用户名: 密码: 验证码:
长江中下游地区浅水湖泊生源要素的生物地球化学循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的发展,人为活动导致的湖泊污染已经成为一个严重的环境问题。其中,湖泊富营养化是最为普遍,也是危害最大的环境问题之一。沉积物的内源释放是影响湖泊水体营养水平的重要因素,但是直到目前为止,浅水湖泊的内源释放机制还是不甚清楚。为了有效控制湖泊富营养化,就必须全面了解生源要素在浅水湖泊中的循环机制,以及湖泊富营养化发展过程中生源要素的演化规律,为浅水湖泊富营养化的控制和管理提供科学的理论依据。
     长江中下游地区是我国浅水湖泊分布比较集中的地区,也是我国富营养化湖泊分布的主要地区。本论文工作以太湖、巢湖、龙感湖为研究对象,通过对氮、磷、硅等生源要素化学形态时空分布特征的研究,初步探讨了浅水湖泊水体营养盐的循环机制和沉积物内源营养盐的释放机制以及藻类在其中的重要作用;结合有机碳同位素、生物硅、聚磷酸盐等沉积记录的研究,初步揭示了太湖富营养化和生态环境的演变过程,以及聚磷酸盐在其中的重要意义。主要研究结果如下:
     1.各个湖泊水体总磷(TP)的含量以太湖最高,巢湖次之,龙感湖最低,与湖泊的营养程度紧密相关。随着季节的变化,水体磷形态发生着明显的变化。冬季溶解有机磷(DOP)较夏季高出许多,而夏季溶解反应磷(SRP)也较冬季高出许多,这可能与夏季藻类旺盛的新陈代谢作用所导致的磷释放和磷转化有关。另外,通过研究发现,冬季各个湖泊浮游植物营养盐限制因子为P,夏季太湖和巢湖却有部分样点落入Si限制的范围,这与太湖营养盐结构和浮游植物种群结构演化的总体趋势基本一致。
     2.夏季太湖北部藻类的密度较大,最大可达8.53×10~8个L~(-1),主要由蓝藻、绿藻、硅藻、甲藻、裸藻和隐藻等组成,以微囊藻为优势种,并且含有较多指示污染及富营养化程度的藻类种属,各种指标显示水体污染程度较为严重,属中营养—富营养化范畴,空间分布趋势与藻类分布类似。
     3.与其它湖泊相比,浅水湖泊的水动力条件较强,悬浮物不易沉降,悬浮有机质的降解较高(98%)。藻类是藻型湖泊悬浮物的重要组成部分,因此,藻类的降解释放对湖泊水体营养盐的反复循环利用具有重要的影响。
     4.通过有机C/N原子比值研究发现,各个湖泊沉积物中有机质的主要来源为湖泊自生有机物源,受陆生有机物源影响较小。另外,各个湖泊沉积物中的总有机碳(TOC)与总氮(TN)、TP、无机磷(Pin)、有机磷(Porg)之间都呈显著的正相关关系,说明各个湖泊沉积物中的N、P基本上都是来自与湖泊沉积
Lake pollution, induced by human activities with the development of society and economy, has been a serious environmental problem, of which the eutrophication is one of the most universal and harmful environmental problem. Although the internal release or source of the nutrients in sediments is an important factor, we still have not understood adequately the mechanisms behind internal loading in shallow lakes. To control the eutrophication effectively, the cycling mechanisms of the nutrients in shallow lakes and the evolution process of the nutrients with lake eutrophication should be understood comprehensively.The middle and lower reaches of the Yangtze River are the central areas not only of shallow lakes, but also of eutrophication lakes in China: Taihu, Chaohu and Longgan Lakes are the typical shallow lakes in the middle and lower reach of the Yangtze River. The spatial and temporal distribution of the chemical forms of the nitrogen, phosphorus and silicon was studied in Taihu, Chaohu and Longganhu Lakes for a better understanding of the cycling mechanisms of the nutrients in shallow lakes, of the release mechanisms of internal loading in sediments and the action of algae. Meanwhile, the sedimentary records of carbon isotope, biogenic silica and polyphosphate were investigated for recognizing the evolution of the eutrophication, the effect of polyphosphate, and eco-environment change of Taihu Lake. The main conclusions have been reached as follows:1. The concentrations of TP (total phosphorus) in lake water of Taihu, Chaohu and Longganhu Lakes are high, among which the highest concentration was found in the Taihu Lake, then the Chaohu and the Longganhu Lakes. The phosphorus forms of lake water can be transferred with the season change: the average concentration of DOP (dissolved organic phosphorus) is higher in winter, but the SRP (solute reactive phosphorus) is higher in summer, as compared with other seasons. The intensive metabolism of algae can alter the phosphorus forms of water and cause the internal loading in sediments. Atomic ratios of N: P, Si: P and Si: P in lake water show that the nutrient limitation for phytoplankton is phosphorus during winter in all of the lakes, but is silicon during summer in Taihu and Chaohu Lakes according the Justuc's rules, which is consistent with the evolution of the nutrient structure and phytoplankton
    community in Taihu Lake.2. The density of phytoplankton is very high during summer in north part of Taihu Lake, with a highest value of 8.53 * 108 individuals L*1. There are six main phytoplankton groups including Cyanophyta, Cryptophyta, Bacillariophyta, Chlorophyta, Euglenophyta, Pyrrophyta, etc, among which the predominant species is Microcystis spp. At the same time, there are many algae species that can be used to indicate the extent of pollution and eutrophication. The water pollution is very serious according to algae indexes, and the trophic state relating to phytoplankton species varies from mesotrophic to eutrophic.3. Due to high hydraulic state of shallow lakes, the suspended matter is not easy to settle down to the bottom, so more suspended organic matter is degraded than that in other lakes, up to 98% of which can be degraded. The degradation of algae has an important influence on the cycle of the nutrients leaded by the great algae biomass in shallow lakes.4. The sedimentary organic matter was mainly originated from the lacustrine authigenesis in all of the lakes, and contribution of terrigenous organic matter was small, according to the low organic C/N atomic ratios. TOC (total organic carbon) shows evidently positive correlation with TN (total nitrogen), TP, Pin (inorganic phosphorus) and Porg (organic phosphorus) in sediments, suggesting that the N and P could be originated from the biological sedimentation accompanied by the lacustrine sedimentation in all of the lakes.5. The TP concentrations in sediments from all of the lakes are high, among which the sediments from Taihu Lake show the highest, while those from Chaohu Lake the lowest concentrations. TP shows evidently positive correlation with Pin and Porg in all of the lakes, suggesting that the all of the lake sediments have similar TP composition, although all of the lakes have different trophic status and ecological structure.6. Using the SEDEX method, a sequential extraction method for separating different forms of sedimentary phosphorus, to analyze different forms of phosphorous in the sediments of Taihu Lake, we found that the concentrations of PFe (iron bond phosphorus) are high, which account for not only the main composition of Pin (75 -88%), but also TP (53 - 75%). The variational trend of PFe is consistent with Pin and
    Ptot, and PFe has an excellent positive correlation with TP and Pin (R=0.998, 0.993 respectively, n = 40, P < 0.01).7. The diffusive process at sediment-water interface has low impact on the nutrient cycle of overlain water in Taihu Lake, and even shows the scavenging effect in some region in the given season. Despite the atomic ratios of Fe/P > 2 in sediments and porewater of Taihu Lake, the release of phosphorus has still occurred. Fe oxides and oxyhydroxides are only a small part of sedimentary Fe (10 - 28%), and more Fe existed in the sediments is the Fe sulfide, such as FeS and FeS2. The absorption between Fe (III) and phosphorus has probably reached to equilibrium according to the low Fe/P atomic ratios (2.0 - 5.3). The main mechanisms of internal phosphorus release may be the sulfate reduction and the sulfide formation.8. The nutrient accumulation and eutrophication process induced by human activities in Wuli Bay of Taihu Lake is reconstructed by using TOC, TN and TP concentrations of the sediments. 81 C of bulk sedimentary organic matter is in response to the concentrations of TP and the organic C/N atomic ratios which suggests the evolvement of eutrophication, primary productivity and producer.9. The BSi (biogenic silica) concentrations in sediments of Taihu Lake is very low, with a variation between 0.4 to and 2.8 mg/g. Combining the changes of nutrients limitation factors and the evolution of algae species and biomass in lake water, we can discover the trends of Si limitation for algae is very obvious in Taihu Lake through the concentrations of BSi and the values of atomic ratios of BSi/TPN BSi/NAlP (non apatite inorganic phosphorus) and TOC/BSi in sediments.10. The concentrations of Poly-P in sediments of Taihu Lake are low, with a variation between 0.004 and 0.065 mg/g. The 22% of sedimentary TP is NAIP, so the NAIP is a main composition of sedimentary TP as well. In P-limited lakes, if algae biomass is very high and if NAIP is a large fraction of TP in sediments, Poly-P sedimentation is not only an important P sink stored by algae without increasing algae biomass, but also a sensitive indicator which can reflect the accelerated eutrophication caused by the increased input of anthropogenic P in the past.
引文
[1] 蔡启铭.前言[A].蔡启铭,太湖环境生态研究[M].北京:气象出版社,1998.
    [2] 曹建廷,王苏民.长江中下游地区湖泊资源可持续利用[J].人民长江,2000,31(7):41-43.
    [3] 曹建廷,王苏民.东部平原地区湖泊资源可持续利用问题与对策[J].科技导报,2000,6:60-62.
    [4] Chang W Y B_中国太湖1950年以来主要环境的变化和迅速富营养化的开始[J].古生物学报,1996,35(2):155-174.
    [5] 陈静生.水环境化学[M].北京:高等教育出版社,1987.
    [6] 陈开宁,李文朝,吴庆龙,等.滇池蓝藻对沉水植物生长的影响[J].湖泊科学,2003,15(4):363-367.
    [7] 陈诗越,金章东,吴艳宏,等.近百年来龙感湖地区湖泊营养化过程[J].地球科学与环境学报,2004,26(4):81-84.
    [8] 陈宇炜,高锡云,秦伯强.西太湖北部夏季藻类种间关系的初步研究[J].湖泊科学,1998,10(4):35-40.
    [9] 董旭辉,羊向东,潘红玺.长江中下游地区湖泊现代沉积硅藻分布基本特征[J].湖泊科学,2004,16(4):298-304.
    [10] 范成新.滆湖沉积物理化特征及释放模拟[J].湖泊科学,1995,7(4):341-350.
    [11] 范成新.太湖水体生态环境历史演变[J].湖泊科学,1996,8(4):297-304.
    [12] 范成新,季江.太湖富营养化现状、趋势及综合整治对策[J].上海环境科学,1997,16(8):4-7.
    [13] 范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359-366.
    [14] 范成新,张路,杨龙元,等.湖泊沉积物氮磷内源负荷模拟[J].海洋与湖沼,2002,33(4):370-378.
    [15] 范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学:D辑:2003,33(8):760-768.
    [16] 国家环境保护局《水和废水监测分析方法编》委会.水和废水监测分析方法(第三版)[M].北京:中国环境科学出版社,1989.
    [17] 国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [18] 国家环境保护总局.“三河三湖”水污染防治“十五”计划汇编[M].北京:化学工业出版社,2004.
    [19] 华兆哲.太湖沉积物磷释放对羊角月牙藻的生物可利用性研究[J].环境科学学报,2000,20(1):100-105.
    [20] 黄文钰,杨桂山,许朋柱.太湖流域“零点”行动的环境效果分析[J].湖泊科学,2002,14(1):67-71.
    [21] 黄漪平,范成新,袁静秀,等.太湖水质现状与发展趋势[A].中国科学院南京地理与湖泊研究所集刊[C].北京:科学出版社,1992.
    [22] 黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001.
    [23] 金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    [24] 金相灿,刘鸿亮,屠清瑛,等.中国湖泊富营养化[M] 北京:中国环境科学出版社,1990.
    [25] 金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [26] 金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [27] 金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学,2004,24(6):7-7-711.
    [28] L.霍坎松,M.杨松.湖泊沉积学原理[M].北京:科学出版社,1992.
    [29] 李金城,宋进喜,王晓蓉.太湖五里湖表层沉积物中酸挥发性硫化物和同步提取金属[J].湖泊科学,2004,16(1):77-80.
    [30] 宋进喜,李金城,王晓蓉,等.太湖梅梁湾沉积物中挥发性硫化物垂直变化特征研究[J].环境科学学报,2004,24(2):271-274.
    [31] 李军,刘丛强,王仕禄,等.太湖五里湖表层沉积物中不同形态磷的分布特征[J].矿物学报,2004, 24(4):405-410.
    [32] 李军,刘丛强,王仕禄,等.太湖水体溶解营养盐(N、P、Si)的冬、夏二季变化特征及其与富营养化的关系[J].地球与环境,2005,33(1):63-67.
    [33] 李如忠,汪家权,钱家忠.巢湖流域非点源营养物质控制对策研究[J].水土保持学报,2004,18(1):119-121.
    [34] 李文朝.五里湖富营养化过程中水生生物及生态环境的演变[J].湖泊科学,1996,8(增刊):37-45.
    [35] 李文朝.东太湖茭黄水发生的原因与防治对策研究[J].湖泊科学,1997a,9(4);364-368.
    [36] 李文朝.东太湖水生植物的促淤效应与磷的沉积[J].环境科学,1997b,18(3):9-12.
    [37] 李文朝.东太湖沉积物中氮的积累与水生植物沉积[J].中国环境科学,1997c,17(5):418-421.
    [38] 李文朝,陈开宁,吴庆龙,等.东太湖表层沉积物的磷饱和度初步研究[J].湖泊科学,1998,10(3):49-54.
    [39] 李文朝,陈开宁,吴庆龙,等.东太湖水生植物的腐烂分解实验[J].湖泊科学,2001,13(4):331-336.
    [40] 廖文根,彭静,铁灵芝.太湖水体中的磷负荷分析[J].水利学报,1994,11:77-81.
    [41] 林碧琴,谢淑琦.水生藻类与水体污染监测[M].沈阳:辽宁大学出版社,1988.
    [42] 刘建康等.东湖生态学研究(一)[M].北京:科学出版社,1990.
    [43] 刘建康.高级水生生物学[M].北京:科学出版社,2000.
    [44] 陆敏,张卫国,师育新,等.太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J].湖泊科学,2003,15(3):213-220.
    [45] 彭近新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988,45-62.
    [46] 秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探.湖泊科学,2002,14(3):193-201
    [47] 秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002,22(2):150-153.
    [48] 秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822-1831.
    [49] 秦伯强,胡维平,陈伟民.太湖水环境演化过程与机理[M].北京:科学出版社,2004.
    [50] 曲克明,陈碧鹃,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报,2000,11(3):445-448.
    [51] 瞿文川,吴瑞金,羊向东.龙感湖地区近3000年来的气候环境变迁[J].湖泊科学,1998,10(2):37-43.
    [52] Ryding S-O,Rast W.湖泊与水库富营养化控制[M].朱萱等译.北京:中国环境科学出版社,1992.
    [53] 舒金华,黄文钰,吴延根.中国湖泊营养类型的分类研究[J].湖泊科学,1996,8(3):193-200.
    [54] 孙枢,李小波.我国资源与环境科学近期发展战略刍议.地球科学进展,2001,16(5):726-733.
    [55] 孙顺才,黄漪平.太湖[M].北京:海洋出版社,1993.
    [56] 汪福顺.季节性缺氧湖泊微量金属元素的界面地球化学行为[D].贵州:中国科学院地球化学研究所博士论文。2003.
    [57] 万国江.环境质量的地球化学原理.北京:中国环境科学出版社,1988
    [58] 王国祥,成小英,濮培民.湖泊藻型富营养化控制技术、理论及应用[J].湖泊科学,2002,14(3):273-282.
    [59] 王凯雄.水化学[M].北京:化学工业出版社,2001.
    [60] 王苏民,苏守德.合理开发利用湖泊资源[J].中国科学院院刊,1997,1:41-44.
    [61] 王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [62] 王文远,刘嘉麒,彭平安.湖泊沉积生物硅的测定与应用:以湖光岩玛珥湖为例[J].地球化学,2000,29(4):327-330.
    [63] 王晓蓉,华兆哲,徐菱,等.环境条件变化对太湖沉积物磷释放的影响[J].环境化学,1996,15(1):15-19.
    [64] 王雨春.贵州红枫湖、百花湖沉积物.水界面营养元素(磷、氮、碳)的生物地球化学作用[D].贵州:中 国科学院地球化学研究所博士论文,2001.
    [65] 魏中青,刘丛强,梁小兵,等.贵州红枫湖沉积物中有机质的降解与微生物作用[J].科学通报,2005,40(14):1486-1489.
    [66] 吴丰昌,万国江,蔡玉蓉,等.沉积物-水界面的生物地球化学作用[J].地球科学进展,1996,11(2):191-197.
    [67] 吴敬禄,王苏民.云南程海富营养化过程的碳氧稳定同位素示踪[J].第四纪研究,2003,23(5):557-564.
    [68] 吴生才,陈伟民.太湖浮游植物生物量的周期性变化[J].中国环境科学,2004,24(2):151-154.
    [69] 吴艳宏,王苏民,Barttarbee R W.龙感湖小流域元素时空分布及湿地拦截功能探讨[J].湿地科学,2003,1(1):33-39.
    [70] 吴沿友,李萍萍,王保利,等.红枫胡百花湖水质及浮游植物的变化[J].农业环境科学学报,2004,23(4):745-747.
    [71] 闫海,潘纲,张明明.微囊藻毒素研究进展[J].生态学报,2002,22(11):1968-1975.
    [72] 阎伍玖,王心源.巢湖流域非点源污染初步研究[J].地理学报,1998b,18(3):263-267.
    [73] 阎伍玖.巢湖流域不同土地利用类型地表径流污染特征研究[J].长江流域资源与环境,1998a,7(3):274-277.
    [74] 阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,20, 1,15(4):129-132.
    [75] 严宣申,姚光庆.普通无机化学(第二版)[M].北京:北京大学出版社,1999.
    [76] 杨达源,李徐生,张振克.长江中下游湖泊的成因与演化[J].湖泊科学,2000,12(3):226-232.
    [77] 杨顶田,陈伟民,江晶,等.藻类爆发对太湖梅梁湾水体中NPK含量的影响[J].应用生态学报,2003,14(6):969-972.
    [78] 杨东方,张经,陈豫,等.营养盐限制的唯一性因子探讨[J].海洋科学,2001,25(12):49-51.
    [79] 杨洪,易朝路,谢平,等.人类活动在武汉东湖沉积物中的记录[J].中国环境科学,2004,24(3):261—264.
    [80] 杨清心,李文朝,俞林等.东太湖围栏养殖及其环境效应[J].湖泊科学,1995,7(3):256-262.
    [81] 杨清心,李文朝.东太湖围网养鱼后生态环境的演变[J].中国环境科学,1996a,16(2):101-106.
    [82] 杨清心,李文朝.高密度围网养鱼对水生植被的影响及生态对策探讨[J].应用生态学报,1996b,7(1):83-88.
    [83] 杨清心.太湖水华成因及控制途径初探[J].湖泊科学,1998,8(1):67-74.
    [84] 羊向东,张振克.近0.3ka来龙感湖流域人类活动的湖泊环境响应[J].中国科学:D辑,2001,31(12):1031-1038.
    [85] 羊向东,沈吉,夏威岚.龙感湖近代沉积硅藻组合与营养演化的动态过程[J].古生物学报,2002,41(3):455-460.
    [86] 姚书春,李世杰.巢湖富营养化过程的沉积记录[J].沉积学报,2004,22(2):343-347.
    [87] 叶曦雯,刘素美,张经,等.黄海、渤海沉积物中生物硅的测定及存在问题的讨论[J].海洋学报,2002,24(1):20-25.
    [88] 叶曦雯,刘素美,赵颖翡,等.东、黄海沉积物中生物硅的分布及其环境意义[J].中国环境科学,2004,24(3):265-269.
    [89] 殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377-384.
    [90] 于世繁.白洋淀底质磷的释放及与水体中磷的关系[J].环境科学,1995,16(增刊):30-31.
    [91] 俞顺章,穆丽娜,刘建玲,等.用藻类毒素为指标发现湖水中污染点的研究[J].水生生物学报,2002,26(6):669-673.
    [92] 袁旭音,陈骏,陶于祥,等.太湖北部底泥中氮、磷的空间变化和环境意义[J].地球化学,2002,31(4):321-328.
    [93] 张路,范成新,秦伯强,等.模拟扰动条件下太湖表层沉积物中磷行为的研究[J].湖泊科学,2001, 13(1):35~42.
    [94] 张圣照,窦鸿身,姜加虎.龙感湖水生植被[J].湖泊科学,1996,8(2):161-168.
    [95] 张巍,王学军,江耀慈,等.太湖零点行动前后水质状祝对比分析[J].农村生态环境,2001,17(1):44-47.
    [96] 张之源,王培华,张崇岱.巢湖营养化状况评价及水质恢复探讨[J].环境科学研究,1999,12(5):45-48.
    [97] 章宗涉.水生高等植物-浮游植物关系和湖泊营养状况[J].湖泊科学,1998,10(4):83-86.
    [98] 周易勇.淡水环境的生物监测的理论与实践[J].中国环境检测,1998,14(1):44-53.
    [99] 朱广伟,高光,秦伯强等.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展,2003,14(6):714-719.
    [100] 朱广伟,秦伯强,高光等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报,2004,24(3):381-388.
    [101] 朱海虹,张本.鄱阳湖-水文、生物、沉积、湿地、开发整治[M].合肥:中国科技大学出版社,1997.
    [102] 中华人民共和国行业标准(SL261-98).中国湖泊名称代码[M].北京:中国水利电力出版社,1998.
    [103] Ahl T. Effects of man-induced and natural loading of phosphorus and nitrogen on the large Swedish lakes [J]. Verh. Int. Ver. Limnol., 1975, 19: 1125-1132.
    [104] Andersen F O & Olsen K R. Nutrient cycling in shallow, oligotrophic Lake Kvie, Denmark. Ⅱ. Effects of isoetids on the exchange of phosphorus between sediment and water [J]. Hydrobiologia, 1994, 275/276: 267-276.
    [105] Andersen F O & Ring P. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake [J]. Hydrobiologia, 1999, 408/409: 175-183.
    [106] Andersen J M. Influence ofpH on release of phosphorus from lake sediments [J]. Arch. Hydrobiol., 1975, 76: 411-419.
    [107] Anderson N J. Using the past to predict the future: lake sediments and the modeling of limnological disturbance [J]. Ecological Modeling, 1995, 78: 149-172.
    [108] Aspila K I, Agemian H & Chau A S Y. A semiautomated method for the determination of inorganic, organic and total phosphate in sediment [J]. Aanlyst, 1976, 101: 187-197.
    [109] Balod M, Purina I, Bechemin C, et al. Effects of nutrient enrichment of growth rates and community structure of summer phytoplankton from the Gulf of Rgia, Baltic Sea [J]. Plankton. Res., 1998, 20(12): 2251~2271.
    [110] Barbiero R P, Carrick H J, Volerman J B, et al. Factors affecting temporal and spatial distribution of diatoms in Lake Michigan [J]. Verh. Int. Verein. Limnol. 2001, 27: 1788-1794.
    [111] Bartone C R, Schelske C L. Lake-wide seasonal changes in limnological conditions in Lake Michigan in 1976 [J]. Great lakes Res., 1982, 8: 413-427.
    [112] Battarbee R W. The importance of palaeolimnology to lake restoration [J]. Hydrobiologia, 1999, 395/396: 149-159.
    [113] Beardall J, Young E & Roberts S. Approaches for determining phytoplankton nutrient limitation [J]. Aquat Sci., 2001, 63: 44-69.
    [114] Beaver J R, Crisman T L & Bays J S. Thermal regimes of Florida lakes [J]. Hydrobiologia, 1981, 83: 267-273.
    [115] Beklioglu M, Carvalho L & Moss B. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience [J]. Hydrobiologia, 1999, 412: 5-15.
    [116] Bemer R A. Early diagenesis: a theoretical approach [M]. 1980, New'Jeresy: Princeton Univ. Press.
    [117] Blindow I, Hargeby A, Balint M A et al. How important is the crustacean plankton for the maintenance of water clarity in the shallow lakes with abundant submerged vegetation [J] ? Freshwater Biol., 2000, 44: 185-597.
    [118] Bodini A. Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake [J]. Can. J. Fish Aquat. Sci., 2000, 57: 1999-2009.
    [119] Boers P C M, van Raaphorst W & van der Molen T D.Phosphorus retention in sediments [J]. Water Sci. Technol., 1998,37:31-39.
    [120] Borggaard O K. Effect of surface area and mineralogy of iron oxides on their surface charge and anion-adsorption properties [J]. Clays Clay Miner., 1983, 31: 230-232.
    [121] Bostrom B, Jansson M & Forsberg C. Phosphorus release from lake sediments [J]. Arch. Hydrobiol. Beih. Ergebn. Limnol., 1982, 18: 5-59.
    [122] Brenner M, Whitmore T J, Curtis J H et al. Stable isotope signatures of sedimented organic matter as indictors of historic lake trophic state [J]. Paleolimn. 1999, 22: 205-221.
    [123] Breukelaar A W, Lammens EHHR, Breteler K et al. Klein Effects of benthivorous bream (Abramis brama) and carp (Cyprius carpio) on sediment resuspension and concentration of nutrients and chlorophyll-a. Freshwater Biol., 1994,32:113-121.
    [124]Carrick H J, Aldridge F J & Schelske C L. Wind influences phytoplankton biomass and composition in a shallow, productive lake [J]. Limnol. Oceanogr., 1993, 38: 1179-1192.
    [125]Ccanfield D E & Hoyer M V. The eutrophication of Lake Okeechobee [J]. Lake and Reservoir Management, 1988,4:91-99.
    [126] Chang W Y B, Rossmann R. Changes in the abundance of bleu-green algae related to nutrient loading in the nearshore of Lake Michigan [J]. Hydrogiologia., 1988,157: 271-278.
    [127] Chen X M, Shen Q R, Pan G X et al. Characteristics of nitrate horizontal transport in a paddy field of the Tai Lake region, China [J]. Chemosphere, 2003, 50: 703-706.
    [128]Chmielewski T J, Radwan S & Sielewicz B. Changes in ecological relationships in a group of eight shallow lakes in the Polesie Lubelskie region (eastern Poland) over forty years [J]. Hydrobiologia, 1997, 342/343: 285-295.
    [129] Christensen K K, Andersen F 0 & Jensen H S. Comparison of iron, manganese and phosphorus retention in freshwater littoral sediment with growth of Littorell uniflora and benthic microalge [J].Biogeochemistry, 1997,38:149-171.
    [130] Czyk T G, Casper P & Koschel R. Variations of phosphorus release from sediments in stratified lakes [J]. Water Air Soil Pollut, 1997, 99:427-434.
    [131]David L C. The role of phosphorus in the eutrophication of receiving water: a review [J]. J Environ Qaul, 1998,27:261-266.
    [132] Davison W. Iron and manganese in lakes [J]. Earth Sci. Rev., 1993, 34: 119-163.
    [133]DeMontigny C. & Prairie Y. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment [J]. Hydrobiology, 1993, 253: 141-150.
    [134] Diem D & Stumm W. Is dissolved Mn~(2+) being oxidized O_2 in absence of Mn-bacteria or surface catalysts [J]? Geochim. Cosmochim. Acta., 1984, 48: 1571-1573.
    [135]Dokulil M, Chen W, Cai Q. Anthropogenic impacts to large lakes in China: the Tai Hu example [J]. Aquatic Ecosystem Health & Management, 2000, 3: 81-94.
    [136]Driscoll C T, Effler S W, Auer M T, Doerr, S M et al. Supply of phosphorus to the water column of a productive hardwater lake - controlling mechanisms and management considerations [J]. Hydrobiologia, 1993,253:61-72.
    [137]Edmondson W T. Nutrients and phytoplankton in Lake Washington [J]. Limnol. Oceanogr. Special Symposium Vol. 1,Nutrients and Eutrophication, 1972,172-193.
    [138] Egge J K, Aksnes D L. Silicate as regulating nutrient of new in phytoplankton competition [J]. Mar. Ecol. Progr. Sen, 1992, 83: 281-289.
    [139] Ehrlich H L. Enhanced removal of Mn~(2+) from seawater by marine sediments and clay minerals in the presence of bacteria [J]. Can. J. Microbiol. 1982, 28: 1389-1395.
    [140] Eijsink L M, Krom M D & de Lange G J. The use of sequential extraction technique for sedimentary phosphorus in eastern Mediterranean sediments [J]. Mar. Geol., 1997, 139: 147-155.
    [141]Eixler S, Selig U & Karsten U. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms [J]. Hydrobiologia, 2005, 533: 135-143.
    [142] Ekholm P, Malcve O & Kirkkala T. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhajarvi, southwest Finland [J]. Hydrobiologia, 1997, 345: 3-14.
    [143] Ellen L P, Joselito M A. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings [J]. Sci. Total Environ., 2001, 266: 87-93.
    [144] Emmeis K C, Struck U, Leipe T, et al. Changes in the C, N, and P burial rates in some Baltic Sea sediments over the last 150 years-relevance to phosphorus regeneration rates and the phosphorus cycle [J]. Mar. Geol., 2000,167:43-59.
    [145]Emsley J. The phosphorus cycle [A]. Hutzinger F. Natural and Biogeochemical cycles [M]. Springer, Berlin, 1980.
    [146] Falkowski P G. Rationalizing elemental ratios in unicellular algae [J]. Phycol., 2000, 36: 3-6.
    [147] Follmi K B. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits [J]. Earth Sci. Rev., 1996,40:55-124.
    [148]Freudenthal T, Wagner T, Wenzhofer F, et al. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic, Evidence from stable nitrogen and carbon isotopes [J]. Geochim. Cosmochim. Acta., 2001, 65: 795-1808.
    [149]Frink C R. Nutrient Budget: rational Analysis of Eutrophication in a Connecticut Lake [J]. Envir. Sci. Technol., 1967,1:425-428.
    [150]Frodge J D, Thomas G L & Pauley G B. Sediment phosphorus loading beneath dense canopies of aquatic macrophytes [J]. Lake Reserv. Mange., 1991, 7: 61-71.
    [151] Fry B, Sherr E B. δ~(13)C measurements as indicators of carbon flow in marine and freshwater ecosystems [J]. Contrib. Mar. Sci., 1984,27: 13-47.
    [152] Fukura H & Sakamoto M. Enhancement of inorganic nitrogen and phosphate release from lake sediment by tubificid worms and chironomid larvae [J]. Oikos, 1987,48:312-320.
    [153] Gachter R & Wehrli B. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes [J]. Environ. Sci. Technol., 1998,32:3659-3665.
    [154] Gachter R & Mailer B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface [J]? Limnol. Oceanogr., 2003, 48: 929-933.
    [155]Garber K J and Hartman R T. Internal phosphorus loading to shallow Edinbro Lake in northwestern Pennsylvania [J]. Hydrobiologia., 1985, 122: 45-52.
    [156]Golterman H L & Booman A. Sequential extraction of iron-phosphate and calcium-phosphate from sediments by chelating agents [J]. Verh. Int. Ver. Limnol., 1988, 23: 904-909.
    [157]Golterman H L. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (southern France) [J]. Hydrobiologia, 1995, 315: 39-58.
    [158] Gomez E, Fillit M, Ximenes M C et al. Phosphate mobility at the sediment-water interface of a Mediterranean lagoon (etang du Mejean), seasonal phosphate variation [J]. Hydrobiologia. 1998, 374: 203-216.
    [159] Gonsiorczyk T, Casper P & Koschel R. Mechanism of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: importance of permanently oxic sediment surface [J]. Arch. Hydrobiol., 2001, 151:203-219.
    [160]Graneli W & Solander D. Influence of aquatic macrophytes on phosphorus cycling in lakes [J]. Hydrobiologia, 1988, 170: 245-266.
    [161] Gu B, Schelske C L, Brenner, M. Relationship between sediment and plankton isotope ratios (δ~(13)C and δ~(15)N) and primary productivity in Florida lakes [J]. Can. J. Fish Aquat. Sci., 1996, 53: 875-883.
    [162]Gunnars A & Blomqvist S. Phosphorus dynamics at the sediment-water interface in marine and freshwater environments during positive redox-turnover [J]. Hydrobiologia. 1993, 253: 319-320.
    [163]Gunnars A & Blomqvist S. Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions-an experimental comparison of freshwater and brackish-marine systems [J]. Biogeochemistry, 1997, 37: 203-226.
    [164]Gunnars A, Blomqvist S, Johansson P et al. Formation of Fe (III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium [J]. Geochim. Cosmochim. Acta., 2002, 66: 745-768.
    [165] Hamilton D P & Mitchell S F. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes [J]. Freshwater Biol., 1997, 38: 159-168.
    [166]Hansen. P S, Philips E J & Aldridge F J. The effects of sediment resuspension on phosphorus available for algal growth in a shallow subtropical lake, Lake Okeechobee [J].Lake and Reservoir Management, 1997, 13: 154-159.
    [167] Hartley A M, House W A, Callow M E et al. Coprecipitation of phosphate with calcite in the presence of photosynthesizing green algae [J]. Water Res., 1997, 31: 2261-2268.
    [168] Havens K E, Fukushima T, Xie P et al. Nutrient dynamics and eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA) [J]. Environmental Pollution, 2001, 111: 263-272.
    [169]Hein M. Inorganic carbon limitation of photosynthesis in lake phytoplankton [J]. Freshwater biology, 1997, 37: 545-552.
    [170]Hieltjes A H M & Lijklema L. Fractionation of inorganic phosphates in calcareous sediments [J]. Environ. Qual, 1980, 9: 405-407.
    [171]Hoeg S & Kohler J. Phytoplankton selection in a river lake system during two decades of changing nutrient supply [J]. Hydrobiologia, 2000,424:13-24.
    [172]Holdren G C & David E. Armstrong, factors affecting phosphorus release from intact lake sediments cores [J]. Environ. Sci. Technol., 1980, 14: 79-87.
    [173] Hollander D J. Carbon and isotope nitrogen cycling and organic geochemistry of eutrophic Lake Greifen: Implication for the preservation and accumulation of ancient organic carbon rich sediments [D]. Ph. D. dissertation, Swiss Federal Institute of Technology, Zurich, 1989.
    [174] Hollander D J, Smith M A. Microbially mediated carbon cycling as a control on the δ~(13)C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record [J]. Geochim. Cosmochim. Acta., 2001,65:4321-4337.
    [175] Holz J, Hoagland K D, Spawn R L, et al. Phytoplankton community response to reservoir aging, 1968-92 [J]. Hydrobiologia, 1997,346: 183-192.
    [176] Hongve D. Cycling of iron, manganese, and phosphate in a meromictic lake [J]. Limnol. Oceanogr., 1997,42: 635-647.
    [177]Horppila J & Nurminen L. The effect of an emergent macrophyte (Typha angustifolia) on sediment resuspension in a shallow north temperate lake [J]. Freshwater Biol., 2001,46: 1447-1455.
    [178] House W A, Casey H, Donaldson L et al. Factors affecting the coprecipitation of inorganic phosphate with calcite in hardwaters -I, laboratory studies [J]. Water Res. 1986, 20: 917-922.
    [179]Hupher M, Gachter R & Giovanoli R. Transformation of phosphorus species in settling seston and during early sediment diagenesis [J]. Aquat. Sci., 1995, 57: 305-324.
    [180] Ingall E D and Van Cappellen P. Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments [J]. Geochim. Cosmochim. Acta., 1990, 57: 303-316
    [181] Ishikawa T & Tanaka M. Diurnal stratification and its effects on wind-induced currents and water qualities in Lake Kasumigaura, Japan [J]. J Hydraulic Res, 1993, 31: 307-322.
    [182] Jacobsen B. A. Bloom formation of Gloetrichia echinulata and Aphanizomenon flos-aquae in a shallow, eutrophic, Danish lake [J]. Hydrobiologia, 1994, 289: 193-197.
    [183] Jacobsen O S. Sorption, adsorption and chemosorption of phosphate by Danish lake sediments. Vatten, 1978, 4: 230-243.
    [184] Jaugeui J & Sanches J A G. Fractionation of sedimentary phosphorus: a comparison of four methods [J]. Verh. Int. Ver. Limnol. 1993, 25: 1150-1152.
    [185] Jensen H S & Andersen F 0. Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes [J]. Limnol. Oceanogr., 1992, 37: 577-589.
    [186] Jensen J S, Kristensen P, Jeppesen E et al. Iron : phosphorus ratio in surface sediment as an indicator of phosphorus release from aerobic sediments in shallow lakes [J]. Hydrobiologia, 1992, 235/236: 731-743.
    [187] Jeppesen E, Jensen J P, Sondergaard M et al. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth [J]. Hydrobiologia, 1997, 342/343: 151-164.
    [188] Jorgensen E G Solubility of silica in diatoms [J]. Physiologia. 1955, 8: 846-851.
    [189] Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of rive-dominated coastal waters: stoichiometric nutrient balance and its consequences [J]. Estuarine Coastal and Shelf Sci., 1995,40: 339-356.
    [190]Kamp-Nielsen L. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates [J]. Arch. Hydrobiol., 1974,73: 218-237.
    [191]Kenney W F, Waters M N, Schelske C L, et al. Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakes [J]. Paleolimn., 2002, 27: 367-377.
    [192]Khoshmanesh A, Hart B T, Duncan A. Luxury uptake of phosphorus by sediment bacteria [J]. Wat. Res., 2002, 36: 774-778.
    [193]Kleeberg A & Schubert H. Vertical gradients in particle distribution and its elemental composition under oxic and anoxic conditions in a eutrophic lake, Scharmutzelsee, NE Germany [J]. Arch. Hydrobiol., 2000, 148:187-207.
    [194]Koroleff F. Determination of nutrient [A].Grasshoff M, Ehrhardt and K Kremling, Methods of Seawater Analysis [M]. Verlag-Chimie, 1976.
    [195] Kristensen P, Sondergaard M & Jeppesen E. Resuspension in a shallow eutrophic lake [J]. Hydrobiologia, 1992, 228: 101-109.
    [196]Krom M D and Berner R A. The diagenesis of phosphorus in nearshore marine sediment [J]. Geochim. Cosmochim. Acta., 1981, 45: 201-216.
    [197] Kurt P. Mechanisms for internal loading of phosphorus in lakes [J]. Hydrobiologia, 1998, 373/374:21-25.
    [198]Lajtha K, Michener R H. Stable isotopes in ecology and environmental science [M]. Oxford: Blackwell Scientifics Publications, 1994.
    [199] Lau S S S & Lane S N. Biological and chemical factors influencing shallow lake eutrophication: a long-term srudy [J]. Sci Total Environ., 2002, 288: 167-181.
    [200] Lawrence R P, Smith E E, Carol M G. The exchange of phosphate between estuarine and sediments [J]. Limnol. Oceanogr., 1965, 21: 167-172.
    [201] Lavery P S, Oldham C E & Ghisalberti M. The use of Fick's First Law for predicting porewater nutrient fluxes under diffusive conditions [J]. Hydrol. Process, 2001,15: 2435-2451.
    [202]Lerman A. Geochemical processes: water and sediment environments [M]. 1979, New York: John Wiley & Sons, Inc.
    [203] Lewin J. The dissolution of silica from diatom wail [J]. Geochim. Cosmochim. Acta., 1961,21: 182-198.
    [204] Lijklema L. Considerations in modeling the sediment water exchange of phosphorus [J]. Hydrobiologia, 1993,253:219-231.
    [205] Liu C-Q & Han G L. Human impact on a catchment environment: case studies of rivers in karst terrain, Guizhou, China [A]. Liu C-Q, Zhao Z H, Xiao T F et al., Strategic management of environmental and socioeconomic issues [M]. Guiyang: Guizhou Science and Technology Publishing House, 2003.
    [206]Lofgren S & Ryding S-O. Apatite solubility and microbial activities as regulators of internal loading in shallow, eutrophic lakes [J]. Verh. Int. Ver. Limnol., 1985,22: 3329-3334.
    [207] Luecke C, Vanni M J, Magnuson J J et al. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the spring clear-water phase [J]. Limnol. Oceanogr. 1990,25: 1718-1733.
    [208]Maasdam R & Claassen T H L. Trends in water quality and algal growth in shallow Frisian Lakes, the Netherlands [J]. Wa2ter Science & Technology, 1998, 37: 177-184.
    [209] Macia H, Bates N & Neafus J E. Phosphorus release from sediments from Lake Carl Blackwell, Oklahoma [J]. Water Res., 1980,14:1477-1481.
    [210] Marais GVR, Loewenthal R E and Siebriz I P. Observations supporting phosphate removal by biological excess uptake-a review [J]. Wat. Sci. Technol., 1983, 15:15-41.
    [211] Marion L, Clergeau P, Brient L, et al. The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand Lieu, France [J]. Hydrobiologia, 1994, 279/280: 133-147.
    [212]McAuliffe T F, Lukatelich R J, McComb A J et al. Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation [J]. Mar. Freshwater Res., 1998, 49: 463-473.
    [213]McKenzie J A. Carbon isotopes and productivity in the lacustrine and marine environment [A]. Stumm W. Chemical process in lakes [C]. New York: Wiley, 1985.
    [214] Meyers P A, Ishiwatari R. Lacustrine organic geochemistry - an overview of indicators of organic matter sources and diagenesis in lake sediments [J]. Org. Geochem., 1993,20: 867-900.
    [215] Meyers P A. Preservation of elemental and isotope source identification of sedimentary organic matter [J]. Chem. Geol., 1994,114: 289-302.
    [216] Meyers P A. Organic geochemical proxies of paleocenographic, paleolominologic, and paleoclimatic processes [J]. Org. Geochem., 1997, 27: 213-250.
    [217] Mortimer C H. The exchange of dissolved substances between mud and water in lakes [J]. Ecol., 1941, 29: 280-329.
    [218] Nakanishi M, Tezuka Y, Narita T et al. Phytoplankton primary production and its fate in a pelagic area of Lake Biwa [J]. Arch. Hydrobiol. Beih. Ergebn. Limnol., 1992, 35: 535-549.
    [219] Neumann T, Stogbauer A, Walpersdorf E et al. Stable isotopes in recent sediments of Lake Arendsee, NE Germany: response to eutrophication and remediation measures [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2002,178: 75-90.
    [220]Nixdorf B & Deneke R. Why very shallow" lakes are more successful opposing reduced nutrient loads [J]. Hydrobiologia, 1997, 342/343: 269-284.
    [221]Ohle W. Ebullition of gases from sediment, condition, and relationship to primary production of lakes [J]. Verh. Int. Verein Limnol., 1978,20: 957-962.
    [222] Olila O G & Reddy K. R. Influence of redox potential on phosphate-uptake by sediments in two sub-tropical eutrophic lakes [J]. Hydrobiologia, 1997, 345: 45-57.
    [223] Padisak J & Reynolds C S. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes [J]. Hydrobiologia, 1998, 384:41-53.
    [224] Paerl H W. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters [J]. Limnol. Oceanogr., 1988, 33: 823-847.
    [225] Perkins R G & Underwood G J C. The potential for phosphorus release across the sediment-water interface in a eutrophic reservoir dosed with ferric sulphate [J]. Water Res., 2001, 35: 1399-1406.
    [226] Petterson K, Bostrom B & Jacobsen. Phosphorus in sediments - speciation and analysis [J]. Hydrobiologia 1988, 170:91-101.
    [227] Petterson K. Mechanisms for internal loading of phosphorus in lakes [J]. Hydrobiologia, 1998. 373/374: 21-25.
    [228] Petticrew E L & Arocena J M. Evaluation of iron-phosphate as a source on internal lake phosphorus loadings [J]. Sci. Total Environ., 2001, 266: 87-93.
    [229] Phillips G, Jackson R, Bennet C et al. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation [J]. Hydrobiologia, 1994,275/276: 445-456.
    [230] Phillips G, Bramwell A, Pitt J et al. Practical application of 25 years' research into the management of shallow lakes [J]. Hydrobiologia, 1999, 395/396: 61-76.
    [231] Prepas E E & Burke J M. Effects of hypolimnetic oxygenation on water quality in Amisk Lake, Alberta, a deep eutrophic lake with high internal phosphorus loading rates [J]. Can. J. Fisheries Aquat. Sci., 1997, 54: 2111-2120.
    [232] Psenner R, Bostrom B, Dinka M et al. Fractionation of phosphorus in suspended matter and sediment [J]. Arch. Hydrobiol. Ergeb. Limnol., 1988, 30: 98-110.
    [233] Rabalais N N, Turner R E, Justic D, et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf [J]. Estuaries, 1996,19: 386-407.
    [234]Ramberg L, Bjork-Ramberg S, Kautsky N et al. Development and biological status of Lake Kariba-a man-made tropical lake [J]. Ambio, 1987, 16: 314-32.
    [235] Reddy K R, Fisher M M & Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake [J]. Environmental Quality, 1996, 25: 363-371.
    [236] Reynolds C S. Growth, gas vacuolation and buoyancy in a natural population of blue-green alga [J]. Freshwater Biol., 1972,2: 87-106.
    [237] Reynolds C S. Phosphorus and the eutrophication of lakes-a personal view [A]. In: Phosphorus in the environment: its chemistry and biochemistry [C]. Ciba Foundation Symposium 57,1979.
    [238] Reynolds C S. The ecology of freshwater phytoplankton [M]. Cambridge: Cambridge Universiy Press, 1984.
    [239] Robarts D R, Waiser M J, Hadas O et al. Relaxation of phosphorus limitation due to typhoon-induced mixing in two morphologically distinct basins of Lake Biwa, Japan [J]. Limnol. Oceanogr., 1998,43: 1023-1036.
    [240] Rochford D J. Studies in Australian estuarine hydrology. I. Introductory and comparative features [J]. Austr. J. Mar. Freshw. Res., 1951,2: 1-116.
    [241]Ruban V & Demare D. Sediment phosphorus and internal phosphate flux in the hydroelectric reservoir of Bort-les-Orgues, France [J]. Hydrobiologia, 1998. 373/374: 349-359.
    [242] Ruiz-Fernandez A C, Hillaire-Marcel C, Ghaleb B, et al. Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients [J]. Environ. Pollut, 2002, 118: 365-377.
    [243] Ruttenberg K C. Development of a sequential extraction method for different forms of phosphorus in marine sediments [J]. Limnol. Oceanogr., 1992, 37: 1460-1482.
    [244] Rydin E. Potentially mobile phosphorus in Lake Erken sediment [J]. Water Res., 200ft, 34: 2037-2042.
    [245] Schelske C L, Stoermer E F. Eutraphication, silica depletion and predicted changes in algal quality in Lake Michigan [J]. Science, 1971,173: 423-424.
    [246] Schelske, C L & Stoermer E F. Phosphorus, silica, and eutrophication of Lake Michigan [J]. Limnol. Oceanogr. Special Symposium, Nutrients and Eutrophication. 1972, 157-171.
    [247] Schelske C L, Stoermer E F, Conley DJ, et al. Early eutrophication in the lower Great Lakes: new evidence from biogenic silica in the sediments [J]. Science, 1983,222: 320-322.
    [248] Schelske C L, Conley D J & Warwick W F. Historical relationships between phosphorus loading and biogenic silica accumulation in bay of Quinte sediments [J]. Can. J. Fish. Aquat. Sci., 1985,42:1401-1408.
    [249] Schelske C L, Conley D J, Stoermer E F et al. Biogenic silica and phosphorus accumulation in sediments ad indices of eutrophication in the Laurentian Great Lakes [J]. Hydrobiologia, 1986a, 143: 79-86.
    [250] Schelske C L, Stoermer E F, Fahnenstiel G L, et al. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes [J]. Can. J. Fish. Aquat. Sci., 1986b, 43: 407-415.
    [251] Schelske C L. Historic trends in Lake Michigan silica concentrations [J]. Int. Rev. Ges. Hydrobiol. 1988a, 73: 559-591.
    [252] Schelske C L, Robbins J A, Cardner W S et al. Sediment record of biogeochemical responses to anthropogenic perturbations of nutrient cycles in Lake Ontario [J]. Can. J. Fish. Aquat. Sci., 1988b, 45: 1291-1303.
    [253] Schelske C L. Historical nutrient enrichment of Lake Ontario: paleolimnological evidence [J]. Can. J. Fish. Aquat. Sci., 1991, 48: 1529-1538.
    [254] Schelske C L and Hodell D A. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments [J]. Limnol. Oceanogr., 1991,36:961-975.
    [255] Schelske C L, Hodell D A. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie [J]. Limnol Oceanogr, 1995, 40: 918-929.
    [256] Schinder D W. Evolution of phosphate limitation in lakes [J]. Science, 1977,195: 260-262.
    [257] Schinder D W, Hesslein W R & Turner M A. Exchange of nutrients between sediments and water after 15 years of experimental eutrophication [J]. Can J. Fish Aquat. Sci., 1988,44:26-33.
    [258] Seo D I. Analysis of sediment characteristics of total phosphorus models for Shagawa Lake [J]. Environ. Engin., 1999, 125: 346-350.
    [259] Sfriso A, Pavoni B & Marcomini A. Nutrient distributions in the surface sediment of the central lagoon of Venice [J]. Science of the Total Environment, 1995,172: 21-35.
    [260] Sheng Y P & Lick W. The transport and resuspension of sediments in a shallow lake [J]. J Geophysical Res., 1979, 84: 1809-1826.
    [261] Slomp C P M, alschaert J F P & Van Raaphorst W. The role of adsorption in sediment-water exchanger of phosphate in North Sea continental margin sediments [J]. Limmol. Oceanogr., 1998,43: 832-846.
    [262] Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton [J]. Science, 1983,221:669-671.
    [263] Smith V H, Bierman V J Jr. Jones B L et al. Historical trends in the Lake Okeechobee ecosystem. IV. Nitrogen : phosphorus ratios, cyanobacterial dominance, and nitrogen-fixation potential [J]. Arch. Hydrobiol. Suppl. Monogr. Beitr., 1995,107: 69-86.
    [264] Smolders A J P & Roelofs J G M. Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems [J]. Aqual. Bot, 1993, 46: 247-253.
    [265] Sommer U, Gliwicz Z M & Duncan A. The PEG-model of seasonal succession of planktonic events in freshwater [J]. Arch. Hydrobiol., 1986, 106: 433-471.
    [266] S0ndergaard M. Phosphorus release from a hypertrophic lake sediment: experiments with intact sediment cores in a continuous flow systems [J]. Arch. Hydrobiol., 1989, 116: 45-59.
    [267] Sondergaard M, Kristensen P & Jeppesen P. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark [J]. Hydrobiologia, 1992, 228: 91-99.
    [268] Sendergaard M, Kristensen P & Jeppesen E. Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake S0bygaard, Denmark [J]. Hydrobiologia 1993, 253: 345-356.
    [269] Sondergaard M, Jensen J P and Jeppeden E. Internal phosphorus loading in shallow Danish lakes [J]. Hydrobiologia., 1999,408/409: 145-152.
    [270] Sondergaard M, Jeppesen E, Jensen J P, et al. Lake restoration in Denmark [J]. Lakes & Reservoirs: Res and Management, 2000, 5: 151-159.
    [271]Sondergaard M, Jensen J P and Jeppeden E. Retention and internal loading of phosphorus in shallow, eutrophic lakes [J]. The Scientific World, 2001, 1: 427-442.
    [272] Sondergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes [J]. Hydrobiologia, 2003, 506-509: 135-145.
    [273] Sridharan N & Lee G F. Phosphorus studies in lower Green Bay Lake Michigan [J]. Wat. Pollut. Control Fed., 1974, 46: 648-696.
    [274] Stephen D, Moss B & Phillips G. Do rooted macrophytes increase sediment phosphorus release [J]? Hydrobiologia, 1997, 342: 27-34.
    [275] Stoermer E F, Wolin J A, Schelske C L et al. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments [J]. Phycol., 1985, 21: 257-276.
    [276] Stuben D, Walpersdorf E, Voss K, et al. Application of lake marls at Lake Arendsee, NE Germany: First results of geochemical monitoring during the restoration experiment [J]. Sci. Total. Environ. 1998, 218: 33-44.
    [277] Sundby B, Gobeil C, Silberberg N. The phosphorus cycle in coastal marine sediments [J]. Limnol. Oceanogr., 1992,37:1129-1145.
    [278] Takamura N, Otsuki A, Aizaki M et al. Phytoplankton speciesshift accompanied by a transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan [J]. Arch. Hydrobiol., 1992, 124: 129-148.
    [279] Talbot M R, Livingstone D A. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicator [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1989, 70:121-137.
    [280] Talbot M R, Johannessen T A. A high resolution palaeoclimatic record for the last 27, 5000 years in tropical West Africa from the carbon and nitrogen isotope composition of lacustrine organic matter [J]. Earth Planet. Sci. Letters., 1992, 110:23-37.
    [281]Teubner K & Crosbie N D. Enhanced phosphorus accumulation efficiency by the pelagic community at reduced phosphorus supply: a lake experiment from bacteria to metazoan zooplankton [J]. Limnol. Oceanogr., 2003,48:1141-1149.
    [282] Torrent J. Schwertmann U & Barron V. Phosphate sorption by natural hematites [J]. European J Soil Sci. 1994,45:45-51.
    [283] Van Cappellen P and Berner R A. A mathematical model for the early diagenesis of phosphorus statue and fluorine in marine sediments: Apatite precipitation [J]. Am. J. Sci., 1988,288: 289-333.
    [284] Van Cappellen P & Qiu L. Biogenic silica dissolution in sediments of the Southern Ocean: I. Solubility [J]. Deep Sea Res. II, 1997,44:1109-1128.
    [285] van der Molen D T, Los F J, van Ballegooijen L et al. Mathematical modelling as a tool for management in eutrophication control oaf shallow lakes [J]. Hydrobiologia, 1994, 275/276: 479-492.
    [286] Varis O. Cyanobacteria dynamics in a restored Finnish lake: A long term simulation study [J]. Hydrobiologia, 1993, 268: 129-145.
    [287] Vollenweider R A. Scientific Fundamentals of the Eutrophication of Lake and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factors in Eutrophication [R]. Paris, France, 1968.
    [288] Vollenweider R A & Dillon.P J. The Application of the Phosphorus Loading Concept to Eutrophication Research. Report [A]. National Research Council of Canada, Burlington, Ontario, Canada, 1974.
    [289] Vollenweider R A. Advance in defining critical loading levels for phosphorus in lake eutrophication [J]. Mem. Ist. Ital. Idrobiol., 1976, 33: 53-83.
    [290] Welch E B & Cooke G D. Internal phosphorus loading in shallow lakes: importance and control [J]. Lake and Reservoir Management, 1995, 11: 273-281.
    [291] Wetzez R G. Limnology: Lake and River Ecosystems (Third Edition) [M]. San Diego: Academic Press, USA, 2001:625-627.
    [292] Williams J D H, Syers J K., Harris R F et al. Fractionation of inorganic phosphate in calcareous lake sediments [J]. Soil Sci. Soc. Am. Proc, 1971,35:250-255.
    [293] Wollast R, Mackenzier F T. The global cycle of silica. In: Ashton SR. (ed.), Silicon geochemistry and biogeochemistry [M]. London, Academic Press, 1986.
    [294] Xiao J L, Inouchi Y S, Kumai H S et al. Biogenic silica record in Lake Biwa of central Japan over the past 145,000 years [J]. Quaternary Res., 1997,47: 277-283.
    [295] Xie L Q, Xie P, Li S, et al. The low TN : TP ratio, a cause or a result of Microcystis blooms [J]? Wat. Res., 2003, 37: 2073-2080.
    [296] Xie L Q, Xie P, Tang H J. Enhanced of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake [J]. Environ. Pollut., 2003, 122: 391-399.
    [297] Zhang H C, Cao Z H, Shen Q R et al. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region I. Effect of phosphate fertilizer rate on P losses from paddy soil [J]. Chemosphere, 2003a, 50: 695-701.
    [298] Zhang H C, Cao Z H, Wang G P et al. Winter runoff losses of phosphorus from paddy soils in the Taihu Lake Region of South China [J]. Chemosphere, 2003b, 52:1461-1466.
    [299] Zhou Q X, Christopher E & Zhu Y M. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in Chins and the UK [J]. Chemosphere, 2001,42: 221-225.
    [300] Zhou Q X & Zhu Y M. Potential pollution and recommended critical levels of phosphorus in paddy soils of the southern Lake Tai area, China [J]. Geoderma, 2003,115:45-54.
    [301] Zhou Y Y, Zhou X Y. Seasonal variation in kinetics of alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake) [J]. Wat. Res, 1997, 31: 1232-1235.
    [302] Zhou Y Y, Li J Q, Zhang M. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu) [J]. Wat. Res., 2002, 36: 2084-2090.
    [303] Zuo Q, Lu C A & Zhang W L. Preliminary study of phosphorus runoff and drainage from a paddy field in the Taihu Basin [J]. Chemosphere, 2003, 50: 689-694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700