用户名: 密码: 验证码:
亲水性活性炭制备及其吸附水蒸气实验与理论模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:对于利用吸附法处理微环境中水蒸气时,常选用硅胶、分子筛、活性炭等材料作为吸附剂。有关水蒸气在硅胶与分子筛中的吸附机理研究较多,其吸附相关理论也已比较完善。而对于水蒸气在活性炭中吸附过程与机理还有很多问题需要认识与解决。鉴于此,研究活性炭吸附水蒸气的变化规律、深入探索活性炭在吸附水蒸气过程中的作用机理、完善与优化水蒸气在活性炭表面吸附相关理论、建立描述水蒸气吸附过程传热传质数学模拟体系具有重要的意义。
     本文以研究改性条件变化对活性炭物性影响作为出发点,研究了硝酸改性活性炭孔结构与表面氧含量在不同氧气浓度、温度与时间下改性后的变化规律。通过Design Expert7.0软件建立了改性条件与活性炭物性参数间的量化关系,探讨不同改性方法对活性炭物性的影响规律。结果表明:通过响应曲面法得到的二次方程可以准确对活性炭相关物性进行预测。较高的氧气浓度、较低的改性温度与较长的改性时间有利于增加活性炭表面氧含量。对活性炭物性参数优化可通过两种方式实现:(1):在氧气浓度极低的环境中,适当提高改性温度与增加改性时间;(2):增加氧气浓度,降低改性温度与缩短改性时间。
     在研究活性炭物性在热氧联合改性中变化规律的基础上,利用TGA、FTIR、Boehm滴定、XPS等测试手段,探讨了活性炭表面官能团在热氧环境中的变化规律。研究表明:硝酸改性活性炭表面会生成含氧、含氮官能团。酚羟基/羟基官能团在378-473K内氧化生成羧基官能团;本底碳在573-773K内氧化生成环氧基/内酯基官能团。羧基官能团的热稳定性最差,在573K时受热分解;内酯基/酮基/醌基官能团的热稳定性好于羧基官能团,分解温度范围在773-973K;醚基/环氧基官能团热稳定性最好,分解温度在973K以上
     利用五种不同的亲水性有机盐改性制备亲水性活性炭。通过孔径分析、SEM-EDX测试样品物性。结果表明:五种不同亲水性有机盐引入活性炭,制得物性各不相同的炭材料。在吸附实验中,相对压力小于0.50时,改性活性炭在303-323K内对水蒸气的吸附量相较原始活性炭增加了0.57-17.12倍。水分子与活性炭表面亲水性官能团以氢键连接,增加了其热稳定性。研究了吸附温度、表面氧含量、孔容、有机盐性质对水蒸气吸附性能的影响。发现改性活性炭对水蒸气的吸附性能主要受其表面氧含量的影响。有机盐中所含羧酸根会对活性炭微孔结构产生显著影响,而其所含金属离子对微孔影响有限。改性活性炭对水蒸气的吸附量差异可通过Pauling提出的电负性理论解释。
     在活性炭表面,采用乙酸乙酯-氢氧化钠碱性水解制备亲水性活性炭。利用孔径分析、FTIR、SEM-EDX、 XRD、XPS等测试活性炭物性。发现利用碱性水解法在活性炭表面引入亲水性官能团相较利用盐溶液直浸法更加有效。在吸附实验中,亲水性官能团与水分子以氢键连接,增大了活性炭对水蒸气的吸附量。利用DD模型可以准确拟合水蒸气等温吸附线。随着温度的升高,围绕官能团形成的水分子簇逐渐增大。通过TGA对水分子脱附性能进行研究。发现以氢键连接的水分子具有更好的热稳定性。利用乙酸乙酯-氢氧化钙碱性水解验证该方法的普适性。同时,讨论了该方法制备活性炭的再生吸附性能。发现MAC-398的再生吸附性能最好,再生率达到了93.32%。
     基于DD模型理论,提出含有较少参数,可直接测量活性炭对水蒸气吸附量的简化等温吸附模型。同时,基于假设条件,理论推导得到计算活性炭微孔吸附平衡常数的数学模型。利用不同物性活性炭吸附水蒸气,验证简化模型与微孔吸附平衡常数模型的准确性。结果表明:简化模型与微孔吸附平衡常数计算模型适用性良好。对于简化模型,通过有限次吸附实验,依次将其中参数与温度建立数学关系,得到以宏观量表示的简化模型,可实现其它工况下水蒸气吸附量的计算。对于微孔吸附平衡常数计算模型,可计算活性炭吸附水蒸气过程中的热力学参数,为活性炭吸附水蒸气性能提供普适性热力学判据。
     建立了活性炭吸附水蒸气传热传质数学模型,研究了实验过程中相关参数变化对吸附过程的影响。发现随着温度的升高,水分子吸附扩散速度加快,吸附穿透时间缩短,吸附柱温度变化率降低。讨论了模型参数变化对吸附柱传热传质规律的影响。尝试研究了水蒸气/甲苯与水蒸气/丙酮混合蒸气在吸附过程中传质规律变化。研究发现:以Langmuir方程为基础建立的传质模型可对吸附初始阶段传质过程较好描述。三种吸附质的吸附性能强弱依次为甲苯>水蒸气>丙酮。随着吸附温度的升高,活性炭对每种组分的吸附能力均下降。
Abstract:Some adsorbents,such as silica gel,molecular sieve and activated carbon, were usually used to remove water vapor in environment. In the recent years,there are many researches on water vapor adsorption in silica gel and molecular sieve,and corresponding adsorption theories are comparatively perfect.However, to water vapor adsorption in activated carbon,there still have many challenges to face and many problems to solve.Based on this situation, it is of great significance to studying the variation rule of water vapor adsorption in activated carbon, investigating the action mechanism of water molecules adsorbed on the surface of activated carbon, perfecting and optimizing relative adsorption theories for water vapor, and establishing simulation system to describe the change law of heat and mass transfer for water vapor in activated carbon adsorption column.
     To investigate the effect of different modification conditions to the properties of activated carbon,the activated carbon was pre-modified with nitric acid.Then,modified sample was divided into several portions, and was further modified at different oxygen concentration, temperature and time,respectively. The quantitative relations between modification conditions and BET surface area, total pore volume surface oxygen content were established by using the software of Design Expert7.0.The results indicate that the quadratic equations with the variable of oxygen concentration, temperature and time can well predict the values of property parameters of activated carbon.It is beneficial to form oxygen-containing functional group on the surface of activated carbon with the higher oxygen concentration,lower temperature and longer modification time.The activated carbon with the good properties are prepared by the two modes as follow:(1)In the extremely low oxygen concentration environment, activated carbon was modified in a higher temperature and a longer time;(2) In a higher oxygen concentration environment, activated carbon was modified in a lower temperature and a shorter time.
     The thermal stability of oxygen-containing functional groups on activated carbon surfaces in a thermal oxidative environment was studied. The raw activated carbon was first treated with nitric acid,and the resulting nitric acid-treated activated carbon (ACn) was further oxidized under2.5%O2(in N2) atmosphere at different temperatures.The types and the amount of oxygen-containing functional groups were analyzed by TGA, FTIR, Boehm titration, and XPS. Both oxygen-and nitrogen-containing functional groups were introduced onto the ACn surface.Under thermal oxidative conditions,hydroxyl was oxidized to the corresponding carboxyl group in the temperature range of378-473K, and epoxy groups and lactones were generated between573to773K via oxidation reactions between graphitized carbon and oxygen.In contrast, carboxyl decomposition occurred at around573K. Lactones, ketones, and quinones exhibited better thermal stability, undergoing decomposition between773to973K.Ether and epoxy groups exhibited the best thermal stability, decomposing only at temperatures above973K.
     Five different kinds of hydrophilic organic salts were used to modify commercial activated carbon in order to prepare hydrophilic carbon materials.Properties of the samples were analyzed by surface area analyzer and SEM-EDX.The hydrophilic organic salts,with the different properties, were introduced into activated carbon and significantly affected the properties of the samples.During adsorption experiments,the adsorption amount of modified samples for water vapor increased0.57to17.12times in temperature range from303to323K as well as relative pressure below0.50.Water molecules combined with surface hydrophilic groups through H-bonding exhibited good thermo stability. Effect of temperature, oxygen content and properties of the hydrophilic organic salts to water vapor adsorption were studied as well.It indicates that water vapor adsorption in modified samples are mainly effected by the surface oxygen content. The carboxylate radical in the hydrophilic organic salts greatly affect micropore structure of the modified samples, while the metal ion in them exhibit limited affection.Difference adsorption capacity of modified samples can be explained with the electronegativity of elements presented by Pauling.
     Hydrophilic-activated carbon was prepared by ester hydrolysis reactions,and was characterized by surface area analysis,FTIR, SEM-EDX, XRD and XPS.Hydrophilic groups that were introduced on activated carbon surface through ethyl acetate hydrolysis in sodium hydroxide were more efficient than those introduced with sodium acetate. During adsorption, the hydrophilic groups on modified activated carbon surface bound with water molecules through H-bonding and increased the adsorption capacity of water vapor. The adsorption isotherms of water vapor were well fitted by the Do model.Water molecules generated larger water clusters around the functional groups at303and313K.In addition, water desorption from the samples was analyzed by TGA.Water molecules that were hydrogen-bonded to functional groups exhibited higher thermal stability than those adsorbed in the micropore of activated carbon.Hydrophilic groups that were introduced on activated carbon surface through ethyl acetate hydrolysis in calcium hydroxide was used to verify the universal of method.The modified activated carbon were regenerated at different temperatures,and it exhibited best regeneration capabilities as the regenerating temperature was at398K, the regeneration rate is up to93.32%.Besides,the process of sodium acetate formation on the surface of modified activated carbon was discussed.
     A simplified model was developed to describe the water adsorption on activated carbon.The development of the simplified model was started from the original model proposed by DO and his co-workers.Two different kinds of carbon materials were prepared for water vapor adsorption,and the adsorption experiments were conducted at different temperatures (293-323K) and relative humidities (5-99%) to test the model.It is shown that the amount of adsorbed water vapor in micropore decreases with the temperature increasing, and the water molecules form larger water clusters around the functional group as the temperature is up to a higher value.The simplified model describes reasonably well for all the experimental data. According to the fitted values,the parameters of simplified model were represented by the temperature and then the model was used to calculate the water adsorption amount at298K and308K. The results show that the model can get relatively accurate values to calculate the water vapor adsorption on activated carbon.A new model for calculating the adsorption equilibrium constant of water vapor in the micropores of activated carbon was established,the mechanism of which is based on the penetration of water clusters into micropores. Two kinds of carbon materials with significantly different pore and surface structures were prepared for water vapor adsorption, and the adsorption experiments were conducted in different conditions to test the accuracy of the new model.The new model was also applicable to water adsorption on bituminous-based activated carbon.Furthermore,being able to calculate the values for enthalpy of activation and entropy of activation, the new model can provide universal thermodynamic criteria for the water adsorption on activated carbon.
     A mathematical model of heat and mass transfer for water vapor adsorption on activated carbon was established.Effects of related parameters on the adsorption were studied.With temperature increasing, the diffusion speed of water molecules in adsorption column increased, the breakthrough time, as well as the change rate of column temperature decreased.The influence of model parameters on the rule of heat and mass transfer of the adsorption column were discussed.The mass transfer regularities of water/toluene and water/acetone mixed vapor during adsorption process were simulated as well,it indicates that the mass transfer model including Langmuir equation can well describe the mass transfer of mixed vapor in initial stage of adsorption. The adsorption performance of activated carbon for the three adsorbents follow the order of toluene>water>acetone, and its adsorption performance for all of three adsorbents decreased with temperature increasing.
引文
[1]Robert R. The origin of water on earth[J]. Science,2001,293(5532):1056-1058.
    [2]郭钟义.地球上还有多少水[J].世界地理,1999,2:36-38.
    [3]Katsaros K B, Businger J A. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the Atmospheric Sciences,1979,36(9):1722-1735.
    [4]Liu W T, Vecchi G A, Soden B J, et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing[J], Nature,2006,441(7089):73-76.
    [5]Clancy R T, Grossman A W, Wolff M J, et al. Water vapor saturation at low altitudes around Mars aphelion:A key to Mars climate [J]. Icarus,1996,122(1): 36-62.
    [6]Pejam M R, Arain M A, McCaughey J H. Energy and water vapour exchanges over a mixed wood boreal forest in Ontario, Canada[J]. Hydrological Processes. 2006,20(17):3709-3724.
    [7]Meehl G A, Washington W M, Arblaster J M, et al. Anthropogenic forcing and decadal climate variability in sensitivity experiments of twentieth-and twenty-first-century climate[J]. Journal of Climate,2000,13(21):3728-3744.
    [8]刘增东,刘建国,王蓓,等.北京地区颗粒物浓度垂直分布特性研究[J].光子科技创新与产业化-长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集,2006:459-463.
    [9]Derwest A M H R G,朱岳年.人类活动引起的对流层臭氧浓度的全球变化[J].地球科学进展,1990,6:10-12.
    [10]King M D, Menzel W P, Kaufman Y J, et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS[J]. Geoscience and Remote Sensing, IEEE Transactions,2003,41(2):442-458.
    [11]Marecal V, Mahfouf J F. Four-dimensional variational assimilation of total column water vapor in rainy areas[J]. Monthly Weather Review,2002,130(1): 43-58.
    [12]Ferraro R R, Grody N C, Weng F, et al. An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements [J]. Bulletin of the American Meteorological Society,1996,77(5): 891-905.
    [13]Gladich I, Habartova A, Roeselova M. Adsorption, mobility and self-association of naphthalene and 1-methylnaphthalene at the water-vapor interface[J]. The Journal of Physical Chemistry A,2014,118(6):1052-1066.
    [14]Leblanc.T, Walsh T D, McDermid I S, et al. Measurements of humidity in the atmosphere and validation experiments (MOHAVE)-2009:Overview of campaign operations and results [J]. Atmospheric Measurement Techniques,2011, 4(12):2579-2605.
    [15]Angelini IM, Garstang M, Davis R E, et al. On the coupling between vegetation and the atmosphere[J]. Theoretical and Applied Climatology,2011,105(1-2): 243-261.
    [16]Du H, Kong L, Cheng T, et al. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols [J]. Atmospheric Environment,2011,45(29):5131-5137.
    [17]Schaafhausen S, Yazhenskikh E, Heidenreich S, et al. Corrosion of silicon carbide hot gas filter candles in gasification environment[J]. Journal of the European Ceramic Society,2014,34(3):575-588.
    [18]Kurek M, Guinault A, Voilley A, et al. Effect of relative humidity on carvacrol release and permeation properties of chitosan based films and coatings[J]. Food chemistry,2014,144:9-17.
    [19]Hua W, Verreault D, Allen H C. Surface prevalence of perchlorate anions at the air/aqueous interface[J]. The Journal of Physical Chemistry Letters,2013,4(24): 4231-4236.
    [20]Zhang Y, Yu R, Li J, et al. Dynamic and thermodynamic relations of distinctive stratus clouds on the Lee side of the Tibetan plateau in the cold season[J]. Journal of Climate,2013,26(21):8378-8391.
    [21]Maples S R, Andraski B J, Stonestrom D A, et al. Tritium plume dynamics in the shallow unsaturated zone in an arid environment[J]. Vadose Zone Journal,2013, 12(4):1-15.
    [22]Ratnam M V, Basha G, Murthy B V K, et al. Relative humidity distribution from SAPHIR experiment on board Megha-Tropiques satellite mission: Comparison with global radiosonde and other satellite and reanalysis data sets [J]. Journal of Geophysical Research:Atmospheres,2013,118(17): 9622-9630.
    [23]Fernandez-Cortes A, Benavente D, Cuezva S, et al. Effect of water vapour condensation on the radon content in subsurface air in a hypogeal inactive-volcanic environment in Galdar cave, Spain[J]. Atmospheric Environment,2013,75:15-23.
    [24]Peel J L, Haeuber R, Garcia V, et al. Impact of nitrogen and climate change interactions on ambient air pollution and human health[J]. Biogeochemistry, 2013,114(1-3):121-134.
    [25]Szwed M, Karg G, Pinskwar I, et al. Climate change and its effect on agriculture, water resources and human health sectors in Poland[J]. Natural Hazards and Earth System Science,2010,10(8):1725-1737.
    [26]Cai L, Hou P, Wang R, et al. Effects of different characteristic surfaces at initial stage of frost growth[J]. Journal of Central South University of Technology, 2010,17(2):413-418.
    [27]Englander K, Uzuner-Smith S. The role of policy in constructing the peripheral scientist in the era of globalization[J]. Language Policy,2013,12(3):231-250.
    [28]李和平.基于AT89S52的矿井温湿度智能控制系统设计[J].吉首大学学报:自然科学版,2010,(1):70-72.
    [29]Zhou X W, Ward D K, Martin J E, et al. Stillinger-2eber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te[J]. Physical Review B,2013,88(8):285-309.
    [30]何正林,赵望达.配电房温湿度测控系统的设计[J].计算机测量与控制,2008,16(7):980-982.
    [31]Sultan A, Karakaya I, Erdogan M. Influence of water vapour on high temperature oxidation of steels used in petroleum refinery heaters[J]. Materials and Corrosion,2012,63(2):119-126.
    [32]Asteman H, Svensson J E, Norell M, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation[J]. Oxidation of Metals,2000,54(1-2):11-26.
    [33]Atthajariyakul S, Leephakpreeda T. Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage[J]. Energy and Buildings,2004,36(7):720-733.
    [34]Reinikainen L M, Jaakkola J J K. Significance of humidity and temperature on skin and upper airway symptoms[J]. Indoor Air,2003,13(4):344-352.
    [35]Norback D, Wieslander G, Nordstrom K, et al. The effect of air humidification on symptoms and nasal patency, tear film stability, and biomarkers in nasal lavage:a 6 weeks'longitudinal study[J]. Indoor and Built Environment,2000, 9(1):28-34.
    [36]Ma X, Lan Z, Hao Z, et al. Heat transfer and thermodynamic performance of LiBr/H2O absorption heat transformer with vapor absorption inside vertical spiral tubes[J]. Heat Transfer Engineering,2014,35(11-12):1130-1136.
    [37]Goulet R, Knikker R, Boudard E, et al. A numerical and experimental analysis of the process of water vapour absorption by a static lithium bromide solution[J]. Heat and Mass Transfer,2014,50(2):285-300.
    [38]Nagavarapu A K, Garimella S. Falling-film absorption around microchannel tube banks[J]. Journal of Heat Transfer-Transactions of the Asme,2013,135(12): 2001-2010.
    [39]Leshchishina O, Mikhailenko S N, Mondelain D, et al. An improved line list for water vapor in the 1.51 μm transparency window by highly sensitive CRDS between 5852 and 6607 cm-1[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2013,130:69-80.
    [40]Wiederhorn S M. Influence of water vapor on crack propagation in soda-lime glass[J]. Journal of the American Ceramic Society,1967,50(8):407-414.
    [41]Ertas A, Anderson E E, Kiris I. Properties of a new liquid desiccant solution-lithium chloride and calcium chloride mixture[J]. Solar Energy,1992, 49(3):205-212.
    [42]Amarasekara A S, Razzaq A, Caballero R, et al. Sol-gel synthesis, characterization and water vapor adsorption properties of 1, 1'-(1, 6-hexanediyl)-bis (imidazolium) dichloride-silica hybrid material[J]. Journal of Sol-Gel Science and Technology,2014,69(2):345-350.
    [43]Arthur E, Tuller M, Moldrup P, et al. Rapid and fully automated measurement of water vapor sorption isotherms:New opportunities for vadose zone research[J]. Vadose Zone Journal,2014,13(1).
    [44]Yuso A M, Izquierdo M T, Rubio B, et al. Adsorption of toluene and toluene-water vapor mixture on almond shell based activated carbons [J]. Adsorption,2013,19(6):1137-1148.
    [45]Jung I, Dikin D, Park S, et al. Effect of water vapor on electrical properties of individual reduced graphene oxide sheets[J]. The Journal of Physical Chemistry C,2008,112(51):20264-20268.
    [46]Gorbach A, Stegmaier M, Eigenberger G. Measurement and modeling of water vapor adsorption on zeolite 4A-Equilibria and kinetics[J]. Adsorption,2004, 10(1):29-46.
    [47]Carter E M, Katz L E, Speitel J G E, et al. Gas-phase formaldehyde adsorption isotherm studies on activated carbon:correlations of adsorption capacity to surface functional group density[J], Environmental Science and Technology, 2011,45(15):6498-6503.
    [48]Wu S H, Pendleton P. Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength, and hydrophobicity[J]. Journal of Colloid and Interface Science,2001,243(2):306-315.
    [49]Taqvi S M, Appel W S, LeVan M D. Coadsorption of organic compounds and water vapor on BPL activated carbon.4. Methanol, ethanol, propanol, butanol, and modeling[J]. Industrial and Engineering Chemistry Research,1999,38(1): 240-250.
    [50]Hashisho Z, Rood M, Botich L. Microwave-swing adsorption to capture and recover vapors from air streams with activated carbon fiber cloth[J]. Environmental Science and Technology,2005,39(17):6851-6859.
    [51]Aristov Y I. Chemical and adsorption heat pumps:Cycle efficiency and boundary temperatures[J]. Theoretical Foundations of Chemical Engineering, 2008,42(6):873-881.
    [52]Sharonov V E, Aristov Y I. Chemical and adsorption heat pumps:comments on the second law efficiency [J]. Chemical Engineering Journal,2008,136(2): 419-424.
    [53]Kizilkan O, Sencan A, Kalogirou S A. Thermoeconomic optimization of a LiBr absorption refrigeration system [J]. Chemical Engineering and Processing: Process Intensification,2007,46(12):1376-1384.
    [54]Liu Z, Shamsuzzoha M, Ada E T, et al. Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts[J]. Journal of Power Sources,2007,164(2):472-480.
    [55]赵丽媛,吕剑明,李庆利,等.活性炭制备及应用研究进展[J].科学技术与工程,2008,8(11):2914-2919.
    [56]Tam M S, Antal M J. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation [J]. Industrial and Engineering Chemistry Research,1999,38(11):4268-4276.
    [57]Caturla F, Molina-Sabio M, Rodriguez-Reinoso F. Preparation of activated carbon by chemical activation with ZnCl2[J]. Carbon,1991,29(7):999-1007.
    [58]Yoshizawa N, Yamada Y, Furuta T, et al. Coal-based activated carbons prepared with organometallics and their mesoporous structure[J]. Energy and Fuels,1997, 11(2):327-330.
    [59]Bodoev N V, Gruber R, Kucherenko V A, et al. A novel process for preparation of active carbon from sapropelitic coals[J]. Fuel,1998,77(6):473-478.
    [60]Gong G, Xie Q, Zheng Y, et al. Regulation of pore size distribution in coal-based activated carbon[J]. New Carbon Materials,2009,24(2):141-146.
    [61]Lillo-Rodenas M A, Lozano-Castello D, Cazorla-Amoros D, et al. Preparation of activated carbons from Spanish anthracite:Ⅱ. Activation by NaOH[J]. Carbon, 2001,39(5):751-759.
    [62]Ganan J, Gonzalez-Garcia C M, Gonzalez J F, et al. Preparation of activated carbons from bituminous coal pitches[J]. Applied Surface Science,2004,238(1): 347-354.
    [63]Macia-Agullo J A, Moore B C, Cazorla-Amoros D, et al. Activation of coal tar pitch carbon fibres:physical activation vs. chemical activation[J]. Carbon,2004, 42(7):1367-1370.
    [64]Ahmad A L, Loh M M, Aziz J A. Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption [J]. Dyes and Pigments,2007,75(2):263-272.
    [65]Laine J, Calafat A. Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid[J]. Carbon,1989,27(2): 191-195.
    [66]Laine J, Yunes S. Effect of the preparation method on the pore size distribution of activated carbon from coconut shell[J]. Carbon,1992,30(4):601-604.
    [67]Hu Z, Srinivasan M P. Preparation of high-surface-area activated carbons from coconut shell[J]. Microporous and Mesoporous Materials,1999,27(1):11-18.
    [68]Wang X, Xu W, Zhang L, et al. Char Characteristics from the pyrolysis of straw, wood and coal at high temperatures [J]. Journal of Biobased Materials and Bioenergy,2013,7(6):675-683.
    [69]Kadirvelu K, Kavipriya M, Karthika C, et al. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions[J]. Bioresource Technology,2003,87(1): 129-132.
    [70]李立清,刘峥.一种烟杆制备高比表面积活性炭的方法[P].中国,发明专 利,201310045513.
    [71]Rio S, Faur-Brasquet C, Coq L L, et al. Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation-application to air and water treatments[J]. Chemosphere,2005,58(4): 423-437.
    [72]Rios L M, Moore C, Jones P R. Persistent organic pollutants carried by synthetic polymers in the ocean environment[J]. Marine Pollution Bulletin,2007,54(8): 1230-1237.
    [73]Agenson K O, Oh J I, Urase T. Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes:controlling parameters of process[J]. Journal of Membrane Science,2003,225(1):91-103.
    [74]易牡丹,丘克强.酚醛树脂基板真空热解炭制备高性能活性炭[J].化工学报,2012,63(11):3716-3722.
    [75]Oya A, Yoshida S, Abe Y, et al. Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate[J]. Carbon,1993,31(1):71-73.
    [76]Yang J B, Ling L C, Liu L, et al. Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution[J]. Carbon,2002,40(6):911-916.
    [77]Cai Q, Huang Z H, Kang F, et al. Preparation of activated carbon microspheres from phenolic-resin by supercritical water activation[J]. Carbon,2004,42(4): 775-783.
    [78]Gupta V K, Gupta B, Rastogi A, et al. Pesticides removal from waste water by activated carbon prepared from waste rubber tire[J]. Water Research,2011, 45(13):4047-4055.
    [79]Gupta V K, Gupta B, Rastogi A, et al. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-acid blue 113[J]. Journal of Hazardous Materials,2011,186(1):891-901.
    [80]李开喜,凌立成,刘朗,等.热处理改性的活性炭纤维的脱硫活性[J].催化学报,2000,21(3):264-268.
    [81]乔志军,李家俊,赵乃勤,等.高温热处理对活性炭纤维微孔及表面性能的影响[J].新型炭材料,2004,19(1):53-56.
    [82]马双忱,马宵颖,郭天祥,等.微波改性活性炭用于烟气脱硫脱硝的实验研究[J].燃料化学学报,2010,38(6):739-742.
    [83]蒋文举,江霞,朱晓帆,等.微波加热对活性炭表面基团及吸附性能的影响[J].林产化学与工业,2003,23(1):39-42.
    [84]梁鑫,李立清,刘峥,等.微波及碱性溶液改性活性炭对丙酮的吸附性能[J].中南大学学报,已录用.
    [85]王祖武,程抗,左蓉,等.低温等离子体改性活性炭纤维脱硫脱硝性能研究[C].2008中国环境科学学会学术年会优秀论文集(中卷),2008:1001-1004.
    [86]解强,李兰亭,李静,等.活性炭低温氧/氮等离子体表面改性的研究[J].中国矿业大学学报,2006,34(6):688-693.
    [87]Bhatia S, Abdullah A Z, Wong C T. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites:Experimental and modelling studies[J]. Journal of Hazardous Materials,2009,163(1):73-81.
    [88]Torrisi A, Mellot-Draznieks C, Bell R G. Impact of ligands on CO2 adsorption in metal-organic frameworks:First principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring[J]. The Journal of Chemical Physics,2009,130(19):194703.
    [89]Mangun C L, Benak K R, Economy J, et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon,2001,39(12):1809-1820.
    [90]Alauzun J, Mehdi A, Reye C, et al. Direct synthesis of ordered mesoporous silica containing iodopropyl groups. A useful function for chemical modifications[J]. New Journal of Chemistry,2007,31(6):911-915.
    [91]Cunbao D, Hanzhong D, Jiren W. Coal surface containing phosphorus group physical adsorption to oxygen molecules mechanism[J]. Coal Conversion,2008, 31(1):1-5.
    [92]Tang S, Lu Y, Zeng H. Study on the redox adsorptive properties of fiber containing iso-thiourea group toward Au (Ⅲ)[J]. Journal of Applied Polymer Science,2001,81(8):1985-1990.
    [93]Furtado A M B, Barpaga D, Mitchell L A, et al. Organoalkoxysilane-grafted silica composites for acidic and basic gas adsorption[J]. Langmuir,2012,28(50): 17450-17456.
    [94]Matsuo T, Nishi T. Activated carbon filter treatment of laundry waste water in nuclear power plants and filter recovery by heating in vacuum[J]. Carbon,2000, 38(5):709-714.
    [95]高赛男,王俊儒,黄翔峰,等.采油废水生物法处理出水活性炭吸附试验研 究[J].环境科学与技术,2010,33(12):56-61.
    [96]Molina-Sabio M, Goncalves M, Rodriguez-Reinoso F. Oxidation of activated carbon with aqueous solution of sodium dichloroisocyanurate:effect on ammonia adsorption[J]. Microporous and Mesoporous Materials,2011,142(2): 577-584.
    [97]冒爱琴,王华,谈玲华,等.活性炭表面官能团表征进展[J].应用化工,2011,40(7):1266-1270.
    [98]Pradhan B K, Sandle N K. Effect of different oxidizing agent treatments on the surface properties of activated carbons[J]. Carbon,1999,37(8):1323-1332.
    [99]Domingo-Garcia M, Lopez-Garzon F J, Perez-Mendoza M. Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon[J]. Journal of Colloid and Interface Science,2000,222(2): 233-240.
    [100]Moreno-Castilla C, Ferro-Garcia M A, Joly J P, et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments [J]. Langmuir,1995,11(11):4386-4392.
    [101]Qiao W, Korai Y, Mochida I, et al. Preparation of an activated carbon artifact: oxidative modification of coconut shell-based carbon to improve the Strength[J]. Carbon,2002,40(3):351-358.
    [102]Pereira M F R, Soares S F, Orfao J J M, et al. Adsorption of dyes on activated carbons:influence of surface chemical groups[J]. Carbon,2003,41(4): 811-821.
    [103]Garcia T, Murillo R, Cazorla-Amoros D, et al. Role of the activated carbon surface chemistry in the adsorption of phenanthrene[J]. Carbon,2004,42(8): 1683-1689.
    [104]Park S J, Jang Y S. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr (VI)[J]. Journal of Colloid and Interface Science,2002,249(2):458-463.
    [105]Carrasco-Marin F, Rivera-Utrilla J, Joly J P, et al. Effects of ageing on the oxygen surface complexes of an oxidized activated carbon[J]. Journal of the Chemical Society, Faraday Transactions,1996,92(15):2779-2782.
    [106]Zhang X L, Zhang Y, Wang S S, et al. Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon[J]. Science China Technological Sciences,2010,53(9):2515-2520.
    [107]Bautista-Toledo I, Rivera-Utrilla J, Ferro-Garcia M A, et al. Influence of the oxygen surface complexes of activated carbons on the adsorption of chromium ions from aqueous solutions:effect of sodium chloride and humic acid[J]. Carbon,1994,32(1):93-100.
    [108]De la Puente G, Pis J J, Menendez J A, et al. Thermal stability of oxygenated functions in activated carbons[J]. Journal of Analytical and Applied Pyrolysis, 1997,43(2):125-138.
    [109]Jia Y F, Thomas K M. Adsorption of cadmium ions on oxygen surface sites in activated carbon[J]. Langmuir,2000,16(3):1114-1122.
    [110]Aksoylu A E, Madalena M, Freitas A, et al. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts[J]. Carbon,2001,39(2):175-185.
    [111]Quintanilla A, Casas J A, Rodriguez J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts[J]. Applied Catalysis B:Environmental,2007,76(1):135-145.
    [112]Haydar S, Ferro-Garcia M A, Rivera-Utrilla J, et al. Adsorption of p-nitrophenol on an activated carbon with different oxidations [J]. Carbon, 2003,41(3):387-395.
    [113]Zic M, Ristic M, Music S. Monitoring the hydrothermal precipitation of alpha-Fe2O3 from concentrated Fe(NO3)3 solutions partially neutralized with NaOH[J]. Journal of Molecular Structure,2011,993(1-3):115-119.
    [114]Yi F Y, Lin X D, Chen S X, et al. Adsorption of VOC on modified activated carbon fiber[J]. Journal of Porous Materials,2009,16(5):521-526.
    [115]Shafeeyan M S, Daud W M A W, Houshmand A, et al. Ammonia modification of activated carbon to enhance carbon dioxide adsorption:effect of pre-oxidation[J]. Applied Surface Science,2011,257(9):3936-3942.
    [116]Wang Q, Liang X, Qiao W, et al. Modification of polystyrene-based activated carbon spheres to improve adsorption of dibenzothiophene[J]. Applied Surface Science,2009,255(6):3499-3506.
    [117]Guedidi H, Reinert L, Leveque J M, et al. The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen[J]. Carbon,2013,54:432-443.
    [118]Chiang H L, Chiang P C, Huang C P. Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene[J]. Chemosphere,2002,47(3):267-275.
    [119]Tsunoda R, Ozawa T, Ando J. Ozone treatment of coal-and coffee grounds-based active carbons:water vapor adsorption and surface fractal micropores[J]. Journal of Colloid and Interface Science,1998,205(2): 265-270.
    [120]Considine R, Denoyel R, Pendleton P, et al. The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,179(2):271-280.
    [121]Mawhinney D B, Yates Jr J T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K-Direct COOH formation[J]. Carbon,2001,39(8): 1167-1173.
    [122]Chiang H L, Huang C P, Chiang P C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment[J]. Chemosphere,2002, 47(3):257-265.
    [123]Kawamoto K, Ishimaru K, Imamura Y. Reactivity of wood charcoal with ozone[J]. Journal of Wood Science,2005,51(1):66-72.
    [124]Alvarez P M, Masa F J, Jaramillo J, et al. Kinetics of ozone decomposition by granular activated carbon[J]. Industrial and Engineering Chemistry Research, 2008,47(8):2545-2553.
    [125]Jaramillo J, Gomez-Serrano V, Alvarez P M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones[J]. Journal of Hazardous Materials,2009,161(2):670-676.
    [126]Wang R, He H, Wang J, et al. Shape-regulation:An effective way to control CO oxidation activity over noble metal catalysts[J]. Catalysis Today,2013, 201:68-78.
    [127]Zhu J, Carabineiro SAC, Shan D, et al. Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon[J]. Journal of Catalysis,2010,274(2):207-214.
    [128]Przepiorski J. Enhanced adsorption of phenol from water by ammonia-treated activated carbon[J]. Journal of Hazardous Materials,2006,135(1):453-456.
    [129]Liu C, Liang X, Liu X, et al. Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption[J]. Applied Surface Science,2008,254(9):2659-2665.
    [130]Fouladi Tajar A, Kaghazchi T, Soleimani M. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells[J]. Journal of Hazardous Materials,2009,165(1):1159-1164.
    [131]Biniak S, Pakula M, Darlewski W, et al. Powdered activated carbon and carbon paste electrodes:comparison of electrochemical behaviour[J]. Journal of Applied Electrochemistry,2009,39(5):593-600.
    [132]Rivera-Utrilla J, Sanchez-Polo M, Gomez-Serrano V, et al. Activated carbon modifications to enhance its water treatment applications. An overview[J]. Journal of Hazardous Materials,2011,187(1):1-23.
    [133]杨明平,付勇坚,黄念东.硝酸氧化改性活性炭处理含铬废水的研究[J].材料保护,2004,37(9):44-45.
    [134]Jansen R J J, Van Bekkum H. Amination and ammoxidation of activated carbons[J]. Carbon,1994,32(8):1507-1516.
    [135]Vinke P, Van der Eijk M, Verbree M, et al. Modification of the surfaces of a gas activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia[J]. Carbon,1994,32(4):675-686.
    [136]Moreno-Castilla C, Ferro-Garcia M A, Joly J P, et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments[J]. Langmuir,1995,11(11):4386-4392.
    [137]Biniak S, Szymanski G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon,1997,35(12): 1799-1810.
    [138]牟淑杰.改性活性炭处理含氰废水的试验研究[J].黄金,2009,30(3):56-58.
    [139]Pietrzak R, Wachowska H, Nowicki P. Preparation of nitrogen-enriched activated carbons from brown coal[J]. Energy and Fuels,2006,20(3): 1275-1280.
    [140]Yang L, Wu S, Chen J P. Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate[J]. Industrial and Engineering Chemistry Research,2007,46(7):2133-2140.
    [141]Stavropoulos G G, Samaras P, Sakellaropoulos G P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J]. Journal of Hazardous Materials,2008,151(2):414-421.
    [142]Bagreev A, Angel Menendez J, Dukhno I, et al. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon,2004,42(3):469-476.
    [143]黄伟,贾艳秋,孙盛凯.活性炭及其改性研究进展[J].化学工业与工程技术,2006,27(5):39-44.
    [144]Xie F, Phillips J, Silva I F, et al. Microcalorimetric study of acid sites on ammonia-and acid-pretreated activated carbon[J]. Carbon,2000,38(5): 691-700.
    [145]Przepiorski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption [J]. Applied Surface Science,2004,225(1):235-242.
    [146]Dastgheib S A, Karanfil T, Cheng W. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters[J]. Carbon,2004,42(3): 547-557.
    [147]Chen W, Cannon F S, Rangel-Mendez J R. Ammonia-tailoring of GAC to enhance perchlorate removal. Ⅱ:Perchlorate adsorption [J]. Carbon,2005, 43(3):581-590.
    [148]冒爱琴,王华,谈玲华,等.活性炭表面官能团表征进展[J].应用化工,2011,40(7):1266-1270.
    [149]左宋林,刘军利,杨建,等.磷酸活化法活性炭性质对亚甲基蓝吸附能力的影响[J].林产化学与工业,2010,30(4):1-6.
    [150]Wang J, Deng B, Wang X, et al. Adsorption of aqueous Hg (Ⅱ) by sulfur-impregnated activated carbon[J]. Environmental Engineering Science, 2009,26(12):1693-1699.
    [151]Krishnan K A, Anirudhan T S. Removal of cadmium (Ⅱ) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith:Kinetics and equilibrium studies[J]. Water SA,2003,29(2): 147-156.
    [152]Fytianos K, Voudrias E, Kokkalis E. Sorption-desorption behaviour of 2, 4-dichlorophenol by marine sediments[J]. Chemosphere,2000,40(1):3-6.
    [153]Yakout S M, Daifullah A A M, El-Reefy S A. Adsorption of naphthalene, phenanthrene and pyrene from aqueous solution using low-cost activated Carbon derived from agricultural wastes[J]. Adsorption Science and Technology,2013,31(4):293-302.
    [154]Liu X J, Shi Y F, Kalbassi M A, et al. Water vapor adsorption isotherm expressions based on capillary condensation [J]. Separation and Purification Technology,2013,116:95-100.
    [155]Striolo A, Gubbins K E, Gruszkiewicz M S, et al. Effect of temperature on the adsorption of water in porous carbons[J]. Langmuir,2005,21(21):9457-9467.
    [156]Branton P J, Reynolds P A, Studer A, et al. Adsorption of carbon tetrachloride by 3.4 nm pore diameter siliceous MCM-41:Isotherms and neutron diffraction[J]. Adsorption,1999,5(1):91-96.
    [157]Monson P A. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory[J]. Microporous and Mesoporous Materials,2012,160: 47-66.
    [158]Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials[J]. Carbon,2004,42(1):83-94.
    [159]Nguyen L N, Hai F I, Kang J, et al. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal:Breakthrough behaviour of persistent and hydrophilic compounds[J]. Journal of Environmental Management,2013,119:173-181.
    [160]Mohan D, Sarswat A, Singh V K, et al. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water[J]. Chemical Engineering Journal,2011,172(2):1111-1125.
    [161]Bu J, Loh G, Gwie C G, et al. Desulfurization of diesel fuels by selective adsorption on activated carbons:Competitive adsorption of polycyclic aromatic sulfur heterocycles and polycyclic aromatic hydrocarbons[J]. Chemical Engineering Journal,2011,166(1):207-217.
    [162]Coughlin R W, Ezra F S. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon[J]. Environmental Science and Technology, 1968,2(4):291-297.
    [163]Li L, Quinlivan P A, Knappe D R U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon,2002,40(12):2085-2100.
    [164]Leng C C, Pinto N G. Effects of surface properties of activated carbons on adsorption behavior of selected aromatics[J]. Carbon,1997,35(9):1375-1385.
    [165]Ania C O, Parra J B, Pis J J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds [J]. Fuel Processing Technology,2002,79(3):265-271.
    [166]Garcia T, Murillo R, Cazorla-Amoros D, et al. Role of the activated carbon surface chemistry in the adsorption of phenanthrene[J]. Carbon,2004,42(8): 1683-1689.
    [167]黄彪,高尚愚.竹炭,竹醋液生产技术与应用研究综述[J].福建林学院学报,2003,23(1):93-96.
    [168]Coughlin R W, Ezra F S. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon[J]. Environmental Science and Technology, 1968,2(4):291-297.
    [169]Mattson W J. Herbivory in relation to plant nitrogen content[J]. Annual Review of Ecology and Systematics,1980,11(1):119-161.
    [170]Moreno-Castilla C, Rivera-Utrilla J, Lopez-Ramon M V. Adsorption of some substituted phenols on activated carbons from a bituminous coal[J]. Carbon, 1995,33(6):845-851.
    [171]Garcia-Bordeje E, Lazaro M J, Moliner R, et al. Vanadium supported on carbon coated honeycomb monoliths for the selective catalytic reduction of NO at low temperatures:Influence of the oxidation pre-treatment[J]. Carbon, 2006,44(3):407-417.
    [172]Wiig E O, Juhola A J. The adsorption of water vapor on activated charcoal[J]. Journal of the American Chemical Society,1949,71(2):561-568.
    [173]Kim J H, Lee C H, Kim W S, et al. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite[J]. Journal of Chemical and Engineering Data,2003,48(1):137-141.
    [174]Zimny T, Finqueneisel G, Cossarutto L, et al. Water vapor adsorption on activated carbon preadsorbed with naphtalene[J]. Journal of Colloid and Interface Science,2005,285(1):56-60.
    [175]Carrasco-Marin F, Mueden A, Centeno T A, et al. Water adsorption on activated carbons with different degrees of oxidation[J]. Journal of the Chemical Society, Faraday Transactions,1997,93(12):2211-2215.
    [176]Dubinin M M, Serpinsky V V. Isotherm equation for water vapor adsorption by microporous carbonaceous adsorbents[J]. Carbon,1981,19(5):402-403.
    [177]Muller E A, Hung F R, Gubbins K E. Adsorption of water vapor-methane mixtures on activated carbons[J]. Langmuir,2000,16(12):5418-5424.
    [178]Laszlo K, Czakkel O, Deme B, et al. Simultaneous adsorption of toluene and water vapor on a high surface area carbon[J]. Carbon,2012,50(11): 4155-4162.
    [179]Jesus D V J, Suarez L M C, Figueiredo J L. Oxidative dehydrogenation of isobutane over activated carbon catalysts[J]. Applied Catalysis A:General, 2006,311:51-57.
    [180]Iiyama T, Nishikawa K, Otowa T, et al. An ordered water molecular assembly structure in a slit-shaped carbon nanospace[J]. The Journal of Physical Chemistry,1995,99(25):10075-10076.
    [181]Kimura K, Shigemura T, Yuasa S. Characterization of ethylene-1-butene copolymer by differential scanning calorimetry and 13C-NMR spectroscopy[J]. Journal of Applied Polymer Science,1984,29(10):3161-3170.
    [182]Horikawa T, Sekida T, Hayashi J, et al. A new adsorption-desorption model for water adsorption in porous carbons[J]. Carbon,2011,49(2):416-424.
    [183]Rosas J M, Bedia J, Rodriguez-Mirasol J, et al. Preparation of hemp-derived activated carbon monoliths. Adsorption of water vapor[J]. Industrial and Engineering Chemistry Research,2008,47(4):1288-1296.
    [184]Salame 11, Bandosz T J. Experimental study of water adsorption on activated carbons[J]. Langmuir,1999,15(2):587-593.
    [185]Lorenc-Grabowska E, Gryglewicz G, Machnikowski J. P-chlorophenol adsorption on activated carbons with basic surface properties [J]. Applied Surface Science,2010,256(14):4480-4487.
    [186]王鹏,张海禄.表面化学改性吸附用活性炭的研究进展[J].炭素技术,2003(3):23-28.
    [187]Rudisill E N, Hacskaylo J J, LeVan M D. Coadsorption of hydrocarbons and water on BPL activated carbon[J]. Industrial and Engineering Chemistry Research,1992,31(4):1122-1130.
    [188]Russell B P, LeVan M D. Coadsorption of organic compounds and water vapor on BPL activated carbon.3. Ethane, propane, and mixing rules[J]. Industrial and Engineering Chemistry Research,1997,36(6):2380-2389.
    [189]Rong H, Ryu Z, Zheng J, et al. Effect of air oxidation of rayon-based activated carbon fibers on the adsorption behavior for formaldehyde[J]. Carbon,2002, 40(13):2291-2300.
    [190]Tsai W T, Chen H R. Removal of malachite green from aqueous solution using low-cost chlorella-based biomass[J]. Journal of Hazardous Materials,2010, 175(1):844-849.
    [191]Goss K U. Predicting the equilibrium partitioning of organic compounds using just one linear solvation energy relationship (LSER)[J]. Fluid Phase Equilibria, 2005,233(1):19-22.
    [192]Dubinin M M, Serpinsky V V. Isotherm equation for water vapor adsorption by microporous carbonaceous adsorbents[J]. Carbon,1981,19(5):402-403.
    [193]Dubinin M M, Zaverina E D, Serpinsky V V. The sorption of water vapour by active carbon[J]. Journal of the Chemical Society (Resumed),1955: 1760-1766.
    [194]Stoeckli F, Jakubov T, Lavanchy A. Water adsorption in active carbons described by the Dubinin-Astakhov equation[J]. Journal of the Chemical Society, Faraday Transactions,1994,90(5):783-786.
    [195]Talu O, Meunier F. Adsorption of associating molecules in micropores and application to water on carbon[J]. AIChE Journal,1996,42(3):809-819.
    [196]Do D D, Junpirom S, Do H D. A new adsorption-desorption model for water adsorption in activated carbon[J]. Carbon,2009,47(6):1466-1473.
    [197]Neitsch M, Heschel W, Suckow M. Water vapor adsorption by activated carbon:a modification to the isotherm model of Do and Do[J]. Carbon,2001, 39(9):1437-1438.
    [198]Furmaniak S, Gauden P A, Terzyk A P, et al. Heterogeneous Do-Do model of water adsorption on carbons[J]. Journal of Colloid and Interface Science,2005, 290(1):1-13.
    [199]Cossarutto L, Zimny T, Kaczmarczyk J, et al. Transport and sorption of water vapour in activated carbons[J]. Carbon,2001,39(15):2339-2346.
    [200]Aristov Y I, Dawoud B, Glaznev I S, et al. A new methodology of studying the dynamics of water sorption/desorption under real operating conditions of adsorption heat pumps:experiment J]. International Journal of Heat and Mass Transfer,2008,51(19):4966-4972.
    [201]Beck M B. Water quality modeling:a review of the analysis of uncertainty [J]. Water Resources Research,1987,23(8):1393-1442.
    [202]Werder T, Walther J H, Jaffe R L, et al. On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes[J]. The Journal of Physical Chemistry B,2003,107(6):1345-1352.
    [203]Manjare S D, Ghoshal A K. Studies on adsorption of ethyl acetate vapor on activated carbon[J]. Industrial and Engineering Chemistry Research,2006, 45(19):6563-6569.
    [204]Manjare S D, Ghoshal A K. Studies on dynamic adsorption behaviour of ethyl acetate from air on 5A and 13X molecular sieves[J]. The Canadian Journal of Chemical Engineering,2005,83(2):232-241.
    [205]Foley T D. The lipid peroxidation product 4-hydroxynonenal potently and selectively inhibits synaptic plasma membrane ecto-ATP ase activity, a putative regulator of synaptic ATP and adenosine[J]. Neurochemical Research, 1999,24(10):1241-1248.
    [206]Wang Q, Johnson J K. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores[J]. The Journal of Chemical Physics,1999,110(1):577-586.
    [207]Yang Q, Zhong C. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks [J]. The Journal of Physical Chemistry B,2006,110(36):17776-17783.
    [208]Subramanian D, Ritter J A, Liu Y. Equilibrium theory for solvent vapor recovery by pressure swing adsorption:analytic solution with velocity variation and gas-phase capacity[J]. Chemical Engineering Science,1999, 54(4):475-481.
    [209]Morishige K. Adsorption and separation of CO2/CH4 on amorphous silica molecular sieve[J]. The Journal of Physical Chemistry C,2011,115(19): 9713-9718.
    [210]Rajasree R, Moharir A S. Simulation based synthesis, design and optimization of pressure swing adsorption (PSA) processes[J]. Computers and Chemical Engineering,2000,24(11):2493-2505.
    [211]Broom D P, Thomas K M. Gas adsorption by nanoporous materials:Future applications and experimental challenges [J]. MRS Bulletin,2013,38(5): 412-421.
    [212]Oliveira J C A, Rios R B, Lopez R H, et al. Monte Carlo simulation strategies for predicting CO2/CH4 adsorption onto activated carbons from pure gas isotherms[J]. Adsorption Science and Technology,2011,29(7):651-661.
    [213]Jung J Y, Yu H R, In S J, et al. Water vapor adsorption capacity of thermally fluorinated carbon molecular sieves for CO2 capture[J]. Journal of Nanomaterials.2013,2013:1-6.
    [214]Ghezini R, Sassi M, Bengueddach A. Adsorption of carbon dioxide at high pressure over H-ZSM-5 type zeolite. Micropore volume determinations by using the Dubinin-Raduskevich equation and the "t-plot" method [J]. Microporous and Mesoporous Materials,2008,113(1):370-377.
    [215]Kim B J, Park S J. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons [J]. Journal of Colloid and Interface Science,2007,311(2):619-621.
    [216]Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations [J]. Carbon, 2005,43(8):1758-1767.
    [217]Tsai J H, Chiang H M, Huang G Y, et al. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers [J]. Journal of Hazardous Materials,2008,154(1):1183-1191.
    [218]Zhao N, Wei N, Li J, et al. Surface properties of chemically modified activated carbons for adsorption rate of Cr (VI)[J]. Chemical Engineering Journal,2005, 115(1):133-138.
    [219]Rangel-Mendez J R, Streat M. Adsorption of cadmium by activated carbon cloth:influence of surface oxidation and solution pH[J]. Water Research,2002, 36(5):1244-1252.
    [220]Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society,1938,60(2):309-319.
    [221]Zhu H Y, Zhao X S, Lu G Q, et al. Improved comparison plot method for pore structure characterization of MCM-41[J]. Langmuir,1996,12(26):6513-6517.
    [222]Cheng L S, Ralph T Y. Improved Horvath-Kawazoe equations including spherical pore models for calculating micropore size distribution[J]. Chemical Engineering Science,1994,49(16):2599-2609.
    [223]徐卫东,王佩香,欧阳臻,等.响应曲面法优化桑枝多糖提取工艺[J].中国药房,2011,22(43):4064-4067.
    [224]Sreekumar J, Jose K K. Statistical tests for identification of differentially expressed genes in CDNA microarray experiments[J]. Indian Journal of Biotechnology,2008,7(4):423-436.
    [225]Shah A K, Liu Z J, Stewart P D, et al. On increasing protein-crystallization throughput for X-ray diffraction studies[J]. Acta Crystallographica Section D: Biological Crystallography,2005,61(2):123-129.
    [226]Yeh W C. A MCS-RSM approach for network reliability to minimise the total cost[J]. The International Journal of Advanced Manufacturing Technology, 2003,22(9-10):681-688.
    [227]Pierotti R A, Rouquerol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [228]Houshmand A, Daud W M A W, Shafeeyan M S. Tailoring the surface chemistry of activated carbon by nitric acid:Study using response surface method[J]. Bulletin of the Chemical Society of Japan,2011,84(11): 1251-1260.
    [229]Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology [J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,202(2):142-153.
    [230]Tan IA W, Hameed B H, Ahmad A L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon[J]. Chemical Engineering Journal,2007,127(1):111-119.
    [231]Azargohar R, Dalai A K. Production of activated carbon from Luscar char: experimental and modeling studies [J]. Microporous and Mesoporous Materials, 2005,85(3):219-225.
    [232]Myers R H. Classical and modern regression with applications[M]. Belmont, CA:Duxbury Press,1990.
    [233]Ma L, Ning P, Zhang Y, et al. Experimental and modeling of fixed-bed reactor for yellow phosphorous tail gas purification over impregnated activated carbon[J]. Chemical Engineering Journal,2008,137(3):471-479.
    [234]Sun Y, Wei J, Yao M, et al. Preparation of activated carbon from furfural production waste and its application for water pollutants removal and gas separation[J]. Asia-Pacific Journal of Chemical Engineering,2012,7(4): 547-554.
    [235]Qi N, LeVan M D. Coadsorption of organic compounds and water vapor on BPL activated carbon.5. Methyl ethyl ketone, methyl isobutyl ketone, toluene, and modeling[J]. Industrial and Engineering Chemistry Research,2005, 44(10):3733-3741.
    [236]Najibi H, Chapoy A, Tohidi B. Methane/natural gas storage and delivered capacity for activated carbons in dry and wet conditions[J]. Fuel,2008,87(1): 7-13.
    [237]Li L, Quinlivan P A, Knappe D R U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution[J]. Carbon,2002,40(12):2085-2100.
    [238]Karanfil T, Kilduff J E. Role of granular activated carbon surface chemistry on the adsorption of organic compounds.1. Priority pollutants[J]. Environmental Science and Technology,1999,33(18):3217-3224.
    [239]Tangsathitkulchai C, Ngernyen Y, Tangsathitkulchai M. Surface modification and adsorption of eucalyptus wood-based activated carbons:Effects of oxidation treatment, carbon porous structure and activation method[J]. Korean Journal of Chemical Engineering,2009,26(5):1341-1352.
    [240]Mine E F, Kikuchi Y, Kobayashi Y, et al. Preparation of activated-carbon-supported iron oxide by homogeneous precipitation technique[J]. Journal of Chemical Engineering of Japan,2011,44(12): 943-948.
    [241]Canizares P, Carmona M, Baraza O, et al. Adsorption equilibrium of phenol onto chemically modified activated carbon F400[J]. Journal of Hazardous Materials,2006,131(1):243-248.
    [242]Lee S W, Daud W M A W, Lee M G. Adsorption characteristics of methyl mercaptan, dimethyl disulfide, and trimethylamine on coconut-based activated carbons modified with acid and base[J]. Journal of Industrial and Engineering Chemistry,2010,16(6):973-977.
    [243]Kundu S, Wang Y, Xia W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study [J]. The Journal of Physical Chemistry C,2008,112(43):16869-16878.
    [244]Haydar S, Moreno-Castilla C, Ferro-Garcia M A, et al. Regularities in the temperature-programmed desorption spectra of CO2 and CO from activated carbons[J]. Carbon,2000,38(9):1297-1308.
    [245]Martinez M T, Callejas M A, Benito A M, et al. Microwave single walled carbon nanotubes purification[J]. Chemical Communications,2002 (9): 1000-1001.
    [246]Boehm H P. Surface oxides on carbon and their analysis:A critical assessment[J]. Carbon,2002,40(2):145-149.
    [247]Lakshminarayanan P V, Toghiani H, Pittman J C U. Nitric acid oxidation of vapor grown carbon nanofibers[J]. Carbon,2004,42(12):2433-2442.
    [248]Zhou J H, Sui Z J, Zhu J, et al. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR[J]. Carbon,2007,45(4): 785-796.
    [249]Park S J, Kim B J. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior[J]. Materials Science and Engineering: A,2005,408(1):269-273.
    [250]Toebes M L, Van-Heeswijk J M P, Bitter J H, et al. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers[J]. Carbon,2004,42(2):307-315.
    [251]Manchester S, Wang X, Kulaots I, et al. High capacity mercury adsorption on freshly ozone-treated carbon surfaces[J]. Carbon,2008,46(3):518-524.
    [252]Canete S J P, Zhang Z, Kong L, et al. Application of synchrotron FTIR microspectroscopy for determination of spatial distribution of methylene blue conjugated onto a SAM via "click" chemistry[J]. Chemical Communications, 2011,47(43):11918-11920.
    [253]Xiao B, Thomas K M. Competitive adsorption of aqueous metal ions on an oxidized nanoporous activated carbon[J]. Langmuir,2004,20(11):4566-4578.
    [254]Kohl S, Drochner A, Vogel H. Quantification of oxygen surface groups on carbon materials via diffuse reflectance FT-IR spectroscopy and temperature programmed desorption[J]. Catalysis Today,2010,150(1):67-70.
    [255]Swiatkowski A, Pakula M, Biniak S, et al. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead (Ⅱ) ions[J]. Carbon,2004,42(15):3057-3069.
    [256]Figueiredo J L, Pereira M F R. The role of surface chemistry in catalysis with carbons[J]. Catalysis Today,2010,150(1):2-7.
    [257]Feng W, Borguet E, Vidic R D. Sulfurization of carbon surface for vapor phase mercury removal-Ⅰ:Effect of temperature and sulfurization protocol[J]. Carbon,2006,44(14):2990-2997.
    [258]Nicolaou K C, Tria G S, Edmonds D J. Total synthesis of platencin[J]. Angewandte Chemie,2008,120(9):1804-1807.
    [259]Pakula M, Biniak S, Swiatkowski A, et al. Influence of progressive surface oxidation of nitrogen-containing carbon on its electrochemical behaviour in phosphate buffer solutions[J]. Carbon,2002,40(11):1873-1881.
    [260]Swiatkowski A, Grajek H, Pakula M, et al. Voltammetric studies of the gradual thermal decomposition of activated carbon surface oxygen complexes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002, 208(1):313-320.
    [261]Burg P, Fydrych P, Cagniant D, et al. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods[J]. Carbon,2002,40(9): 1521-1531.
    [262]Qiu K, Yang S, Yang J. Characteristics of activated carbon prepared from Chinese fir sawdust by zinc chloride activation under vacuum condition[J]. Journal of Central South University of Technology,2009,16:385-391.
    [263]Ribeiro A M, Sauer T P, Grande C A, et al. Adsorption equilibrium and kinetics of water vapor on different adsorbents [J]. Industrial and Engineering Chemistry Research,2008,47(18):7019-7026.
    [264]Delage F, Pre P, Cloirec P L. Effects of moisture on warming of activated carbon bed during VOC adsorption [J]. Journal of Environmental Engineering, 1999,125(12):1160-1167.
    [265]Moreno-Castilla C, Maldonado-Hodar F J, Carrasco-Marin F, et al. Surface characteristics of titania/carbon composite aerogels[J]. Langmuir,2002,18(6): 2295-2299.
    [266]Svabova M, Weishauptova Z, Pfibyl O. Water vapour adsorption on coal[J]. Fuel,2011,90(5):1892-1899.
    [267]Qiao W, Korai Y, Mochida I, et al. Preparation of an activated carbon artifact: oxidative modification of coconut shell-based carbon to improve the Strength[J]. Carbon,2002,40(3):351-358.
    [268]Tsunoda R, Ozawa T, Ando J. Ozone treatment of coal-and coffee grounds-based active carbons:water vapor adsorption and surface fractal micropores[J]. Journal of Colloid and Interface Science,1998,205(2): 265-270.
    [269]Okada K, Nakanome M, Kameshima Y, et al. Water vapor adsorption of CaCl2-impregnated activated carbon[J], Material Research Bulletin,2010, 45(11):1549-1553.
    [270]Juarez-Galan J M, Silvestre-Albero A, Silvestre-Albero J, et al. Synthesis of activated carbon with highly developed "mesoporosity"[J]. Microporous and Mesoporous Materials,2009,117(1):519-521.
    [271]Perry R H, Green D W. Perry's Chemical Engineers'Handbook[M].7th edn. New York:McGraw-Hill,1999.
    [272]Long C, Li Y, Yu W, et al. Adsorption characteristics of water vapor on the hypercrosslinked polymeric adsorbent[J]. Chemical Engineering Journal,2012, 180:106-112.
    [273]Arafat H A, Franz M, Pinto N G. Effect of salt on the mechanism of adsorption of aromatics on activated carbon[J]. Langmuir,1999,15(18):5997-6003.
    [274]Horikawa T, Kitakaze Y, Sekida T, et al. Characteristics and humidity control capacity of activated carbon from bamboo[J]. Bioresource Technology,2010, 101(11):3964-3969.
    [275]Ohta N, Nishi Y, Morishita T, et al. Water vapour adsorption of microporous carbon films prepared from fluorinated aromatic polyimides[J]. Adsorption Science and Technology,2008,26(5):373-382.
    [276]Brennan J K, Bandosz T J, Thomson K T, et al. Water in porous carbons[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001, 187:539-568.
    [277]Zong E, Wei D, Wan H, et al. Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide [J]. Chemical Engineering Journal,2013,221:193-203.
    [278]Ai L, Li L. Efficient removal of organic dyes from aqueous solution with ecofriendly biomass-derived carbon@ montmorillonite nanocomposites by one-step hydrothermal process[J]. Chemical Engineering Journal,2013,223: 688-695.
    [279]Xie G, Shang X, Liu R, et al. Synthesis and characterization of a novel amino modified starch and its adsorption properties for Cd (Ⅱ) ions from aqueous solution[J]. Carbohydrate Polymers,2011,84(1):430-438.
    [280]Klop E A, Schouten A, Van Der Sluis P, et al. Structure of calcium acetate monohydrate, Ca(C2H3O2)2-H2O[J]. Acta Crystallographica Section C:Crystal Structure Communications,1984,40(1):51-53.
    [281]Hsu L Y, Nordman C E. Structures of two forms of sodium acetate, Acta Crystallographica Section C:Crystal Structure Communications,1983,39(6):690-694.
    [282]Frost R L, Kristof J, Schmidt J M, et al. Raman spectroscopy of potassium acetate-intercalated kaolinites at liquid nitrogen temperature [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2001, 57(3):603-609.
    [283]刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [284]Legon A C, Millen D J. Directional character, strength, and nature of the hydrogen bond in gas-phase dimers[J]. Accounts of Chemical Research,1987, 20(1):39-46.
    [285]Gordon M S, Jensen J H. Understanding the hydrogen bond using quantum chemistry[J]. Accounts of Chemical Research,1996,29(11):536-543.
    [286]Pauling L. The shared-electron chemical bond[J]. Proceedings of the National Academy of Sciences of the United States of America,1928,14(4):359-362.
    [287]Pauling L. The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms[J]. Journal of the American Chemical Society,1932,54(9):3570-3582.
    [288]Liu H, Wang Q, Liu L. An improvement on the formula for group electronegativity[J]. Journal of Chemical Education,1992,69(10):783-786.
    [289]Mullay J. Atomic and group electronegativities[J]. Journal of the American Chemical Society,1984,106(20):5842-5847.
    [290]Bratsch S G. A group electronegativity method with Pauling units[J]. Journal of Chemical Education,1985,62(2):101-107.
    [291]Huheey J E. Group electronegativity and polar substituent constants[J]. The Journal of Organic Chemistry,1966,31(7):2365-2368.
    [292]Cherkasov A R, Galkin V, Cherkasov R. "Inductive" electronegativity scale [J]. Journal of Molecular Structure:THEOCHEM,1999,489(1):43-46.
    [293]Li X, Li Z. Adsorption of water vapor onto and its electrothermal desorption from activated carbons with different electric conductivities[J]. Separation and Purification Technology,2012,85:77-82.
    [294]Bedia J, Rodriguez-Mirasol J, Cordero T. Water vapour adsorption on lignin-based activated carbons[J]. Journal of Chemical Technology and Biotechnology,2007,82(6):548-557.
    [295]Duval Y, Mielczarski J A, Pokrovsky O S, et al. Evidence of the existence of three types of species at the quartz-aqueous solution interface at pH 0-10:XPS surface group quantification and surface complexation modeling[J]. The Journal of Physical Chemistry B,2002,106(11):2937-2945.
    [296]Polovina M, Babic B, Kaluderovic B, et al. Surface characterization of oxidized activated carbon cloth[J]. Carbon,1997,35(8):1047-1052.
    [297]Wang Z M, Yamashita N, Wang Z X, et al. Air oxidation effects on microporosity, surface property, and CH4 adsorptivity of pitch-based activated carbon fibers[J]. Journal of Colloid and Interface Science,2004,276(1): 143-150.
    [298]Klop E A, Schouten A, Van-Der S P, et al. Structure of calcium acetate monohydrate, Ca(C2H3O2)2·H2O[J]. Acta Crystallographica Section C:Crystal Structure Communications,1984,40(1):51-53.
    [299]Brennan J K, Thomson K T, Gubbins K E. Adsorption of water in activated carbons:Effects of pore blocking and connectivity [J]. Langmuir,2002,18(14): 5438-5447.
    [300]Kim M B, Ryu Y K, Lee C H. Adsorption equilibria of water vapor on activated carbon and DAY zeolite[J]. Journal of Chemical and Engineering Data,2005,50(3):951-955.
    [301]Ardagh E G R, Bbarbour A D, McClellan G E, et al. Distillation of acetate of lime[J]. Industrial and Engineering Chemistry,1924,16(11):1133-1139.
    [302]Potts J E, Amis E S. The alkaline hydrolysis of ethyl acetate from the standpoint of ion-dipole theory [J]. Journal of the American Chemical Society, 1949,71(6):2112-2116.
    [303]Fuchs R, Hagan C P, Rodewald R F. Transition state enthalpies of transfer in aqueous dimethyl sulfoxide solutions. Alkaline hydrolysis of ethyl acetate[J]. The Journal of Physical Chemistry,1974,78(15):1509-1511.
    [304]Young K H, Bullock S L, Melvin D M, et al. Ethyl acetate as a substitute for diethyl ether in the formalin-ether sedimentation technique [J]. Journal of Clinical Microbiology,1979,10(6):852-853.
    [305]Van J H, Kamer H, Huinink B, et al. Rapid method for the determination of fat in feces[J]. The Journal of Biological Chemistry,1949,31(8):347-355.
    [306]Barton S S, Evans M J B, Holland J, et al. Water and cyclohexane vapour adsorption on oxidized porous carbon[J]. Carbon,1984,22(3):265-272.
    [307]Sullivan P D, Stone B R, Hashisho Z, et al. Water adsorption with hysteresis effect onto microporous activated carbon fabrics[J]. Adsorption,2007,13(3-4): 173-189.
    [308]Eyring H. The activated complex in chemical reactions[J]. The Journal of Chemical Physics,2004,3(2):107-115.
    [309]Boehm H P. Chemical identification of surface groups[J]. Advances in Catalysis,1966,16:179-274.
    [310]Kim B K, Ryu S K, Kim B J, et al. Adsorption behavior of propylamine on activated carbon fiber surfaces as induced by oxygen functional complexes [J]. Journal of Colloid and Interface Science,2006,302(2):695-697.
    [311]Ramkumar S, Fan L S. Thermodynamic and experimental analyses of the three-stage calcium looping process[J]. Industrial and Engineering Chemistry Research,2010,49(16):7563-7573.
    [312]Shojania S, Oleschuk R D, McComb M E, et al. The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device[J]. Talanta,1999,50(1): 193-205.
    [313]Saha D, Bao Z, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environmental Science and Technology,2010, 44(5):1820-1826.
    [314]Lua A C, Yang T. Theoretical and experimental SO2 adsorption onto pistachio-nut-shell activated carbon for a fixed-bed column[J]. Chemical Engineering Journal,2009,155(1):175-183.
    [315]Ruthven D M. Principles of adsorption and adsorption processes[M]. New York:John Wiley,1984.
    [316]李立清,朱正双,秦映心,等.两组分有机气体等温吸附模拟与传热传质分析[J].中国电机工程学报,2008,28(26):46-52.
    [317]Kast W. Adsorption aus der gasphase[M]. Berlin:Weinheim Verlag,1988.
    [318]Rao M B, Sircar S. Thermodynamic consistency for binary gas adsorption equilibria[J]. Langmuir,1999,15(21):7258-7267.
    [319]Jee J G, Lee J S, Lee C H. Air separation by a small-scale two-bed medical O2 pressure swing adsorption[J]. Industrial and Engineering Chemistry Research, 2001,40(16):3647-3658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700