用户名: 密码: 验证码:
磷酸盐化对中太平洋海山富钴结壳物质组分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富钴结壳是一种水生成因、生长在海山上的“壳状”沉积物。它富含Mn、Fe、Co、Ni、Cu、Mo、Pt及稀土等有用元素,自上世纪80年代以来,受到世界各国的重视。富钴结壳已成为继大洋铁锰结核之后,又一重要的海洋固体矿产。
     中太平洋海区是富钴结壳的主要分布区。前人研究发现,该区富钴结壳普遍遭受过磷酸盐化作用,但有关磷酸盐化对富钴结壳物质组分的影响,仅有零星的研究报道。深入系统地研究磷酸盐化对富钴结壳物质组分的影响,对于我国正在开展的海上富钴结壳调查工作,寻找优质的富钴结壳资源,具有十分重要的理论和现实意义。
     本文以我国“大洋一号”船DY105-12、14航次在中太平洋威克海岭(Wake)、马尔库斯(Marcus)海脊和中太平洋海山上采集到的富钴结壳为研究对象,通过对富钴结壳分层处理,综合运用矿物学、岩石学和地球化学等研究手段和各种先进的分析测试方法,系统地研究了磷酸盐化对富钴结壳物质组分的影响,取得了以下研究成果:
     1.磷酸盐化作用使富钴结壳的矿物组成发生变化。非磷酸盐化壳层中主要矿物为水羟锰矿。磷酸盐化壳层中主要矿物为水羟锰矿、碳氟磷灰石和少量钙锰矿。
     2.磷酸盐化导致富钴结壳成矿元素含量发生改变。对比发现,磷酸盐化对富钴结壳中有用元素Ni、Cu、Pt和稀土元素具有富集作用,但对Co、Mn和Fe具有贫化作用。Ni、Cu和稀土元素的富集与碳氟磷灰石有关;Co、Mn和Fe的贫化与钙锰矿有关。
     3.对铂族元素比值、元素相关分析以及Re-Os同位素研究表明,富钴结壳中铂族元素主要来源于内源和陆源富含铂族元素的岩石风化产物,地外宇宙尘并非富钴结壳中铂族元素的主要来源。铂的富集机理是海水中2价态铂的络合物(PtCl_4~(2-))在最低含氧层附近或最低含氧层内,被Mn~(2+)还原为零价态铂而进入结壳富集的。
     4.依据磷酸盐化对富钴结壳物质组分的影响,分析了富钴结壳的成矿机制,在此基础上,建立了磷酸盐化富钴结壳的成矿模式。
Co-rich crusts are hydrogenous crustiform precipitates which grow on seamounts and enrich Mn,Fe,Co,Ni,Cu,Pt and REEs. Since 1980, they have been focused on by governments all over the world. Following ferromanganese nodules the Co-rich crusts have become a new important sort of oceanic mineral resources now.Central Pacific seamounts are mainly distribution areas of Co-rich crusts. The former researchers discovered that most Co-rich crusts in this area generally have been phosphatized. But the research reports are fewer related to effects of phosphatization on the geochemical and mineralolgical composition of Co-rich crusts. So it is of theoretical and practical significance to throughly and systemically research the effects of phospharization on composition of Co-rich crusts for our country surveying and finding high grade Co-crusts deposits in ocean.The Co-rich crusts studied in this paper were collected from Wake range, Marcus ridge and Central Pacific seamounts during "No.1 Dayang" DY105-12,14 cruise in 2003, China. By dividing the Co-crusts into different crust layers, synthetically using mineralogy, petrology, geochemistry method and various advanced test technology, the author has systemically studied the effects of phosphatization on composition of the Co-rich crust. The main achievements are as follow:1 Phosphatization has in certain degree changed the mineral composition of the Co-rich crusts. Non-phosphatized crust layers are mainly composed of vernadite; Phosphatized crust layers are mainly composed of vernadite, carbonate fluorapatite(CFA) and todorokite.2 The concentrations of usable elements in the Co-rich crusts have been changed by phosphatization. The Ni, Cu, Pt and rare earth elements are enriched and the Mn, Fe, Co are depleted in the phosphatized crust layers compared to the non-phosphatized crust layers. The enrichment of the elements such as Ni, Cu, Pt and rare earth elements genetically relates to fluorapatite(CFA). The depletion of the elements such as Mn, Fe, Co genetically relates to todorokite.3 The ratio and relationship between platinum group elements(GPEs) as well as Re-Os isotopes show that the PGEs in the Co-rich crusts mainly come from oceanic crust and mantle as well as the weathering products of PGEs-bearing rock on continent, and that cosmic dusts are not its main sources, the mechanism for platinum enrichment in the Co-rich crusts is deduced to be that the PtCl42- in the seawater was reduced to Pt metal by Mn2+ in the vicinity and interior of the oxygen minimum zone, and that the Pt metal was introduced from seawater and was enriched in Co-rich crusts.4 According to the study of the effects of phosphatization on the Co-rich crusts, the author analyzes the mechanism of forming Co-rich crusts and constructs a correspondent model in this paper..
引文
[1] Albarede F, Simonetti A, Vervoort J D, et al. A Hf-Nd isotopic correlation in ferromanganese nodules. Geophys. Res. Letts., 1998, 25(20): 3895~3898.
    [2] Alvarez R,De Carlo E H and Cowen I, et al. Micromorphological characteristics of marine ferromanganese crusts. Marine Geol., 1990,94:139~249.
    [3] Aplin A C. Rare earth element geochemistry of central Pacific ferromanganese encrustions Earth Planet. Sci. Letts., 1984,71: 13~22.
    [4] Aplin A, Michard A, Albarede F. ~(143)Nd/~(144)Nd in Pacific ferromanganese encrusts and nodules. Earth Planet. Sci. Letts.,1986,81: 7~14.
    [5] Anderson R N. Marine geology——A planet earth perspectiv. New York: John Wiley & Sons,1986.
    [6] Anders, Grevesse. Abundance of elements: Metorites and solar. Geochemi. Cosmochim. Acta, 1989,53: 197~214.
    [7] Baar H J W.Rare earth distributions with a positive Ce anomaly in the Western North Atlantic Ocean. Nature, 1983, 301:324~327.
    [8] Bau M,Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim. Cosmochim. Acta, 1996 60(10): 1709~1725.
    [9] Baker P E, Castillo P R, Condliffe E. Petrology and geochemistry of igneous rocks from Allison and Resolution guyots,sites865 and 866, In: Winterer E L, Sager W W, Firth J V and Sinton. Eds. Proceeding of the Ocean Drilling Program,Scientific Results,1995,143: 245~262.
    [10] Bass-becking L G M. Limits of the natural environment in terms of pH and oxidation-reduction potential. J. Gel. 1960,68:243~284.
    [11] Bekhtold A F. Platinum metals in Pacific Ocean floor ferromanganese crusts and nodules. Geology of Pacific Ocean, 1993, 9:564~588.
    [12] Blanckenburg F, O'Nions R K, Hein J R. Distribution and soures of pre-anthropogenic lead isotopes in deep water from Fe-Mn crusts. Geochim. Cosmochim. Acta, 1996,60(24):4957~4963.
    [13] Broecker W S. Chemical oceanography. Harcourt Brace Jovanovich, Inc.1974.
    [14] Bogdanov Y A, Bogdanova O Y and Dubinin A V et al. Composition of ferromanganese crusts and nodules at Northwestern Pacific guyots and geologic and paleooceanographic considerations. Haggerty. In: Haggerty J A, Premoli Silva Ⅰ and Rack F et al edts. Proc ODP Sci Rests 144,1995,745~768.
    [15] Burns J R, Burns V M. Mineralogy in marine manganese deposits. In: Glasby G P eds. Marine manganese deposits. Amsterdam: Elsevier, 1977,185~248.
    [16] Burton K W, Ling H F, O'Nion P K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature, 1997,386:382~385.
    [17] Chave, K E, Morgan C L, Green W J, et al. A geochemical comparison of manganese oxide deposits of the Hawaiian Archipelago and the Deep Sea. Applied Geochemistry, 1986,1:233~240.
    [18] Christensen J N. Halliday A V, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts. Science, 1997,277:913~918.
    [19] Christie D M, Dieu J J, Gee J S. Petrologic studies of basement lavas from Northwest Pacific guyots. In: Haggerty J A, Premoli Silva Ⅰ and Rack F et al. eds. Proc. ODP Sci.Rests. 144,1995,495~512.
    [20] Chukhrov F V,et al.海洋锰结核中自生锰相矿物学.肖绪琦译.国外矿床地质,1996,1(总75):64~73.
    [21] Cowen J P, De Carlo E H, McGee D L,et al. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Marine Geol.,1993,115: 289~306.
    [22] Cousins C A. Notes on the geochemistry of platinum group elements. Trans. Geol. Soc. S. Africa, 1973, 76(1): 77~81.
    [23] Cronan D S and Tooms J S. The geochemistry of Mn-nodulcs and associate pelagic deposits from the Pacific and Indian Oceans. Deep See Resources. 1996, 115:289~306.
    [24] Cronan D. S. Underwater minerals. Academic Press, Lodon, 1980.
    [25] De Baar H J W, Bacon M P, Brewer P G. Rare earth elements distributions with positive cerium anomaly in the western North Atlantic. Nature 1983,301: 321~327.
    [26] De Carlo E H, Fraley C M. Chemistry and mineralogy of ferromanganese deposits from the equatorial Pacific Ocean. In: Keating B H, Bolton B R, eds. Geology and offshore mineral resources of the central Pacific. Circum-Pacific Council from Energy and Mineral Resources. Earth Science Ser., 14, New YorK: Spring-Vedag, 1992,225~245.
    [27] De Carlo E H. Paleooceanographic implication of rare earth element variability in a marine Fe-Mn crust from the Archipelago. Marine Geol., 1991, 98:449~467.
    [28] Eisenhauer A, Gogen K, Pcrnicka E, et al. Climate influence on the growth rates of Mn crusts during the late Quaternary. Earth and Planet. Sci. Letts.,1992, 109(1/2): 71~75.
    [29] Elderfield H. The oceanic chemistry of rare earth elements, London: Philos Trans. R. Soc.,1988, 325:105~126.
    [30] Emerson S, Kalhom S, Jacobs L, et al. Environmental oxidation rates of manganese (Ⅱ): Bacterial catalysis. Geochim. Cosmochim. Acta. 1982,46: 1073~1079.
    [31] Frank D. Ferromanganese deposits of the Hawaiian archipelago. Hawaii Instit. Geophys., 1976,14: 1~69.
    [32] Frank D. Ferromanganese deposits of the Hawaiian archipelago. Hawaii Instit. Geophys., 1976,14: 1~69.
    [33] Frank M O'Nions R K, Hein J R. et al.60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim.Cosmochim. Arca. 1999, 63(11/12):1689~1708.
    [34] Friedrich G, Schmitz-Wiechowski S A. mineralogy and chemistry of a ferromanganese crust from a deep-sea hill, central Pacific, "Valdivia" cruice VA 13/2. Marine Geol., 1980, 37: 71~90.
    [35] Giovanoli R, Brutsch R. Uber Oxidhydroxide des Mn(Ⅳ) mit schichtgitter,5. Mitteilung: Stochiometrie, Austauschverhalten und die Rolle bei der Bildung von Ticfsee-Mangankonkretionen.Chimia 33,372~273.
    [36] Glasby G P and Andrews J E. Manganese crusts and nodules from the Hawaiian Riidge. Pacific Scence. 1977,31(4): 363~379.
    [37] Glasby G P, Gwozdz R, Kunzendorf H, et al. Distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and SW Pacific. Lithos, 1987,20:97~113.
    [38] Golberg E D, Koride M, Schmitt R A, et al. Rare earth distribution in the marine environment. Journal of Geophysical Research, 1963,68:4209~4217.
    [39] Goldberg E D, Hodge V, Key P, et al. Some comparative marine chemistries of platinum and iridinum. Applied Geochemistry, 1986, 1: 227~232.
    [40] Goldberg E D. Comparative chemistry of platinum and other heavy metals in the marine environment. Pure and Applied Chemistry, 1987, 59: 567~571.
    [41] Goldberg E D, Koide M. Understanding the chemistries of the platinum group metals. Marine Chemistry, 1990,30: 249~257.
    [42] Govorov I N,Simanenko L F, Simanenko V P. Pacific CO-Pt-rich manganese crusts and auriferous sulfide ores as result of water-rock interaction. In: Water-Rock Interaction. Eds. Kharaka Y K, Chudaev O V, et al. Rotterdam,1995, p707~709.
    [43] Goldberg E d, Koride M, Yang J S, et al. Comparative marine chemistries of platinum group metals and their periodic neighbors. In: Krarner J R, Allen H E. eds.Metal Speciation : Theory, Analysis and Application. Lewis, Chelsea, MI, 209-217.
    [44] Grau R, Kudrass H R. Pre-Eocene and younger manganese crusts from the Manihiki Plateau, southwest Pacific Ocean. Mar.Min. 10:231~246.
    [45] Haggerty J A, and Silva I P. Composition of the origin and evolution of northwestern Pacific guyots drilled during Leg 144. In: Haggerty J A, Premoli Silva Ⅰ and Rack F et al edts. Proc ODP Sci Rests 144,1995,935~950.
    [46] Haibach P, Sattler C D. Teiehmann F, et al. Characterization of Co-rich ferromanganese crust field within the Johnston Island EEZ (central Pacific). In: Proc Ocean'87-The ocean an international workplace. 1987, 3 (Marine Sciences): 1015~1020.
    [47] Halbach P, Manheim F T and Otten P. Co-rich ferromanganese deposits in the marginal seamount regions of the central Pacific basin results of the Midpac'81. Erzmetall, 1982,35:447~453.
    [48] Halbach P and Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from the Central Pacific seamount areas. Earth Planet Sci Letts. 1984,68(1): 73~81.
    [49] Halbach P. Cobalt-rich and Platinum-bearing manganese crusts-nature, occurrence, and formation.Workshop on Marine Minerals of the Pacific. Honolulu: East-West center, 1985.
    [50] Haibach P., Pranse B., and Koch K., et al. Platinum and palladium in Co-rich ferromanganese crusts deposits. Marine Mining, 1990,9:117~126.
    [51] Halbach P., Stattler C. -D. and Teichmann, et al. Cobalt-rich and platinum-bearing manganese crust doposits on seamounts: Nature, formation, and metal potential. Marine Mining, 1989,8: 23~39.
    [52] Halbach P., Puteanus D. and Manheim F. T. Platinum concentrations in ferromanganese seamount crusts from the Central Pacific Naturwissensehaften, 1984,71:577~579.
    [53] Haibach P, Segl M and Mangini A, et al. Relationships between cofluxes and growth rate in ferromanganese deposits from central Pacific seamount areas. Nature, 1983,304:716~719.
    [54] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from Central Pacific seamount areas. Nature, 1983, 304:716~719.
    [55] Halbach P, Kriete C,Prause B et al. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts, Chem. Geol., 1989,76(1/2):95~106.
    [56] Haibach P., and Manheim F. T. Potential of cobalt and other metals in ferromanganese crusts on seamounts of the Central Pacific Basin. Marine Mining, 1984,4:319~336.
    [57] Harris R C, Crocket J H, Stainton M. Palladium, iridium and gold in deep-sea manganese nodules. Geochimica et Cosmochimica Acta, 1968, 32: 1049~1056.
    [58] Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 1984, 309: 753~757.
    [59] Hein J R, Schwab W C and Davis A S. Cobalt and platinum -rich ferromanganese crusts and associate substrate rocks from the Marshall Islands. Marine Geology, 1988, 78:255~283.
    [60] Hein J R, Schuiz M S. and Davis A S. Central Pacific cobalt-rich ferromanganese crusts: Historical perspective and regional variability. In Geology and offshore Mineral Resource of the Central Pacific Council for Energy and Mineral Resources, Earth Sciences Series, 1992, 14:261~283.
    [61] Hein J R, Kosehinsky A and Halbach P, et al. Iron and manganese oxide mineralization in the Pacific. In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Edited by K. Nicholson, J. R. Hein, B. Buhn and S. Dasgupa. Geological Society Special Publication. 1997, 119, 123~138.
    [62] Hein J. R., Manhein F. T. and Schwab W. C., et al., Ferromanganese crusts from Necker Ridge, Horizon Guyot and S. P. Lee Guyot: geological considerations. Mar. Geo., 1985, 69:25~54.
    [63] Hein J R, Schwab W C and Davis A S et al. Geology of Co-rich ferromanganese crusts from Necher Ridge and seamounts in the Line Islands. Mar. Geo., 1985, 69:25~54.
    [64] Hein J R, Yeh H -W, Gunn S H, et al. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleooceanography, 1993, 8(2): 293~311.
    [65] Hein J R, Bohrson W A, Sehulz M S, et al. Variations in the free-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleooceanography, 1992, 7:63~77.
    [66] Heye D, Changes in the growth rate of manganese nodules from the Central Pacific in the area of a seamount as shown by the Io methord, Marine Geol., 1978, 28(3/4): M59~M65.
    [67] Hodge V F, Stallard M, Bau M, et al. Platinum and the platinum anomaly in the marine environment. Earth and Planetary Science Letters, 1985, 72: 158~162.
    [68] Hordkinson R A, Cronan D S. Regional and depth variability in the composition of cobalt-rich ferromanganese crusts from the SOPAC area and adjacentparts of central equatorial Pacific. Marine Geology, 1991, 98: 437~447.
    [69] Keller G, Barron J A. Paleodepth distribution of Neogene deep-see hiatuses. Paleoceaography, 1987, 2:697~713.
    [70] Koide M, Goldberg E D, Nimemeyer S, et al. Osmium in marine sediments Geochemica et Cosmochimiea Acta, 1991, 55: 1641~1648.
    [71] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geol. 2003, 198:331~351.
    [72] Koschinsky A, Stascheit A, Bau, Met al. Effects of Phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochim. Cosmochim. Acta, 1997, 61 (19): 4079~4094.
    [73] Koeppenkastrop D, Eric H, De Carlo. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach. Chemical Geology, 1992, 95: 251~263.
    [74] Kumosov V, Zplotarev B, Eroshchev-Shak, er al. Alteration of basalts from the west Pacific guyits, Legs 143 and 144. In:Haggerty J A, Premoli Silva Ⅰ, Rack F, et al. eds, Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 144: 475~494.
    [75] Larson R L. Geologyical consequences of superplumess. Geology, 1991,19: 963-966.
    [76] Larson R L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology, 1991,19: 547-550.
    [77] Le Suave R, Pichocki C, Pautot G, et al. Geological and mineralogical study of Co-rich ferromanganese crusts from a submerged atoll in the Tuamoto Archipelago (French Polynesia). Marine Geology, 1989,87:227-247.
    [78] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from manganese crusts. Earth Planet. Sci. Letts. 1997,146:1-12.
    [79] Loudat T. A., Wiltshire J. C. and Zaiger K., et al. An economic analysis of the feasibility of manganese crust mining and processing. State of Hawaii Department of business, Economic Development and Tourism Technical Report, Honolulu, 1994,105p.
    [80] Lunemann C P, Taillefert M, Perret D, et al. Association of cobalt and manganese in aquatic systems: chemical and microscope evidence. Geochim. Cosmochim. Acta, 1997,61(7): 1437-1446.
    [81] Melnikov M L, Shkolnik E L and Pulyaeva I A et al. Fe-Mn and P mineralization on the IOAN Guyot, Western Pacific: results of a detailed survey. Geo. of Pac. Ocean, 1996,12:789-808.
    [82] Murdmaa I, Nemliher J and Bogdanova O, et al. ferromanganese and phosphatic hardgrounds on the Western Pacific Guyots drilled during Leg 143 and 144.In Proc ODP Sci Rests 144,1995,419-433.
    [83] McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of aPacific ferromanganese crust. Erath and Planetary Science Letters, 1994,125:105-118.
    [84] McNutt M K, Winterer E L, Sager W W, et al. The Darwin rise: A cretaceous superswell. Geophysical Research Letters, 1990,17(8): 1101-1104.
    [85] Michael. Comparison of the partitioning behavious of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochemica et Cosmochimica Acta, 1996,60:1709-1725.
    [86] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea Floor. Nature, 1988,335:59-62.
    [87] Manheim F T. Marine cobalt resources. Science, 1986,232:600-608.
    [88] Moffett J W. Microbially mediated cerium oxidation in seawater. Nature, 1990,345:421-427.
    [89] Moffett J W. The relationship between Ce and Mn microbial oxidation in seawater. Limnol. Oceaogr.,1993.
    [90] Moffett J W. A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochim. Cosmochim. Acta, 1994,58(2): 695-703.
    [91] Maynard J B. Geochemistry of sedimentary ore deposits. New York,Heidelberg, Berlin: Spring-Verlag,1983.
    [92] Mandermack K W, Fogel M L.Tebo B M, et al. Oxygen isotopes analyses of chemically and microbially produced manganese oxides and manganates. Geochim. Cosmochim. Acta, 1995,59(21): 4409-4425.
    [93] McNutt M K, Judge A V. The superswell and mantle dynamics beneath the South Pacific. Science, 1990,248:969-975.
    [94] Nozaki Y. A fresh look at element distribution in the North Pacific. Eos Transactions of the American Geophysical Union, 1997,78: p221.
    [95] Neumann T, Steuben D. Detailed geochemicial study and a growth history of some ferromanganese crusts from the Tuanmotu Archipelago. Marine Min., 1991,10: 29-48.
    [96] Orth C J. Pt-group metal anomalies in the Lower Messissippian of southern Oklahoma. Geology, 1988,16:627-630.
    [97] Parsons B and Sclater J C. An analysis of the variation of ocean floor bathymetry and heat flow with age. J.Gedphys. Res., 1977,82:803-827.
    [98] Pringle M. S. and Duncan R.A. Radiometric ages of basaltic lavas recovered at sites 865,866,and 869.In: Winterer E L, Sager W W, Firth J V, et al, (Eds), Proc ODP Sci Rests 143,1995, p277~283.
    [99] Puteanus D. Halbach P. Correlation of Co concentration and growth rate-A method for age determination of ferromanganese crusts. Chemical Geology, 1988,69: 73-85.
    [100] Peucher-Ehrenbriink, B, et al. Continental runoff of osmium into the Baltic Sea,Geology, 1996, 24(4): 327-330.
    [101] Palmer M R, Edmond J M. The strontium isotopic budget of modern ocean. Earth Planet. Sci. Letts.,1989,92:11~26.
    [102] Sano Y, Toyoda K, Wakita H, et al.3He/4He ratios of marine ferromanganese nodules. Nature, 1985,317:518-522.
    [103] Palmer MR, Turekian K K. 187Os/186Os in the marine manganese nodules and the constrains on the crustal geochemistries of rhenium and osmium. Nature, 1986,319:216-220.
    [104] Palmer M R, Knauer G A. Lateral transport of Mn in the north-east Pacific Gyre oxygen minimum. Nature, 1985,314:524.
    [105] Sano Y, Toyoda K, Wakita H, et al ~3He/~4He ratios of marine ferromanganese nodules. Nature, 1985,317:518-522.
    [106] Smith W H F, Staudigel H, Watts A,et al. The Megellan seamounts: Early Cretaceous record of the South Pacific Isotopic and Thermal Anomaly. Journal of Geophysical Research, 1989,94(B8): 10501-10523.
    [107] Scott R W. Global environment contral on Cretaceous reefal ecosystems. Palaeogeography, Palaeoclimatology.Palaeoecology, 1995,119:187-199.
    [108] Sttlben D, Glasby G P, Eckhardt J-D, et al. Environments of Platinum-group elements in Hydrogeneous, Diagenetic and Hydrothermal marine manganese and iron deposits. Exploration and Mining Geology, 1999, 8,233-250.
    [109] Sawlowicz, Z. Indium and other Platnum -group elements as geochemistical markers in sedimentary environments. Palaeo Palaeo Palaeo,1993,104:253-270.
    [110] Sunda W G Huntsman S A. Microbial oxidation of manganese in a North Carolina estuary. Limnol. Oceanogr., 1987,32:552-564.
    [111] Shkolnik E L, Govorov I N, Khershberg L B, et al. Phosphate genesis and Co-rich ferromanganese crusts in the western and central Pacific. Geology of the Pacific Ocean, 1997,13: 1133-1146.
    [112] Suzuki T.Ishigaki K, Miyake M. Synthetic hydrooxyapatites as inorganic cation exchangers(Ⅱ). J. Chem. Soc. Faraday Trans., 1984,80:3 157.
    [113] Tebo B M, Emerson S. Microbial manganese (Ⅱ) oxidation in the marine environment: a quantitative study. Biogeochemistry, 1986,2:149-161.
    [114] Tarduno J A,Sager W W.Polar standstill of the Mid-Cretaceous Pacific Plate and its Geodynamic implications. Science, 1995,269:956-959.
    [115] Tarduno J A, Gee J.Large-scale montion between Pacific and Altantic hotspots. Nature, 1995, 378:477~480.
    [116] Terashima A, Usui A, Nakao S, et al. Platinum abundance in ocean floor ferromanganese crusts and nodules. Marine Mining, 1988, 7:209~218.
    [117] Terashima A, Usui A, Nakao S, et al. Geochemistry of platinum and gold in ocean-floor ferromanganese crusts and nodules. Bulletin of the Geological Survey of Japan, 1989, 40:125~139.
    [118] Taylor S R, McLennan S M. The continental crusts: Its composition and Evolution. Blackwel, Oxiford. 1985, p312.
    [119] Vanneau A A, Bergersen D D and Carmoin G F, et al. A model for depositional sequences and systems tracts on small, mid-ocean carbonate platforms: examples from Wodejebato(sites 873-877) and Limalok (sites 871 ) guyots. In: Haggerty J A, Premoli Silva Ⅰ and Rack F et al edts. Proc ODP Sci Rests 144, 1995, 820~840.
    [120] Vonderhaar D L, Mahoney J J, McMurtry G M. An evaluation of strontium isotopic dating of ferromanganese crust. Earth Planet. Sci. Leas., 1994, 125:105~118.
    [121] Wen X and De Cario E H. A comparative study of the geochemistry and internal structure of seamount ferromanganese crusts. EOS Trans. Am Geophys, Union, 1994, 74: 78.
    [122] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis. Marine Geol., 1997, 136: 277~297.
    [123] Wen X. De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: their implication for crust genesis. Marine Geol., 1997, 136: 277~297.
    [124] Whilshire J Wen X and Yao D. Ferromanganese crust near Johnston Island: Geochemistry, stratigraphy and economic potential. Marine Georesourees and Geotechnology, 1999, 17: 257~270.
    [125] Wiltshire J, Wen X, Yao D. Ferromanganese crusts near Johnston Island:. Geochemistry, stratigraphy and economical potential. Marine Georesources and Geotechnology, 1999, 17: 257~270.
    [126] Winterer E L, Metzler C V. Origen and subsidence of guyots in Mid-Pacific mountains. Journal of Geophysical Research, 1984, 89(B12) 9969~9979.
    [127] Winter E L, Sager W W. Synthesis of drilling results from the Mid-Pacific mountains: regional context and implications. In: Winterer E L, Sager W W, Firth J V and Sinton J M, eds. Proceeding of the Ocean Drilling Program, Scientific Results, 1995, 143: 497~535.
    [128] Wiltshire J, Wen X, De Carlo E. Fine Scale platinum-rich zones as stratigraphic markers in seamount ferromanganese crusts. In Proceedings of PACON'97, Augest 6~8, 1997, HongKong, 36~37. Honolulu, PACON International. 1997.
    [129] Wilson P A, Jenkyns H C, Larson R L, et al. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature, 1998, 392: 889~894.
    [130] 潘家华,刘淑琴,李波,等.西太平洋某区水下海山上的富钴结壳.矿床地质,1998,17(增刊):758~760.
    [131] 潘家华,刘淑琴.西太平洋富钴结壳的分布、组成及元素地球化学.地球学报,1999,20(1):47~54.
    [132] 张丽洁,姚德.海山铁锰结壳基岩岩石学特征及其生长关系.海洋地质与第四纪地质,2002,22(2):49~56.
    [133] 张丽洁,姚德,崔汝勇.太平洋海山铁锰结壳矿床地质特征.海洋地质动态,2000,16(12):1~5.
    [134] 等.太平洋西北部海山的玄武岩、Fe-Mn结核和结壳的化学成分.朱佛宏译.海洋地质,1997,1:80~90.
    [135] 武光海.中太平洋海山富钴结壳的特征及其形成环境:[博士学位论文].杭州:浙江大学,2004.
    [136] 武光海,厨怀阳,杨树峰,等.富钴结壳生长过程中铁锰氧化物矿物组合变化.矿物学报,2001,21(2):137~143.
    [137] 马维林,金翔龙,陈建林,等.中太平洋海山区富钴结壳地质特征.东海海洋,2002,20(3):11~21.
    [138] 张海生,赵鹏大,陈守余,等.中太平洋海山多金属结壳的成矿特征.地球科学—中国地质大学学报,2001,26(2):205~209.
    [139] 朱而勤.大洋锰结核矿物学.济南:山东大学出版社,1987.
    [140] 梁宏锋,许东禹,林振宏,等.太平洋几个不同海区水成铁锰结壳元素地球化学研究.见:许东禹,姚德,梁宏锋,等著.多金属结核形成的古海洋学环境.北京:地质出版社,1994,22~41.
    [141] 杜德文,孟宪伟,王湘芹.基于元素地球化学参数的海底沉积物物质来源识别的定量方法简介.矿物岩石地球化学通报,1999,18(1):46~52.
    [142] 臧启运,蔡德陵,王琦,等.冲绳海槽中段表层沉积物物源判识及定量估算.黄渤海海洋,1999,17(4):20~29.
    [143] 李延河,宋鹤彬,李金城,等.太平洋中部多金属结核与海底热液活动的关系.科学通报,1997,42(19);2084~2086.
    [144] 李双林,李绍全.黄海YA01孔沉积物稀土元素组成与源区示踪.海洋地质与第四纪地质,2001,21(3):51~55.
    [145] 赵宏樵.中太平洋富钴结壳稀土元素的地球化学特征.东海海洋,2003,21(1):19~25.
    [146] 李延河,李金城,宋鹤彬.海底多金属结核和富钴结壳的He同位素对比研究.地球学报,1999,20(4):378~383.
    [147] 孙志国,文丽,韩昌甫,等.太平洋铁锰结壳的锶同位素地球化学研究.海洋地质与第四纪地质,1997,17(1):67~75。
    [148] 潘家华,刘淑琴,钟石兰.西太平洋富钴结壳形成年代的探讨.地质论评,2002,48(5):463~467.
    [149] 杜乐天.羟碱流体地球化学原理.北京:科学出版社,1996.
    [150] 边立曾,林承毅,张富生,等.深海锰结核——核形石的新类型.地质学报,1996,70(3):232~236.
    [151] 陈建林.太平洋多金属结核中铁锰矿物分析及成因研究.海洋学报,1997,21(2):56~64.
    [152] 林承毅,边立曾,张富生,等.深海锰结核中微生物的分类及串珠状超微生物化石的研究.科学通报,1996,41(9):821~824.
    [153] 胡文宣,周怀阳,顾连兴,等.深海(铁)锰结核微生物成因新证据.中国科学,D辑,1999,29(4):821~824.
    [154] 等.1991.大洋海底山铁锰结壳和结核的矿物成分与成因.王勋弟译.地质科学译丛,1992,9(3):54~59.
    [155] 石学法,彭建堂,卜文瑞.太平洋铁锰结壳铂族元素的初步研究.矿物岩石地球化学通报,2000,19(4):339~340.
    [156] 姚德,张丽沽,Wiltshire J C.富Co铁锰结壳铂族元素与铼-锇同位素组成及其意义.海洋地质与第四纪地质,2002,22(3):53~58.
    [157] 王中刚,于学元,赵振华,等.稀土元素地球化学.北京:科学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700