用户名: 密码: 验证码:
中国沿海部分区域磷化氢的生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化氢(PH3)作为磷的一种还原态化合物,分为自由态磷化氢(气态PH3)和基质结合态磷化氢(MBP),前者主要存在于大气、沼气中,后者存在于土壤、沉积物、污泥中,PH3的研究已经成为磷生物地球化学循环研究的一部分。以往的研究主要集中于陆地生态系统中,因此研究海洋环境中PH3对于认识磷的生物地球化学循环及其环境影响具有重要的意义。
     首先本文以青岛近岸大气为研究对象,对海洋性大气中气态PH3昼夜和季节变化规律及影响因素进行了较为系统的研究;检测到大气中存在MBP,对海洋性大气中PH3及存在影响因素进行了讨论,并估算了其对海洋中磷输入的贡献;同时以典型陆架黄海、东海、长江口、海南东北部等为研究对象,研究了沉积物中MBP的时空分布规律,探讨了影响海洋沉积物中MBP存在的重要环境因素及MBP对于环境变化的潜在影响和意义,为认识磷的全球循环尤其是中国近海区域的磷循环提供科学依据。本论文的主要研究成果如下:
     1.参考国内外文献在实验室建立了大气及沉积物中PH3的毛细柱二次富集—气相色谱法测定痕量PH3的方法,系统的研究了富集柱材料、富集温度、色谱条件等因素对气态PH3检测的影响,筛选出效果更佳的富集材料PLOT Q毛细柱,解决了测定海洋性大气中水分引起柱涂层脱落问题。该方法可避免氧化亚氮和甲烷的干扰。沉积物样品的可靠性试验证明避光冷冻条件下样品在两个月内是稳定的。大气和沉积物中PH3检测限分别为0.01 ng·m-3和0.02 ng·kg-1、精密度分别为<3.0%和<20%、线性范围为0.56 pg-5.6 ng,与国外同类方法相当。
     2.自2005年10月至2006年8月对青岛八关山大气样品中气态PH3进行了研究,结果表明青岛大气中气态PH3的浓度范围为0.01~14.86 ng·m-3,平均浓度为1.14 ng·m-3。青岛近岸大气中气态PH3浓度有明显的季节和昼夜变化规律,其中季节变化是夏季>春季>秋季>冬季,昼夜变化是早晨>傍晚>中午。大气中气态PH3浓度明显受温度、光照、来源及风向等各种气象因素的影响。气态PH3在中国大陆和黄、东海上空大气中迁移,参与了区域性大气中磷生物地球化学循环,每年大约16×105 mol磷通过气态PH3形式从青岛大气输送到黄海低层大气中,气态PH3从陆地向海洋输送尤其是向磷限制水体中转移可能是磷循环一个尚未深入认识的重要过程。
     3.对2004年3月到2005年12月期间在伏龙山采集的气溶胶样品进行了研究,发现大气中存在PH3的另一种形态—基质结合态磷化氢(MBP),青岛大气中MBP浓度范围在0.01~22.63 pg·m~(-3),年平均值为1.02 pg·m~(-3),存在明显的季节性差异,秋季>冬季>春季、夏季。大气中MBP受气溶胶来源、气溶胶矿物组成、湿度或降雨、MBP本身物化性质等的影响和控制。陆源大气中MBP大约是海洋大气中MBP的6倍,并且估计黄海大气中MBP沉降通量大约为0.0189μmol·m~(-2)y~(-1),每年通过MBP形式向黄海输送大约7.57×105 mol磷,约占PH3从青岛向黄海输送的一半,表明大气中MBP也是大气中还原态磷循环中重要的一部分。
     4.于2004年至2008年在对中国近海部分区域采集沉积物进行了研究,结果表明MBP不仅存在于中国温带近海区域沉积物中,甚至在热带地区也存在,如在黄海、长江口、东海、海南东北部近岸、胶州湾、桑沟湾沉积物中MBP含量分别为0.19~38.24 ng·kg~(-1)、0.1~169.4 ng·kg~(-1)、0.51~23.1 ng·kg~(-1)、0.21~5.45 ng·kg~(-1)、0.34~17.15 ng·kg~(-1)、2.11~71.79 ng·kg~(-1),在胶州湾周边河流、海南东北部河流沉积物中MBP含量分别为0.28~319 ng·kg~(-1)、nd~82.1 ng·kg~(-1),在海南东北部土壤、潟湖和红树林沉积物中MBP含量分别为nd~4.88 ng·kg~(-1)、1.34~12.74 ng·kg~(-1)和0.76~42.21 ng·kg~(-1)。
     5.沉积物中MBP含量存在季节性差异,如长江口及附近海域、桑沟湾、海南东北部的文昌文教河、红树林夏季沉积物中MBP高于秋、冬季;在长江口、东海沉积物中MBP含量从近岸向陆架呈带状分布并且向东逐渐减少;在黄海高含量MBP主要存在于黄海中部和北部靠近桑沟湾养殖区的沉积物中;同一条河流下游沉积物中MBP含量一般要高于上游沉积物中MBP;沉积物中MBP具有明显的垂直分布特征,高浓度MBP存在于沉积物还原性强的底层或次表层。
     6.沉积物尤其是海洋沉积物中MBP的含量、存在和分布受到沉积物类型、温度、有机质、氧化还原环境、pH值等多种环境因素的控制和影响。比表面较大的粘土有利于MBP赋存;温度较高(如夏季)有利于MBP的产生和积累;有机质为生物活动提供物质和还原环境、厌氧/缺氧水体有助于磷化氢生成;接近中性的pH值有助于磷化氢的保存;与之相反的环境如个别站位(砂质类型沉积物、较低pH值或酸性土壤等)也发现了MBP的存在甚至高浓度MBP存在暗示着沉积物中MBP的控制因素非常复杂,可能存在其它未知影响因素。
     7.研究了中国近海沉积物中MBP的分布和存在影响因素,为进一步认识全球磷循环尤其是中国近海沉积物中磷循环提供了依据。对海南沉积物、土壤中MBP的研究,填补了热带MBP研究方面的空白,完善了全球沉积物中MBP的分布,绘制了全球磷化氢循环图、补充了全球磷循环中的磷化氢相关数据。并结合文献提出了沉积物中MBP在早期成岩过程中的形成机理图。尽管PH3是沉积物中含量较低的一种磷存在形态,但由于其不稳定、转化速率比较快等特点,是沉积物中值得关注的一种磷存在形态。
Phosphine (PH3), as a kind of reduced phosphorus compounds in the natural enviroment, exists in two different forms, i.e. free phosphine (Gaseous PH3) and matrix bound phosphine (MBP). The former has been detected in the atmosphere and biogas in urban and suburban areas. The latter was shown to be ubiquitously present in soils, sediments, sewage slurry etc. PH3 has been proven to participate in the global phosphorus biogeochemical cycle, but most previous studies were mainly focused on terrestrial ecosystems. Therefore studies on the biogeochemistry of PH3 in marine environments will be helpful to the understanding of the phosphorus biogeochemical cycles, and its potential effect on the environment especially the seas.
     In the present dissertation, the diurnal and seasonal variations of gaseous PH3 in the inshore atmosphere are studied and MBP was detected in Qingdao atmosphere for the first time. Environmental and meteorologic factors are found to influence the occurring and distribution of PH3 in Qingdao atmosphere and the contribution of atmospheric PH3 to the sea is estimated on a local scale. The distributions of MBP in sediments and the influence of environmental factors are investigated in the coastal areas of China, i.e. the Yellow Sea and the East China Sea shelf, Changjiang Estuary, northeastern Hainan Island, and some typical rivers around these areas. These studies contribute to understand not only phosphorus biogeochemical cycle, but also the possible impact of PH3 on marine ecosystem. The main research work is as follows:
     1. A chromatographic method using capillary column as a trap has been developed in lab to determine PH3 in atmosphere and sediments. The detection limits are 0.01 ng·m-3 and 0.02 ng·kg-1, and the precisions are <3% and <20% for air and sediments, respectively. The influence of cryogenic trap and chromatographic operation conditions were studied to obtain optimum results. The method avoids the interference of nitrous oxide and water vapor by using PLOT Q capillary as enrichment column. MBP in the marine sediments was digested by using sulfuric acid. Sediment sample storage experiments have been done to test reliability of the storage procedure used in this study, and the results showed that the effects of storage appear negligible in two months.
     2. Gaseous PH3 in the inshore atmosphere was observed from October 2005 to August 2006 at a coastal site of the Yellow Sea in China. The concentration of gaseous PH3 ranged from 0.01 to 14.86 ng m~(-3) with an average of 1.14 ng m~(-3). The concentration showed a diurnal variation in gaseous PH3 with the peak occurring at morning and the lowest point at noon. An obvious seasonal variation of atmospheric gaseous PH3 was found, with the gaseous PH3 levels in the summer higher than those in the winter. The gaseous PH3 levels in the atmosphere were apparently affected by temperature, radiation, sources and other meteorological factors. The data indicate that gaseous PH3 can be transported between the terrestrial and inshore atmosphere of Qingdao and the Yellow Sea or the East China Sea in both directions. The study increases evidence that gaseous PH3 participates within the global biogeochemical phosphorus cycle in phosphorus transport from land and inshore waters to the sea where commonly phosphorus is scarce and where gaseous PH3 inflow could be of important.
     3. MBP in the inshore atmosphere was observed from March 2004 to December 2005 at a coastal site of the Yellow Sea in China. The MBP was first detected in atmosphere and its concentration ranged from 0.01 to 22.63 pg·m~(-3) with an average of 1.02 pg·m~(-3). An obvious seasonal variation of atmospheric MBP was found with autumn>winter>summer, spring. The MBP levels in the atmosphere were apparently affected by aerosol source, aerosol mineral composition, humidity or rainfall and MBP physicochemical properties. MBP in terrestrial atmosphere is six times higher than those in marine atmosphere. MBP deposition flux is about 0.0189μmol·m~(-)y~(-1) in the Yellow Sea,that is 7.57×105 mol MBP-phosphorus is deposited to the Yellow Sea via atmosphere each year which is half of free phosphine deposition flux. Atmospheric MBP V deposition plays an important role as gaseous PH3 in determining the biogeochemistry of phosphorus especially reduction state phosphorus in coastal and shelf regions.
     4. MBP in the coastal sediments of China were investigated from 2004 to 2008. MBP occurs from temperate zone to tropical zone. For example, MBP in surface sediments of the Yellow Sea, Changjiang Estuary, the East China Sea, the coast of northeast Hainan, Jiaozhou Bay, Sanggou Bay are 0.19~38.24 ng·kg~(-1), 0.1~169.4 ng·kg~(-1), 0.51~23.1 ng·kg~(-1), 0.21~5.45 ng·kg~(-1), 0.34~17.15 ng·kg~(-1), 2.11~71.79 ng·kg~(-1), respectively, while MBP in river sediments around Jiaozhou Bay and northeast of Hainan are 0.28~319 ng·kg~(-1) and nd~82.1 ng·kg~(-1), respectively. MBP in soils, lagoon and mangrove surface sediments are nd~4.88 ng·kg~(-1), 1.34~12.74 ng·kg~(-1) and 0.76~42.21 ng·kg~(-1), respectively.
     5. The concentration of MBP in the sediments showed seasonal variation, with the MBP levels in the summer higher than those in the autumn and winter in the Changjiang estuary, Sanggou Bay, Wenchang River and Wenjiao Rive, and Mangrove. The distribution of MBP in surface sediments showed certain spatial variation with MBP concentrations decreasing from the coast to the shelf in Changjiang Estuary and the East China Sea. Higher MBP was found in the central and northern of the Yellow Sea adjacent Sanggou Bay. The vertical distribution of MBP in Jiaozhou Bay, Changjiang Estuary and Mangrove sediments showed that higher MBP generally occurred in the bottom or subsurface layer with strong reducing conditions.
     6. Environmental factors such as types of sediments, temperature, organic matter, redox conditions, pH were found to affect levels and distribution of MBP in sediments. Clay sediments are favorable for MBP accumulation due to large surface area and adsorption pots, and reducing condition, anoxia water, and neutral condition is also favor to the exsistence of MBP. Strong correlations between temperature, organic matter and MBP not only proved their effect on MBP in the sediments, but also showed that biological activity may control MBP production. However, MBP was found in some land sediments with lower pH or acid soils imply that MBP production and elimination are complicated, and more studies should be done.
     7. The studies on PH3 in the coastal areas of China improved our understanding of global biogeochemical phosphorus cycle Global PH3 cycles and global phosphorus biogeochemical cycles including PH3 are drawing based on the reference and this work. Early diagenesis schematic diagram of PH3 in the sediments was established. PH3, as a phosphorus species, is unstable and easily converted to other phosphorus compound. Although PH3 content in natural environment is low, it is an potential link in phosphorus biogeochemical cycle.
引文
[1] Jacobson, M. C., R. J. Charlson, H. Rodhe. Earth System Science from Biogeochemical Cycles to Global Changes 1st edition ed. Academic Press, 2000, 527
    [2] Mannion, A. M. Global Envirnmental Change: The Causes and Consequences of Disruption to Biogeochemical Cycles. the Geographical Journal, 1998, 164: 168-182
    [3] Wollast, R., F. T. Mackenzie. Interactions of C, N, P and S Biogeochemical Cycles and Global Change Springer, 1993,
    [4] Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. H?gberg, S. Linder, F. T. Mackenzie, B. Moore, T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science, 2000, 290: 291-296
    [5] Houghton, R. Land-Use Change and the Carbon Cycle. Global Change Biology, 1995, 1: 275-287
    [6] Friedlingstein, P., J.-L. Dufresne, P. M. Cox, P. Rayner. How Positive Is the Feedback between Climate Change and the Carbon Cycle? . Tellus B, 2003, 55: 692-700
    [7] Galloway, J. N. The Global Nitrogen Cycle: Changes and Consequences. Environmental Pollution, 1998, 102: 15-24
    [8] Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, D. G. Tilman. Human Alteration of the Global Nitrogen Cycle: Causes and Consequences. Ecological Applications, 1997, 7: 737-750
    [9]方精云,唐艳鸿,蒋高明.全球生态学.高等教育出版社, 2000, 132-134
    [10] Aneja, V. Natural Sulfur Emissions into the Atmosphere Journal of the Air and Waste Management Association, 1990, 40: 469-476
    [11] Compton, J. S., D. J. Mallinson, C. R. Glenn, G. Filippelli, K. Follmi, G. Shields, Y. Zanin. Variations in the Global Phosphorus Cycle. Society of Sedimentary Geology Special Publication, 2000, 21-33
    [12] Paytan, A., K. Mclaughlin. The Oceanic Phosphorus Cycle. Chemical Reviews, 2007, 107: 563-576
    [13] Slomp, C. P., P. V. Cappellen. The Global Marine Phosphorus Cycle: Sensitivity to Oceanic Circulation. Biogeosciences, 2007, 4: 155-171
    [14] Filippelli, G. M. The Global Phosphorus Cycle: Past, Present, and Future. Elements, 2008, 4: 89-95
    [15] Who. Phosphine and Selected Metalphosphides. 1988,
    [16] Dévai, I., L. Felf?ldy, I. Wittner, S. Plósz. Detection of Phosphine: New Aspects of the Phosphorus Cycle in the Hydrosphere Nature, 1988, 333: 343-345
    [17] Liu, J. A., Y. H. Zhuang, H. F. Cao, P. Kuschk, F. Eismann, D. Glindemann. Phosphine in the Urban Air of Beijing and Its Possible Sources. Water, Air & Soil Pollution, 1999, 116:597-604
    [18] Glindemann, D., A. Bergmann, U. Stottmeister, G. Gassmann. Phosphine in the Lower Terrestrial Troposphere. Naturwissenschaften, 1996, 83: 131-133
    [19] Gassmann, G., J. V. Beusekom, D. Glindemann. Offshore Atmospheric Phosphine. Naturwissenschaften, 1996, 83: 129-131
    [20] Glindemann, D., M. Edwards, P. Kuschk. Phosphine Gas in the Upper Troposphere. Atmospheric Environment, 2003, 37: 2429-2433
    [21] Niu, X. J., J. J. Geng, X. R. Wang, C. H. Wang, X. H. Gu, M. Edwards, D. Glindemann. Temporal and Spatial Distributions of Phosphine in Taihu Lake,China. Science of the Total Environment, 2004, 323: 169-178
    [22] Zhu, R., D. Glindemann, D. Kong, L. Sun, J. Geng, X. Wang. Phosphine in the Marine Atmosphere Along a Hemispheric Course from China to Antarctica. Atmospheric Environment, 2007, 41: 1567-1573
    [23] Han, S. H., Y. H. Zhuang, J. A. Liu, D. Glindemann. Phosphorus Cycling through Phosphine in Paddy Fields. Science of the Total Environment, 2000, 258: 195-203
    [24] Eismann, F., D. Glindemann, A. Bergmann, P. Kuschk. Soils as Source and Sink of Phosphine. Chemosphere, 1997, 35: 523-533
    [25] Glindemann, D., U. Stottmeister, A. Bergmann. Free Phosphine from the Anaerobic Biosphere. Environmental Science and Pollution Research, 1996, 3: 17-19
    [26] Jenkins, R., T. Morris, P. Craig, A. Ritchie, N. Ostah. Phosphine Generation by Mixed- and Monoseptic-Cultures of Anaerobic Bacteria. The Science of the Total Environment, 2000, 250: 73-81
    [27] Roels, J., W. Verstraete. Occurrence and Origin of Phosphine in Landfill Gas. Science of the Total Environment, 2004, 327: 185-196
    [28] Gassmann, G. Phosphine in the Fluvial and Marine Hydrosphere. Marine Chemistry, 1994, 45: 197-205
    [29] Gassmann, G., E. Schorn. Phosphine from Harbor Surface Sediments. Naturwissenschaften, 1993, 80: 78-80
    [30] Feng, Z., X. Song, Z. Yu. Distribution Characteristics of Matrix-Bound Phosphine Along the Coast of China and Possible Environmental Controls. Chemosphere, 2008, 73: 519-525
    [31]俞志明,宋秀贤.基质结合态磷化氢:胶州湾沉积物中新发现的一种磷化物存在形式.科学通报, 2002, 47: 1596-1599
    [32] Gassmann, G., D. Glindemann. Phosphane(Ph3) in the Biosphere. Angewandte Chemie International edition in English, 1993, 32: 761-763
    [33] Eismann, F., D. Glindemann, A. Bergmann, P. Kuschk. Balancing Phosphine in Manure Fermentation. Journal of environmental Science and Health (B), 1997, 32: 955-968
    [34] Roels, J., G. Huyghe, W. Verstraete. Microbially Mediated Phosphine Emission. Science of the Total Environment, 2005, 338: 253-265
    [35] Feng, Z., X. Song, Z. Yu. Seasonal and Spatial Distribution of Matrix-Bound Phosphine and Its Relationship with the Environment in the Changjiang River Estuary, China. Marine Pollution Bulletin, 2008, 56: 1630-1636
    [36] Zhu, R., Y. Liu, J. Sun, L. Sun, J. Geng. Stimulation of Gaseous Phosphine Production from Antarctic Seabird Guanos and Ornithogenic Soils. Journal of Environmental Sciences, 2009, 21: 150-154
    [37] Glindemann, D., M. Edwards, L. Jiang, P. Kuschk. Phosphine in Soils, Sludges, Biogases and Atmospheric Implications Review. Ecological Engineering, 2005, 24: 457-463
    [38] Banks, H. J. Fumigation—an Endangered Technology?, p. In Highley, E., E. J. Wright, H. J. Banks and B. R. Champ [eds.], Proceedings of the 6th international working conference on stored-product protection. CAB International, Wallingford, United Kingdom, 1994, 2-6.
    [39] Glindemann, D., F. Eismann, A. Bergmann, P. Kuschk, U. Stottmeister. Phosphine by Bio-Corrosion of Phosphide-Rich Iron. Environmental Science and Pollution Research, 1998, 5: 71-74
    [40] Devai, I., R. Delaune. Evidence for Phosphine Production and Emission from Louisiana and Florida Marsh Soils. Organic Geochemistry, 1995, 23: 277-279
    [41] Geng, J., X. Niu, X. Jin, X. Wang, X. Gu, M. Edwards, D. Glindemann. Simultaneous Monitoring of Phosphine and of Phosphorus Species in Taihu Lake Sediments and Phosphine Emission from Lake Sediments. Biogeochemistry, 2005, 76: 283-298
    [42] Frank, R., G. Rippen. Verhalten Von Phosphin in Der Atmosph?re. Lebensmitteltechnik, 1987, 7-8: 409-411
    [43] Burford, J., J. Bremner. Is Phosphate Reduced to Phosphine in Waterlogged Soils. Soil Biology and Biochemistry, 1972, 4: 489-495
    [44]俞志明,宋秀贤.一种海洋环境中易被忽略的磷化合物—磷化氢.海洋与湖沼, 2002, 33: 109-115
    [45] Roels, J., W. Verstraete. Biological Formation of Volatile Phosphorus Compounds. Bioresource Technology, 2001, 79: 243 -250
    [46] Iverson, W. Corrosion of Iron and Formation of Iron Phosphide by Desulfovibrio Desulfuricans. Nature, 1968, 217: 1265-1267
    [47] Iverson, W. Anaerobic Corrosion: Metals and Microbes in Two Worlds. Journal of Industrial Microbiology and Biotechnology, 1999, 22: 288-297
    [48] Glindemann, D., M. Edwards, O. Schers. Phosphine and Methylphosphine Production by Simulated Lightning: A Study for the Volatile Phosphorus Cycle and Cloud Formation in the Earth Atmosphere. Atmospheric Environment, 2004, 38: 6867-6874
    [49] Glindemann, D., R. D. Graaf, A. Schwartz. Chemical Reduction of Phosphate on the Primitive Earth. Origins of Life and Evolution of the Biosphere, 1999, 29: 555-561
    [50] Geng, J., Q. Wang, X. Niu, X. Wang. Effects of Environmental Factors on the Production andRelease of Matrix-Bound Phosphine from Lake Sediments. Environmental Science Engineering. China, 2007, 1: 120-124
    [51] Ding, L., X. Wang, Y. Zhu, M. Edwards, D. Glindemann, H. Ren. Effect of Ph on Phosphine Production and the Fate of Phosphorus During Anaerobic Process with Granular Sludge. Chemosphere, 2005 59: 49-54
    [52] Geng, J. J., X. C. Jin, Q. Wang, X. J. Niu, X. R. Wang, M. Edwards, D. Glindemann. Matrix Bound Phosphine Formation and Depletion in Eutrophic Lake Sediment Fermentation—Simulation of Different Environmental Factors. Anaerobe, 2005, 11: 273-279
    [53]曹锡章.无机化学.高等教育出版社, 1994,
    [54]陈春刚,曹阳,柏志美.磷化氢杀虫机理研究综述.粮食储藏, 2004, 32: 12-17
    [55] Chaudhry, M., N. Price. A Spectral Study of the Biochemical Reactions of Phosphine with Various Haemproteins. Pesticide Biochemistry and Physiology, 1990, 36: 14-21
    [56] Hsu, C.-H., B.-C. Chi, M.-Y. Liu, J.-H. Li, C.-J. Chen, R.-Y. Chen. Phosphine-Induced Oxidative Damage in Rats: Role of Glutathione. Toxicology, 2002, 179: 30
    [57] Stumm, W., J. J. Morgan. Aquatic Chemistry. Wiley-Interscience, 1996, 872-934
    [58] Hanrahan, G., T. M. Salmassi, C. S. Khachikian, K. L. Foster. Reduced Inorganic Phosphorus in the Natural Environment: Significance, Speciation and Determination. Talanta, 2005, 66: 435-444
    [59] Glindemann, D., A. Bergmann. Spontaneous Emission of Phosphane from Animal Slurry Treatment Processing. Zentralbl Hyg Umweltmed, 1995, 198: 49-56
    [60] Glindemann, D., A. Bergmann, U. Stottmeister, F. Eismann, G. Gassmann. Tropospheric Phosphine and Its Possible Source, p., Proceedings of EUROTRA Symposium′96 1996, 147-149.
    [61] Glindemann, D., P. Morgenstern, R. Wennrich, U. Stottmeister, A. Bergmann. Toxic Oxide Deposits from the Combustion of Landfill Gas and Biogas. Environmental Science and Pollution Research, 1996, 3: 75-77
    [62]刘志培,贾省芬,王宝军,刘双江.环境中磷化氢的含量差异及其影响因素.环境科学学报, 2004, 24: 852-857
    [63] Dumas, T., E. Bond. Method of Trapping Low Levels of Phosphine at Ambient Temperature for Gas Chromatographic Analysis. J. Chromatogr., 1981, 206: 384-386
    [64]牛晓君,王彩虹,耿金菊,韩圣惠,冯建坊,王晓蓉.气相色谱-氮磷检测器分析痕量磷化氢.分析测试学报, 2004, 23: 70-72
    [65] Han, S. H., Y. H. Zhuang, H. X. Zhang, Z. J. Wang, J. Z. Yang. Phosphine and Methane Generation by the Addition of Organic Compounds Containing Carbon-Phosphorus Bonds into Incubated Soil. Chemosphere, 2002, 49: 651-657
    [66] Han, S. H., Z. J. Wang, Y. H. Zhuang, Z. M. Yu, D. Glindemann. Phosphine in VariousMatrixes. Journal of Environmental Sciences (China), 2003, 15: 339-341
    [67] Ku, J. Analytical Method Id-180. OSHA, 1991. http://oshthai.labour.go.th/labourhealth/oshameth/id180/id180.htm:
    [68] Rb Bruce, A. J. Robbins, T. Tuft. Phosphine Residues from Phostoxin Treated Grain. Journal of Agricultural and Food Chemistry, 1962, 10: 18-21
    [69] Nowicki, T. Gas-Liquid Chromatographic and Flame Photometric Detection of Phosphine in Wheat. Journal of Associational Analytical Chemists, 1978, 61: 829-836
    [70] Zhu, R., L. Sun, D. Kong, J. Geng, N. Wang, Q. Wang, X. Wang. Matrix-Bound Phosphine in Antarctic Biosphere. Chemosphere, 2006, 64: 1429-1435
    [71] Zhu, R., D. Kong, L. Sun, J. Geng, X. Wang, D. Glindemann. Tropospheric Phosphine and Its Sources in Coastal Antarctica. Environmental Science & Technology, 2006, 40: 7656-7661
    [72] Liu, J. A., Y. H. Zhuang, H. F. Cao, P. Kuschk, F. Eismann, D. Glindemann. Phosphine in the Urban Air of Beijing and Its Possible Sources. Water, Air, & Soil Pollution, 1999, 116: 597-604
    [73] Eismann, F., D. Glindemann, A. Bergmann, P. Kuschk. Effect of Free Phosphine on Anaerobic Digestion. Water Research, 1997, 31: 2771-2774
    [74] Glindemann, D., M. Edwards, P. Morgenstern. Phosphine from Rocks: Mechanically Driven Phosphate Reduction? . Environmental Science & Technology, 2005, 39: 8295-8299
    [75] Morton, S., D. Glindemann, M. Edwards. Phosphates, Phosphites and Phosphides in Environmental Samples. Environmental Science and Technology, 2003, 37: 1169-1174
    [76]牛晓君,耿金菊,王晓蓉.太湖水域ph3的时空变化特征.环境科学学报, 2004, 2: 255-259
    [77] Berck, B., W. Westlake, F. Gunther. Microdetermination of Phosphine by Gas-Liquid Chromatography with Microcoulometric, Thermionic, and Flame Photometric Detection. Journal of Agricultural and Food Chemistry, 1970, 18: 143-147
    [78] Saeed, T., R. Abu-Tabanja. Determination of Phosphine: Comparison of Rates of Desorption by Purge-and-Trap Method and by Sulfuric Acid Treatment. Journal Association of Official Analytical Chemists, 1985, 68: 61-64
    [79] Brunner, U., T. Chasteen, P. Ferloni, R. Bachofen. Chromatographic Determination of Phosphine (Ph3 ) and Hydrogen Sulfide (H2s) in the Headspace of Anaerobic Bacterial Enrichments Using Flame Photometric Detection. Chromatographia, 1995, 40: 399-403
    [80] Gassmann, G., S. Dahlke. Flame Photometric Detection of Nitrous Oxide in Addition to Phosphine. Journal of chromatography, 1992, 598: 313-315
    [81] Chasteen, T., R. Fall, J. Birks, H. Martin, R. Glinski. Fluorine-Induced Chemiluminescence Detection of Phosphine, Alkyl Phosphines and Monophosphinate Esters. Chromatographia, 1991, 31: 342-346
    [82] Solorzano, L., J. Sharp. Determination of Total Dissolved Phosphorus and ParticulatePhosphorus in Natural Waters. Limnology and Oceanography, 1980, 25: 754-758
    [83] Murphy, J., J. Riley. A Modified Single Solution Method for the Determi Nation of Inorganic Phosphate in Natural Waters. Analytica Chimica Acta, 1962, 27: 31-36
    [84] Nelson, J., A. Milun. Rapid Determination of Phosphine in Air. Analytical Chemistry, 1957, 29: 1665-1666
    [85] Niosh. Phosphine, Method 6002, p. 1994. http://www.cdc.gov/niosh/nmam/pdfs/6002.pdf.
    [86]耿金菊,王强,牛晓君,王晓蓉,冯建坊.冷阱温度和激活电压对气相色谱分析痕量磷化氢的影响.色谱, 2005, 23: 686
    [87]曹海峰,刘季昂,庄亚辉.环境中磷化氢的源及厌氧条件下前体物类型的研究.中国科学(B), 2000, 43: 162-168
    [88] Rudakov, K. Reduktion Der Mineralischen Phosphate Auf Biologischem Wege. Zentralbl. Bakteriol. Parasit. Infekt. Hyg. Ab, 1927, 70 202-214
    [89]母清林,宋秀贤,俞志明.磷化氢在胶州湾沉积物中的分布特征.环境科学, 2005, 20: 135-138
    [90] Zedler, J., S. Kercher. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annual Review of Environment and Resources, 2005, 30: 39-74
    [91]耿金菊.湖泊沉积物中磷化氢的释放过程及其产生机制研究.博士论文.南京,南京大学, 2005.
    [92] Dévai, I., R. Delaune, W. Patrick, G. Dévai, I. Czegeny. Phosphine Production Potential of Various Wastewater and Sewage Sludge Sources. Analytical Letters, 1999, 32: 1447-1457
    [93] Rickelton, W. A. Phosphine and Its Derivatives. John Wiley & Sons, 1996, 656-668
    [94]翟燕萍,沈美庆,王军,刘洪举.磷化氢熏蒸剂的研究进展.化学工业与工程, 2003, 20: 248-250
    [95]王殿轩,卞科.储粮熏蒸剂的发展动态与前景.粮食储藏, 2004, 32: 3-7
    [96] Bell, C. H. Fumigation in the 21st Century. Crop Protection, 2000, 19: 563-569
    [97] Pratt, S. Phosphine Levels Outside Grain Stores During Siro.O(R) Fumigation, p., Proceedings of the Seventh International Working Conference on Stored-Product Protection. Sichuan Publishing House of Science and Technology, 1998, 391-398.
    [98] Morton, S. C., M. Edwards. Reduced Phosphorus Compounds in the Environment. Critical Reviews in Environmental Science and Technology, 2005, 35: 333-364
    [99]邹建文,黄耀,宗良纲,郑循华,王跃思.稻田二氧化碳,甲烷和氧化亚氮排放及其影响因素.环境科学学报, 2004, 23: 758-764
    [100] Bala, H. Effect of Phosphine on Acid Corrosion of Iron. Werkst Korros, 1986, 37: 644-646
    [101] Bala, H. The Acid Corrosion of Fe--P Alloys. Werkst Korros, 1987, 38: 26-31
    [102] Iisi. World Steel in Figures 2006 (Web Version). International Iron Steel Institute. Sep. 4 2007 (Cited Sep. 18 2007) Www.Worldsteel.Org Activities & Policies > Statistics > World Steel in Figures 2007, p. 2006.
    [103] Ladou, J. Potential Occupational Health Hazards in the Microelectronics Industry. Scandinavian Journal of Work, Environment & Health, 1983, 9: 42-46
    [104] Sri, S. R. I. Electronic Chemicals. CA, 1982: 40-41
    [105] Chughtai, M., J. Pridham, P. Gates, M. Cooke. Determination of Phosphine by Packed Column Gas Chromatography with Alkali Flame Ionization Detection. Analytical Communications, 1998, 35: 109-111
    [106] Fritz, B., K. Lorenz, W. Steinert, R. Zellner. Laboratory Kinetic Investigations of the Tropospheric Oxidation of Selected Industrial Emissions, p. In Ott, V. A. H. [ed.], Proceedings of the Second European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants. Reidel Publishing Company, 1982, 192-202.
    [107] Nava, D. F., L. J. Stief. Temperature Study of O(3p) + Ph3 Reaction Rate: Kinetic Measurements and Planetary Atmospheric Implications. Journal of physical chemistry, 1989, 93: 4044-4047
    [108] Bond, E., T. Dumas, S. Hobbs. Corrosion of Metals by the Fumigant Phosphine. J. Stored Prod. Res., 1984, 20: 57-63
    [109] Odom, J. D., A. J. Zozulin. The Reaction of Nitric Oxide with Phospine and Several Difluorophosphine Molecules. Phosphorus, Sulfur, and Silicon and the Related Elements, 1981, 9: 299-305
    [110] Davies, P., A. Thrush. The Reactions of Atomic Oxygen with Phosphorus and with Phosphine. Proc. Roy. Soc. A, 1968, 302: 243-252
    [111] Nascimento, E. M., L. E. Machado, E. M. S. Ribeiro, L. M. Brescansind, M.-T. Lee. A Theoretical Study on the Photoionization of the Valence Orbitals of Phosphine. J. Braz. Chem. Soc., 2006, 17: 162-167
    [112] Vogler, A., H. Kunkely. Excited State Properties of Transition Metal Phosphine Complexes. Coordination Chemistry Reviews, 2002, 230: 243-251
    [113] Barrenscheen, H., H. Beckh-Widmanstetter.über Bakterielle Reduction Organisch Gebundener Phosphors?ure. . Biochemische Zeitschrift, 1923, 140: 279-283
    [114] Mathews, C., K. V. Holde. Biochemistry. The Benjamin/cumming publishing company, CA, 1996,
    [115] Cao, H. F., J. A. Liu, Y. H. Zhuang, D. Glindemann. Emission Sources of Atmospheric Phosphine and Simulation of Phosphine Formation. SCIENCE IN CHINA (B), 2000, 43: 162-168
    [116] Rutishauser, B., R. Bachofen. Phosphine Formation from Sewage Sludge Cultures. Anaerobe, 1999, 5: 525-531
    [117] Borunov, S., V. Dorofeeva, I. Khodakovsky, P. Drossart, E. Lellouch, T. Encrenaz. Phosphorus Chemistry in Atmosphere of Jupiter: A Reassessment. Icarus, 1995, 113: 460-464
    [118] Koritnig, S. Handbook of Geochemistry. Springer, 1978,
    [119] Friel, J., J. Goldstein. An Experimental Study of Phosphate Reduction and Phosphorus-Bearing Lunar Metal Particles, p. In Friel, J. and J. Goldstein [eds.], Geochim. Cosmochim. Acta. Pergamon Press, Inc., 1976, 791-806.
    [120] Nishida, N., M. Kimata, Y. Arakawa. Native Zinc, Copper, and Brass in the Red-Clouded Anorthite Megacryst as Probes of the Arc-Magmatic Process. Naturwissenschaften, 1994, 81: 498-502
    [121] Latimer, W. M. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions. Prentice-Hall, 1953,
    [122] Roels, J., H. V. Langenhove, W. Verstraete. Determination of Phosphine in Biogas and Sludge at Ppt-Levels with Gas Chromatography-Thermionic Specific Detection. Journal of Chromatography A, 2002, 952: 229-237
    [123] Dodds, W. K. Availability, Uptake and Regeneration of Phosphate in Mesocosms with Varied Levels of P Deficiency Hydrobiologia, 1995, 297: 1-9
    [124] Escaravage, V., T. C. Prins, A. C. Smaal, J. C. H. Peeters. The Response of Phytoplankton Communities to Phosphorus Input Reduction in Mesocosm Experiments. Journal of experimental marine biology and ecology, 1996, 198: 55-79
    [125] Dodds, W. K. What Controls Levels of Dissolved Phosphate and Ammonium in Surface Waters? Aquatic Sciences - Research Across Boundaries, 1993, 55: 132-142
    [126] Hudson, J., W. Taylor, D. Schindler. Phosphate Concentrations in Lakes. Nature, 2000, 406: 31-33
    [127]郭夏丽.厌氧生物除磷技术的基础研究.博士论文.杭州,浙江大学, 2005.
    [128]丁丽丽,梁瀚文,朱益新,莫伟恒,王强,任洪强,王晓蓉, M. Edwards, D. Glindemann.结合态磷化氢在污水深度处理系统中的源.科学通报, 2005, 50: 1050-1051
    [129] Osha. Safety and Health Topics > Sampling & Analytical Methods > Phosphine, p. www.OSHA.gov : , 2005.
    [130] Gbz/T.工作场所空气中无机含磷化合物的测定方法C52, p. 160.30-2004.
    [131] Han, X. R., X. L. Wang, X. Sun, X. Y. Shi, C. J. Zhu, C. S. Zhang, R. Lu. Nutrient Distribution and Its Relationship with Occurrence of Red Tide in Coastal Area of East China Sea(in Chinese). Cinese Journal of Applied Ecology, 2003, 14: 1097-1101
    [132] Lasorsa, B., A. Casas. A Comparison of Sample Handling and Analytical Methods for Determination of Acid Volatile Sulfides in Sediment. Marine Chemistry, 1996, 52: 211-220
    [133] Duce, R., P. Liss, J. Merrill, E. Atlas, P. Buat-Menard. The Atmospheric Input of Trace Species to the World Ocean Global Biogeochemical Cycles, 1991, 5: 193-259
    [134] Herut, B., M. D. Krom, G. Pan, R. Mortimer. Atmospheric Input of Nitrogen and Phosphorus to the Southeast Mediterranean: Sources, Fluxes, and Possible Impact. Limnology and Oceanography, 1999, 44: 1683-1692
    [135] Jickells, T. Atmospheric Inputs of Metals and Nutrients to the Oceans: Their Magnitude andEffects. Marine Chemistry, 1995, 48: 199-214
    [136] Guerzoni, S., R. Chesterb, F. Dulacc, B. Herutd, M.-D. Lo?e-Pilote, C. Measuresf, C. Migong, E. Molinarolih, C. Moulinc, P. Rossinia, C. Saydami, A. Soudinej, P. Ziverik. The Role of Atmospheric Deposition in the Biogeochemistry of the Mediterranean Sea. Progress In Oceanography, 1999, 44: 147-190
    [137] Mills, M. M., C. Ridame, M. Davey, J. L. Roche, R. J. Geider. Iron and Phosphorus Co-Limit Nitrogen Fixation in the Eastern Tropical North Atlantic. Nature, 2004, 429: 292-294
    [138] Chester, R. Marine Geochemistry. Blackwell Publishing, 2003, 520
    [139] Falkowski, P. G., R. T. Barber, V. Smetacek. Biogeochemical Controls and Feedbacks on Ocean Primary Production Science, 1998, 281: 200-206
    [140] Krishnamurthy, A., J. K. Moore, C. S. Zender, C. Luo. Effects of Atmospheric Inorganic Nitrogen Deposition on Ocean Biogeochemistry. Journal of Geophysical Research, 2007, 112, G02019, doi:10.1029/2006JG000334:
    [141] Wu, J., W. Sunda, E. A. Boyle, D. M. Karl. Phosphate Depletion in the Western North Atlantic Ocean. Science, 2000, 289: 759-762
    [142] Baker, A. R., S. D. Kelly, K. F. Biswas, M. Witt, T. D. Jickells. Atmospheric Deposition of Nutrients to the Atlantic Ocean. Geophysical Research Letters, 2003, 30: 2296, doi:2210.1029/2003GL018518
    [143] Delaney, M. Phosphorus Accumulation in Marine Sediments and the Oceanic Phosphorus Cycle. Global Biogeochemical Cycles, 1998, 12: 563-572
    [144] Markaki, Z., K. Oikonomou, M. Kocak, G. Kouvarakis, A. Chaniotaki, N. Kubilay, N. Mihalopoulos. Atmospheric Deposition of Inorganic Phosphorus in the Levantine Basin, Eastern Mediterranean: Spatial and Temporal Variability and Its Role in Seawater Productivity. Limnology and Oceanography, 2003, 48: 1557-1568
    [145] Pan, G., M. D. Krom, B. Herut. Adsorption-Desorption of Phosphate on Airborne Dust and Riverborne Particulates in East Mediterranean Seawater. Environmental Science & Technology, 2002, 36: 3519 -3524
    [146] Zhang, G. S., J. Zhang, S. M. Liu. Characterization of Nutrients in the Atmospheric Wet and Dry Deposition Observed at the Two Monitoring Sites over Yellow Sea and East China Sea. Journal of Atmospheric Chemistry, 2007, 57: 41-57
    [147] Wulff, F., M. Perttila, L. Rahm. Observation , Calculation of the Balance for Nutrients and Prediction in the Gulf of Bothnia. AMBIO, 1996, 8: 28-34
    [148] Migon, C., V. Sandroni. Phosphorus in Rainwater : Partitioning Inputs and Impact on the Surface Coastal Ocean. Limnology and Oceanography, 1999, 44: 1160-1165
    [149] Schlesinger, W. H. Biogeochemistry: An Analysis of Global Change, 2nd ed ed. Academic Press, 1997, 588
    [150] Ruttenberg, K. C. Development of a Sequential Extraction Method for Different Forms ofPhosphorus in Marine Sediments. Limnology and Oceanography, 1992, 37: 1460-1482
    [151] Chen, H.-Y., T.-H. Fang, M. R. Preston, S. Lin. Characterization of Phosphorus in the Aerosol of a Coastal Atmosphere: Using a Sequential Extraction Method. Atmospheric Environment, 2006, 40: 279-289
    [152] Chang, Z., Z. Wu, S. Gao. Numerical Simulation Three Dimensional Structure of Sea and Land Breezes over Qingdao. Journal of Ocean University of Qingdao (in Chinese), 2002, 32: 877-883
    [153] Sheng, L., Y. Fu, M. Qiu, H. Gao. The Seasonal Variabilities in the Concentration of Atmospheric Aerosols over Qingdao, China. Journal of Ocean University of China, 2005, 4: 383-390
    [154] Draxler, R. R., G. D. Rolph. Hysplit (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model, p. NOAA Air Resources Laboratory, Silver Spring, MD., 2003.
    [155] Withnall, R., L. Andrews. Infrared Spectra of O-Atom-Ph3 Reaction Products Trapped in Solid Argon. Journal of physical chemistry, 1988, 92: 4610-4619
    [156] Wang, B., J. Tu. Biogeochemistry of Nutrient Elements in the Changjiang (Yangtze River) Estuary. Marine Science Bulletin, 2005, 7: 72-79
    [157] Wang, B.-D., X.-L. Wang, R. Zhan. Nutrient Conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 2003, 58: 127-136
    [158] Lin, R. G., W. D. Yoon, J. Y. Wu, L. Ma. The N/P Ratio in the Northern South Yellow Sea in Autumn. Chinese Journal of Oceanology and Limnology, 2002, 20: 384-388
    [159] Carbo, P., M. D. Krom, W. B. Homoky, L. G. Benning, B. Herut. Impact of Atmospheric Deposition on N and P Geochemistry in the Southeastern Levantine Basin. Deep-Sea Research II, 2005, 52: 3041-3053
    [160] Graham, W. F., R. A. Duce. Atmospheric Pathways of the Phosphorus Cycle. Geochimica et Cosmochimica Acta, 1979, 43: 1195-1208
    [161]毕言锋.中国东部沿海的大气营养盐干湿沉降及其对海洋初级生产力的影响.硕士.青岛,中国海洋大学, 2006.
    [162]张仁健,浦一芬,徐永福,盛立芳,金井豊,太田充恒.青岛大气气溶胶的浓度分布和干沉降的观测研究.气候与环境研究, 2004, 9: 390-395
    [163]吕森林,邵龙义,时宗波,李红,肖正辉.环境大气可吸入颗粒物的矿物学研究.辽宁工程技术大学学报, 2003, 22: 707-710
    [164]时宗波,邵龙义,李红, Whittaker, T. P. Jones, K. A. Berube, R. J. Richards.北京市西北城区取暖期环境大气中pm10的物理化学特征.环境科学, 2002, 23: 30-34
    [165]师育新,戴雪荣,李节通,薛滨.兰州“930505”特大尘暴沉积物特征研究.沉积学报, 1995, 13: 76-82
    [166]沈振兴,张小曳,曹军骥,王亚强, S. Caquineau,李旭祥,张仁健.粘土矿物比率对沙尘源区的指示.环境科学, 2005, 26: 30-34
    [167]刘咸德,贾红,齐建兵,张冀强,马倩如.青岛大气颗粒物的扫描电镜研究和污染源识别.环境科学研究, 1994, 7: 10-16
    [168]贾洪玉,张巧显,邓红兵,赵景柱,慕金波,张德志.山东省主要城市酸沉降现状及影响因素分析.环境科学, 2006, 27: 2453-2457
    [169] Lewis, W., M. Grant, S. Hamilton. Phosphorus Cycling in the Rocky Mountains of Colorado. Oikos, 1985, 45: 428-438
    [170] Smith, V., G. Tilman, J. Nekola. Eutrophication: Impacts of Excess Nutrient Inputs on Freshwater, Marine, and Terrestrial Ecosystems. Environmental Pollution, 1999, 100: 179-196
    [171] Karl, D. M., K. M. Bj?rkman, J. E. Dore, L. Fujieki, D. V. Hebel, T. Houlihan, R. M. Letelier, L. M. Tupas. Ecological Nitrogen-to-Phosphorus Stoichiometry at Station Aloha. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48: 1529-1566
    [172] Chen, Y., S. Mills, J. Street, D. Golan, A. Post, M. Jacobson, A. Paytan. Estimates of Atmospheric Dry Deposition and Associated Input of Nutrients to Gulf of Aqaba Seawater. Journal of Geophysical Research, 2007, 112, D04309, doi:10.1029/2006JD007858:
    [173] Benitez-Nelson, C. R. The Biogeochemical Cycling of Phosphorus in Marine Systems. Earth-Science Reviews, 2000, 51: 109-135
    [174] Hecky, R. E., P. Campbell, L. L. Hendzel. The Stoichiometry of Carbon, Nitrogen, and Phosphorus in Particulate Matter of Lakes and Oceans. Limnology and Oceanography, 1993, 38: 709-724
    [175] Downing, J. A. Marine Nitrogen: Phosphorus Stoichiometry and the Global N:P Cycle Biogeochemistry, 1997, 37: 237-252
    [176] Peijl, M. J. V. D., J. T. A. Verhoeven. Carbon, Nitrogen and Phosphorus Cycling in Rivermarginal Wetlands; a Model Examination of Landscapegeochemical Flows. Biogeochemistry, 2000, 50: 45-71
    [177] Ruttenberg, K. C. The Global Phosphorus Cycle, p. In Schlesinger, W. H. [ed.], Treatise on Geochemistry. Pergamon, 2003, 682.
    [178] Jensen, H. S., P. B. Mortensen, F. ?. Andersen, E. Rasmussen, A. Jensen. Phosphorus Cycling in a Coastal Marine Sediment, Aarhus Bay, Denmark. Limnology and Oceanography, 1995, 40: 908-917
    [179] Nelson, B. W. Sedimentary Phosphate Method for Estimating Paleosalinities. Science, 1967, 158: 917-920
    [180] Yu, Z. M., X. X. Song. Matrix-Bound Phosphine: A New Form of Phosphorus Found in Sediment of Jiaozhou Bay. Chinese Science Bulletin, 2003, 48: 31-35
    [181] Santisteban, J. I., R. Mediavilla, E. López-Pamo, C. J. Dabrio, M. B. R. Zapata, M. J. G. García, S. Casta?o, P. E. Martínez-Alfaro. Loss on Ignition: A Qualitative or Quantitative Method for Organic Matter and Carbonate Mineral Content in Sediments? Journal ofPaleolimnology, 2004, 32: 287-299
    [182] Glud, R. N., M. Middelboe. Virus and Bacteria Dynamics of a Coastal Sediment: Implication for Benthic Carbon Cycling. Limnology and Oceanography, 2004, 49: 2073-2081
    [183] Aspila, K. I., H. Agemian, A. S. Y. Chau. A Semi-Automated Method for the Determination of Inorganic, Organic and Total Phosphate in Sediments. Analyst, 1976, 101: 187-193
    [184] Feng, S., F. Li, S. Li. An Introduction of Oceanorgraphy (in Chinese). Higher Education Press, 1999, 503
    [185] Choi, M. S., H. I. Yi, S. Y. Yang, C. B. Lee, H. J. Cha. Identification of Pb Sources in Yellow Sea Sediments Using Stable Pb Isotope Ratios. Marine Chemistry, 2007, 107: 255-274
    [186] Kim, G., H.-S. Yang, Y. Kodama. Distributions of Transition Elements in the Surface Sediments of the Yellow Sea. Continental Shelf Research, 1998, 18: 1531-1542
    [187]王修林,李克强,石晓勇.胶州湾主要化学污染物海洋环境容量, 1 ed.科学出版社, 2006, 293
    [188] Shen, Z., Q. Liu, Y. Wu, Y. Yao. Nutrient Structure of Seawater and Ecological Responses in Jiaozhou Bay, China. Estuarine, Coastal and Shelf Science, 2006, 69: 299-307
    [189] Li, X., J. Song, H. Yuan, J. Dai, N. Li. Biogeochemical Characteristics of Nitrogen and Phosphorus in Jiaozhou Bay Sediments. Chinese Journal of Oceanology and Limnology, 2007, 25: 157-165
    [190] Mao, Y., Y. Zhou, H. Yang, R. Wang. Seasonal Variation in Metabolism of Cultured Pacific Oyster, Crassostrea Gigas, in Sanggou Bay, China. Aquaculture, 2006, 253: 322-333
    [191] Zheng, W., H. Shi, S. Chen, M. Zhu. Benefit and Cost Analysis of Mariculture Based on Ecosystem Services. Ecological Economics, 2009, 68: 1626-1632
    [192] Zhou, Z. Q., S. M. Liu, X. H. Qi, X. Luo, Y. F. Bi, W. Q. Cao, Z. S. Yu, J. L. Ren. Influence of Benthic Fluxes at Sediment-Seawater Interface on the Nutrient Loads in Tidal Areas of Jiaozhou Bay (in Chinese). Marine Enviromental Science, 2008, 27: 422-426
    [193] Su, J. L. Circulation Dynamics of the China Seas North of 18°N. John Wiley & Sons Inc., 1998, 483-505
    [194] Yuan, D., J. Zhu, C. Li, D. Hu. Cross-Shelf Circulation in the Yellow and East China Seas Indicated by Modis Satellite Observations. Journal of Marine Systems, 2008, 70: 134-149
    [195] Zhang, J., S. M. Liu, J. L. Ren, Y. Wu, G. L. Zhang. Nutrient Gradients from the Eutrophic Changjiang (Yangtze River) Estuary to the Oligotrophic Kuroshio Waters and Re-Evaluation of Budgets for the East China Sea Shelf. Progress In Oceanography, 2007, 74: 449-478
    [196] Gao, S., Y. P. Wang. Changes in Material Fluxes from the Changjiang River and Their Implications on the Adjoining Continental Shelf Ecosystem. Continental Shelf Research, 2008, 28: 1490-1500
    [197] Zhou, M. J., Z. L. Shen, R. C. Yu. Responses of a Coastal Phytoplankton Community toIncreased Nutrient Input from the Changjiang (Yangtze) River. Continental Shelf Research, 2008, 28: 1483-1489
    [198] Zhou, M. J., M. Y. Zhu, J. Zhang. Status of Harmful Algal Blooms and Related Research Activities in China. Chinese Bulletin of Life Sciences, 2001, 13: 53-59
    [199] Ye, S. F., H. H. Ji, L. Cao, X. Q. Huang. Red Tides in the Yangtze River Estuary and Adjacent Sea Areas: Causes and Mitigation (in Chinese). Marine Sciences, 2004, 28: 26-32
    [200]孙霞,王保栋,王修林.东海赤潮高发区营养盐时空分布特征及其控制要素.海洋科学, 2004, 8: 28-32
    [201]韩秀荣,王修林,孙霞,石晓勇,祝陈坚,张传松,陆茸.东海近海海域营养盐分布特征及其与赤潮发生关系的初步研究.应用生态学报, 2003, 14: 1097-1101
    [202] Zhang, Y. Y., J. Zhang, Y. Wu, Z. Y. Zhu. Characteristics of Dissolved Oxygen and Its Affecting Factors in the Yangtze Estuary(in Chinese). Environmental Science, 2007, 28: 1649-1654
    [203] Wei, H., Y. He, Q. Li, Z. Liu, H. Wang. Summer Hypoxia Adjacent to the Changjiang Estuary. Journal of Marine Systems, 2007, 67: 292-303
    [204] Rabouille, C., D. J. Conley, M. H. Dai, W. J. Cai, C. T. A. Chen, B. Lansard, R. Green, K. Yin, P. J. Harrison, M. Dagg, B. Mckee. Comparison of Hypoxia among Four River-Dominated Ocean Margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rh?ne Rivers. Continental Shelf Research, 2008, 28: 1527-1537
    [205] Chen, C.-C., G.-C. Gong, F.-K. Shiah. Hypoxia in the East China Sea: One of the Largest Coastal Low-Oxygen Areas in the World. Marine Environmental Research, 2007, 64: 399-408
    [206] Fang, T. Phosphorus Speciation and Budget of the East China Sea. Continental Shelf Research, 2004, 24: 1285-1299
    [207]王芳,康建成,周尚哲,郑琰明,徐韧,孙瑞文,吴.涛.春秋季长江口及其邻近海域营养盐污染研究.生态环境, 2006, 15: 276-283
    [208]古国传,胡方西,胡辉,李兴华,韩明宝.长江口外高盐水入侵分析.东海海洋, 1994, 12: 1-11
    [209]张玉兰,王开发,张卫东,李珍,毛礼米.海南岛东北部中全新世以来红树林的演化.海洋通报, 1999, 18: 52-57
    [210]郑德彰,廖宝文,郑松发,许达桂,韩智.海南岛清澜港红树树种适应生境能力与水平分布.林业科学研究, 1995, 8: 67-72
    [211]陈则实.中国海湾志.海洋出版社, 1999, 426
    [212]王颖.海南岛海岸环境特征.海洋地质动态, 2002, 18: 1-9
    [213]吴江涛.铜鼓岭自然保护区及周边社区区域可持续发展理论与评价.硕士论文.儋州,华南热带农业大学, 2007.
    [214]刘兴健,葛晨东.海南岛小海潟湖沉积环境演变研究.海洋通报, 2007, 26: 71-79
    [215]田向平,李春初.海南小海潟湖环境的破坏与治理.海洋环境科学, 2007, 26: 91-94
    [216]陈春福.海南省海岸带和海洋资源与环境问题及对策研究.海洋通报, 2002, 21: 62-68
    [217]汪永华,胡玉佳.海南岛东南海岸带经济开发中存在的生态环境问题.生态经济, 2004, S1: 118-120
    [218]汪永华,李若英.海南岛东南海岸带景观生态规划.地域研究与开发, 2006, 25: 103-107
    [219]陈春福.论万宁市海岸带资源与环境一体化管理.海南师范学院学报, 2000, 13: 103-106
    [220]于传龙,曹艳红,符致效,林武,陈彩云.万泉河地面水源水质卫生学调查.中国热带医学, 2005, 5: 1922-1923
    [221]朱小兵,高抒,陈妙红,葛晨东,朱大奎.海南岛博鳌港水体交换的初步研究.热带海洋学报, 2003, 22: 71-77
    [222]海南省环境监测中心站. 2008年丰水期海南省地表水环境质量期报, p. 2008.
    [223]海南省环境监测中心站.海南省地表水环境质量期报(2006年平水期), p. 2007.
    [224]高建华,高抒,陈鹏,葛晨东,朱大奎.海南岛博鳌港沉积物的沿岸输送.海洋地质与第四纪地质, 2002, 22: 41-48
    [225]叶勇,卢昌义.海南长宁河口桐花树红树林土壤甲烷动态研究.热带海洋学报, 2001, 20: 35-42
    [226] Xiao, F., Y. Yin. Topography and Sediment Types of the Qingdao Coast Zone and the Adjacent Sea Areas (in Chinese). Marine Geology Letters, 2006, 22: 1-4
    [227] Yang, S. Y., H. S. Jung, D. I. Lim, C. X. Li. A Review on the Provenance Discrimination of Sediments in the Yellow Sea. Earth-Science Reviews, 2003, 63: 93-120
    [228] Zhang, P., J. Song, Z. Liu, G. Zheng, N. Zhang, Z. He. Pcbs and Its Coupling with Eco-Environments in Southern Yellow Sea Surface Sediments. Marine Pollution Bulletin, 2007, 54: 1105-1115
    [229] Saito, Y., Z. S. Yang. Historical Change of the Huanghe (Yellow River) and Its Impact on the Sediment Budget of the East China Sea, p., Proceedings of International Synposium on Global Fluxes of Carbon and Its Related Substances in the Coastal Sea-Ocean Atmosphere System. Hokkido University, 1994, 7-12.
    [230] Liu, J. P., K. H. Xu, A. C. Li, J. D. Milliman, D. M. Velozzi, S. B. Xiao, Z. S. Yang. Flux and Fate of Yangtze River Sediment Delivered to the East China Sea. Geomorphology, 2007, 85: 208-224
    [231] Wang, J., G. Liu, Y. Bao, G. Han, J. Liu. Geo-Chemical Characteristic of Tp in Surface Sediments in Yellow Sea (in Chinese). Marine Enviromental Science, 2002, 21: 53-56 117
    [232]龚子同,张效朴.中国的红树林与酸性硫酸盐土.土壤学报, 1994, 31: 86-94
    [233] Tsubota, G. Phosphate Reduction in the Paddy Field. Soil Plant Food, 1959, 5: 10-15
    [234] Andrieux, F., A. Aminot. A Two-Year Survey of Phosphorus Speciation in the Sediments of the Bay of Seine (France). Continental Shelf Research, 1997, 17: 1229-1245
    [235] Jensen, H. S., K. J. Mcglathery, R. Marino, R. W. Howarth. Forms and Availability of Sediment Phosphorus in Carbonate Sand of Bermuda Seagrass Beds. Limnology and Oceanography, 1998, 43: 799-810
    [236] Liu, S., J. Zhang, D. Li. Phosphorus Cycling in Sediments of the Bohai and Yellow Seas. Estuarine, Coastal and Shelf Science, 2004, 59: 209-218
    [237] Zheng, L., Y. Ye, H. Zhou. Phosphorus Forms in Sediments of the East China Sea and Its Environmental Significance. Journal of Geographical Sciences, 2004, 14: 113-120
    [238] Fang, T.-H., J.-L. Chen, C.-A. Huh. Sedimentary Phosphorus Species and Sedimentation Flux in the East China Sea. Continental Shelf Research, 2007, 27: 1465-1476
    [239] Agency, U. S. E. P. Zinc Phosphide: Reregistration Eligibility Decision p. 1998.
    [240] Who. Zinc Phosphide, p., 24. 1976.
    [241] Hilton, H. W., H. W. Robison. Fate of Zinc Phosphide and Phosphine in the Soil--Water Environment. Journal of Agricultural and Food Chemistry, 1972, 20: 1209-1213
    [242] Iverson, W., G. Olson. Anaerobic Corrosion of Iron and Steel: A Novel Mechanism. In: Current Perspectives in Microbial Ecology, p. In Iverson, W. and G. Olson [eds.]. American Society for Microbiology, 1984, 623-627.
    [243] Xiong, J. Phosphorus Biogeochemistry and Models in Estuaries: Case Study of the Southampton Water System. University of Southampton, 2000.
    [244] F?llmi, K. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth-Science Reviews, 1996, 40: 55-124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700