[J].化学教学,2006,47-49.
    [48]沈有信,张彦东,刘文耀.泥石流多发干旱河谷区植被恢复研究[J].山地学报,2002,20(2):188-193.
    [49]唐国勇,黄道友,童成立,等.红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J].应用生态学报,2006,17(3):429-433.
    [50]陶贞,沈承德,高全洲,等.高寒草甸土壤有机碳储量及其垂直分布特征[J].地理学报,2006,61(7):720-728.
    [51]王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-543.
    [52]王金锡.四川西部干旱河谷的生态环境与退耕还林[J].四川林业科技,2001,22(1):27-31.
    [53]王静等.土地资源遥感检测与评价方法[M].北京:科学出版社.2006,92,102-103.
    [54]汪文霞,周建斌,严德翼,等.黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J].水土保持学报,2006,20(6):103-106.
    [55]王艳芬,陈佐忠,Larry T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551.
    [56]王振健,邓良基,夏建国.四川省人口—耕地—粮食系统平衡研究[J].国土资源科技管理,2002,19(1):19-22.
    [57]解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [58]许信旺,潘根兴.安徽水稻土表层土壤有机碳密度分布与碳库估算[J].池州师专学报,2005,19(5):1-5.
    [59]许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报.2005,19(6):193-196,200.
    [60]向晶,唐亚.干旱河谷地区农业产业结构的调整对环境及经济的影响分析—以汉源地区为例[J].四川环境,2006,25(1):31-36.
    [61]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J],应用生态学报,2005,16(12):2279-2283.
    [62]杨朝飞.中国土地退化及其防治对策[J].中国环境科学,1997,17(2):108-112.
    [63]冶民生,关文彬,白占雄,等.岷江干旱河谷植物群落生态梯度分析[J].中国水土保持科学,2005,3(2):70-75.
    [64]叶延琼,樊宏,陈国阶.岷江上游土地退化及其防治对策[J].水土保持通报,2002,22(6):56-58.
    [65]袁金国,王卫,龙丽民.河北坝上生态脆弱区的土地退化及生态重建[J].干旱区资源与境,2006,20(2):139-143.
    [66]张桃林,王兴豫.土壤退化的研究进展与趋向[J].自然资源学报,2000,15(3):280-284.
    [67]赵齐阳,邓良基,张世熔.四川省土地退化的现状及防治对策[J].四川农业大学学报,2002,20(4):357-361.
    [68]赵其国,张桃林,鲁如坤,等.中国红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社,2002,21-31
    [69]张世熔,黄元仿,李保国,等.黄淮海冲积平原区土壤有机质时空变异特征[J].生态学报,2002,22(12):2042-2047.
    [70]赵其国.土壤退化及其防治[J].土壤,1991,23(2):57-61.
    [71]张柏,崔海山,于磊.东北平原西部半干旱地区土地退化研究[J].农业系统科学与综合研究2003,19(1):30-33.
    [72]赵其国.人类活动与土地退化[M].中国土地退化防治研究(全国土地退化防治学术讨论会论文集),1991.
    [73]张学雷,龚子同.人为诱导下中国的土壤退化问题[J].生态环境,2003,12(3):317-321.
    [74]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-104.
    [75]周华坤,赵新全,周立.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3):31-40.
    [76]张玲,邓良基.四川省雅安市耕地利用及其保护的协调发展[J].农机化研究,2006,4:39-41,46.
    [77]张文彤,闫洁.SPSS统计分析基础教程[M].北京:高等教育出版社,2004,258-263.
    [78]郑立臣,解宏图,何红波,等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].辽宁工程技术大学学报,2006,25,增刊:330-332.
    [79]张金波,宋长春,杨文燕.土地利用方式对土壤水溶性有机碳的影响[J].中国环境科学2005,25 (3):343-347.
    [80]张金波,宋长春,杨文燕.小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析[J].环境科学学报,2005,25(10):1397-1402.
    [81]赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报,2000,11(1):37-39.
    [82]赵玉国,张甘霖,龚子同,等.海南岛不同地质背景下的土壤类型、质量特征和作物适宜性[J].第四纪研究,2005,25(3):389-395.
    [83]郑子成,李廷轩,何淑勤,等.保护地土壤生态问题及其防治措施的研究[J].水土保持研究,2006,13(1):18-20,53.
    [84]Amanda M,Yhomson I A,Simpson J L.Brown.Sustainable rangeland grazing in Norse Faroe[J].Human Ecology,2005,33(5):737-741.
    [85]Arrouays D,Daroussin J,Kicin J L,et al.Improving topsoil carbon storage prediction using a digital elevation model in temperate forest soils of France[J].Soil Science,1998,163(2):103-108.
    [86]Burford J R,Bremner J M.Relationships between denitrification capacities of soils and total water soluble and readily decompos able soil organic matterm[J].Soil Biol Biochem,1975,7:389-394.
    [87]Barriuso E,Baer U,Calvet R.Dissolved organic matter and adsorption-desorption of dimefuron,atrazine,and carbetamide by soils[J].J Environ Qual,1992,21:359-367.
    [88]Barbier E B.The economic linkages between rural poverty and land degradation:some evidence from Africa[J].Agriculture,Ecosystems and Environment,2000,82:355-370.
    [89]Busnelli J,Neder L,Sayago J M.Temporal dynamics of soil erosion and rainfall erosivity as geoindicators of land degradation in Northwestern Argentina[J].Quaternary International,2006,158(1):147-161.
    [90]Begueria S.Identifying erosion areas at basin scale using remote sensing data and GIS:a case study in a geologically complex mountain basin in the Spanish Pyrenees[J].International Journal of Remote Sensing,2006,27(20):4585-4598.
    [91]Berger T W,Neubauer C,Glatzel G.Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce(Piceaabies) and mixed species stands in Austria[J].Forest Ecologyand Management,2002,159:3-14.
    [92]Barbier E B.The economic linkages between rural poverty and land degradation:some evidence from Africa[J].Agriculture,Ecosystems and Environment,2000,82:355-370.
    [93]Chikhaoui,Mohamed B,Ferdinand B,et al.A spectral index for land degradation mapping using ASTER data:application to a semi-arid Mediterranean catchment[J].International Journal of Applied Earth Observation & Geoinformation,2005,7(2):140-153.
    [94]Candler R,Zech W,Alt H G.Characterization of water-soluble organic substances from a typic dystrochrept under spruce using GPC,IR,~1H NMR,and ~(13)C NMR spectroscopy[J].Soil Science,1988,146(6):445-452.
    [95]Douglas I.The local drivers of land degradation in South-East Asia[J].Geographical Research,2006,44(2):123-134.
    [96]Davidson E A,Trumbore S E,Amundson R.Soil warming and organic carbon content[J].Nature,2000,408(14):789-790.
    [97]Dumanski J,Pieri C.Land quality indicators:research plan[J].Agriculture,Ecosystems and Environment.2000,81,93-102.
    [98]Eswaran H V,Den B E,Reich P.Organic carbon in soil of the world[J].Soil Science,1993,57:192-194.
    [99]Food and agriculture organization of the united nations(FAO).Land degradation[M].Soils Bulletin, Rome,1971:1-10.
    [100] Geerkena R,Ilaiwi M. Assessment of rangeland degradationand development of a strategy for rehabilitation[J].Remote Sensing of Environment,2004,90,490-504.
    
    [101] Hans H,Kebede T,Gete Z.The implications of changes in population,land use,and land management for surface runoff in the upper Nile Basin Area of Ethiopia[J] .Mountain Research and Development,2005,25(2):147-154.
    [102] Haboudane D,Bonn F,Royer A.Land degradation and erosion risk mapping by fusion of spectrally-based information and digital geomorphometric attributes[J].International Journal of Remote Sensing,2002,23(l 8):3795-3820.
    [103] Johnson D L.Lewis L A.Land degradationxreation and destruction[M].Cambridge, MA and Oxford:Blackwell,1995.
    [104] Jobbagy E G,Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10:423-436.
    [105] John M,Pannell D,Kingwell R.Climate change and the economics of farm management in the face of land degradation:dryland salinity in Western Australia[J].Canadian Journal of Agricultural Econo-Mics,2005,53(4):443-459.
    [106] Kaiser K,Zech W.Competitive sorption of dissolved organic matter fractions to soils and related mineral phases[J].Soil Sci Soc Am J,1997,61:64-69.
    [107] Kalbitz K,Solinger S,Park J H,et al .Controls on the dynamics of dissolved organic matter in soils:a review[J].Soil Science,2000,165,277- 304.
    [108] Madhun Y A,Young J L,Freed V H.Binding of herbicides bywater-soluble organic materials from soil[J]. J Environ Qual, 1986,15:64-68.
    [109] Nasir M R,Victor V,Sato Y.Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J] .Agricultural Water Management,2005,77(1):96-109.
    [110] Ohno T.Crannell B S.Green and animal manure derived dissolved organic matter effects on phosphorus sorption[J].J Environ Qual, 1996,25:1137-1143.
    [111] Ohno T,Erich M S. Inhibitory effects of crop residue-derived organic ligands on phosphate adsorption kinetics[J].J Environ Qual, 1997,26:889-895.
    [112] Post W M,King A M,Wullschleger S D.Soil organic matter models and global estimates of soil organic carbon[M]. Evaluation of Soil Organic Matter Models.Berlin Heidelberg:Springer-Verlag, 1996,201-224.
    [113] Rannveig,Hjalti J GHolocene land degradation and climatic change in northeastern Iceland[J].The Holocene,2002,12(2): 159-167.
    [114] Robert C.Environment and development in the Philippine uplands.the problem of agricultural land degradation[J].Asian Studies Review, 1998,22(3):289-308.
    [115] Schimel D S, Braswel B H, Holland E A, et al. 1994. Climatic,edaphic,and biotic controls over storage and turnover of carbon in soils[J].Glob.Biogeochein.Cycle, 8:279-293.
    [116] Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saruration of soils [J]. Plant and Soil,2002, 241:155-176.
    [117] Symeonakis E,Drake N.Monitoring desertification and land degradation over sub-Saharan Africa [J].International Journal of Remote Sensing,2004,25(3):573-592.
    [118] Sombroek W G, Nachtergaele F O, Hebel A. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. Ambio,1993,22(7): 417-426.
    [119] Sarah P.Soil organic matter and land degradation in semi-arid area.lsrael[J].Catena,2006,67(1):50- 55.
    [120]Thurman E M.Organic geochemistry of natural waters[M].Boston:Kluwer Academic,1985.
    [121]Timm M,Sirnon T.A national review of land degradation in South Africa:the influence of biophysical and socio-economic factors[J].Journal of Southern African Studies,2000,26(4):743-758.
    [122]Van W,Bas R X,Poesen J,et al.Spatial patterns of land degradation and their impacts on the water balance of rainfed treecrops:A case study in South East Spain[J].Geoderma,2006,133(2):43-56.
    [123]Zhang Shirong,Sun Bo,Zhao Qiguo,et al.Temporal-spatial variability of soil organic carbon stocks in a rehabilitating ecosystem[J].Pedosphere,2004,14(4):501-508.
    [124]Zhu B,Alva A K.Tracemetaland cationtransportin a sandy soil with various amendments[J].Soil Sci Soc Am J,1993,57:723-727.
    [125]Zhao Yong Cun,Shi Xue Zheng,Yu Dong Sheng,et al.Soil Organic Carbon Density in Hebei Province,China:Estimates and Uncertainty[J].Pedosphere,2005,15(3):293-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700