用户名: 密码: 验证码:
海水中超痕量活性磷的检测方法及其船载式仪器研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是海洋浮游植物生长所必需的营养元素,活性磷作为其主要无机形式,在磷的海洋生物地球化学过程中扮演着重要角色。寡营养盐海域海洋表层活性磷的浓度极低,通常在nmol/L水平。现有的活性磷测定方法已不能满足日益发展的海洋环境科学研究的需要,发展灵敏可靠的分析方法,研发相应的现场分析仪器,已成为该领域研究的技术基础和迫切需求。本论文针对现有方法的不足,研发灵敏度高、可靠性好、操作相对简单的超痕量活性磷分析方法和船载式仪器,并用于现场测定。主要内容和结果如下:
     (1)建立了海水中超痕量活性磷的船载式流动注射-C18固相萃取-分光光度测定方法。前期研究发现,作为阴离子的磷钼蓝(Phosphomolybdenum blue,PMB)可与阳离子表面活性剂十六烷基三甲基溴化铵(Cetyltrimethylammoniumbromide,CTAB)反应,生成均匀分散于水相的疏水性PMB-CTAB离子对化合物,该化合物可被Sep-Pak C18富集柱固相萃取,萃取后可被0.56 mol/L硫酸乙醇溶液从柱上迅速洗脱,洗脱液在700 nm和791 nm处有最大吸收。对本课题组前期已建立的流动注射-C18固相萃取-分光光度体系进行改善,包括试剂添加方式的优化、Schlieren效应的最小化、分析速度的提高、分析线性范围的扩大等。在优化的实验条件下,以盐度为35的海水为基底,检测限为1.57 nmol/L,线性范围3.4~515 nmol/L;对于浓度高于20 nmol/L的样品,分析时间为10 min/样,对浓度低于20 nmol/L的样品,分析时间为30 min/样。将本方法应用于船上现场分析,在长达一个月的航次中,测定覆盖了南中国海部分海域的32个站位100 m以浅的200多个水样,结果令人满意。实际海水中超痕量活性磷的现场测定,相对标准偏差(Relative standard deviation,RSD)为4.45%~6.75%,与Mg(OH)_2共沉淀(Magnesium hydroxide-induced coprecipitation,MAGIC)法比较,测定结果无显著性差异。
     (2)利用八位阀和自制检测器,建立了海水中超痕量活性磷的顺序注射-C18固相萃取-分光光度检测方法,方法检测限为1.26 nmol/L,线性范围3.4~515 nmol/L;对于浓度高于10 nmol/L的样品,分析时间为10 min/样,对浓度低于10 nmol/L的样品,分析时间为30 min/样。本方法自动化程度高,无样品和试剂浪费。本方法成功应用于船上现场分析,在长达一个月的航次中,测定了越南海域和南中国海北部的100余个大面站和2个时间序列站的500多个水样,结果令人满意。对实际海水中超痕量活性磷进行现场测定,RSD为4.07%~4.68%。
     (3)建立了海水中超痕量活性磷的顺序注射-HLB固相萃取-分光光度检测方法。在酸性条件下,PMB可被HLB(Hydrophilic-lipophilic balance)吸附剂固相萃取;富集在HLB上的PMB被0.15 mol/L的NaOH溶液迅速洗脱,洗脱液在700nm~800 nm之间有较大吸收。考察了PMB在HLB上的离线萃取和洗脱效率。采用单因素法对试剂用量、反应时间与温度、洗脱剂浓度、样品富集流速与时间,洗脱流速等实验参数进行了优化选择。考察了试样盐度的影响。在优化的实验条件下,方法的线性范围为3.4~1134 nmol/L,检测限1.42 nmol/L,实际海水基底加标回收率为94.35%,分析时间为6~10 min/样。考察了试样中硅酸盐和砷酸盐的影响,5000倍的硅酸盐对活性磷的测定无干扰;通过添加还原剂可掩蔽100nmol/L砷酸盐的干扰。以31 nmol/L的磷试样为考察对象,在最佳实验条件下于不同时间测定7次的RSD为2.50%。本法对实际海水的测定结果与MAGIC法无显著性差异。本法成功测定了取自南海的200多个100 m以浅海水样品中的活性磷含量,结果令人满意。本法十分适合船上现场在线分析,有发展成为原位测定的前景。
     (4)建立了海水中超痕量活性磷的反相流动注射-长光程分光光度测定方法。设计反相流动注射流路,以2 m的液芯波导管(Liquid waveguide capillary cell,LWCC)作为流通池,极大地提高经典磷钼蓝方法的检测灵敏度。采用单因素法对显色剂浓度、进样体积、混合盘管长度和样品流速等实验参数进行优化。考察了试样中盐度的影响。在优化的实验条件下,方法的检测限为0.5 nmol/L,测定下限为2.5 nmol/L,分析时间为4 min/样(样品测定2 min,更换样品与管道冲洗2 min),样品消耗量为10 mL/样(测定3次),样品加标回收率在87.8~101.8%之间,结果令人满意。考察了试样中硅酸盐和砷酸盐的影响,240μmol/L的硅酸盐和53.3 nmol/L的砷酸盐对空白溶液和82.5 nmol/L磷试样的测定无影响。以24.7和82.5 nmol/L的磷试样为考察对象,在最佳实验条件下连续测定9次,RSD分别为1.54%和1.86%。本法十分适合船上现场在线分析,亦有发展成为原位测定的前景。
     (5)提出了船载式超痕量活性磷检测系统的总体设计思路,通过光纤、流路接口螺丝与溶液管道,将系统所用的阀、泵、光源、检测器等部件有机结合,形成集成化的检测系统。利用Visual Basic 6.0编写的数据采集与记录软件的界面友好,易于操作。自制检测器稳定性好,120 min内对空白样品光强的相对标准偏差为0.026%(n=240),最大相对偏差小于0.06%,测定活性磷的灵敏度与商品化分光光度计基本无差异。
Phosphorus is an essential nutrient element for phytoplankton in marine environment.As the major form of inorganic phosphorus,soluble reactive phosphorus (SRP) plays an important role in the marine biogeochemical cycle of phosphorus.In oligotrophic open-ocean waters,SRP concentrations are down to nanomolar levels.At present,most of the reported determination techniques for SRP have not been successfully applied in the field of marine environmental science because of issues related to sensitivity,reproducibility,chemical interference and ease of use.It is thus increasingly demanded to establish sensitive and.reliable SRP detection technique and related shipboard instrument for the use in the oligotrophic open-ocean waters.To meet these requirements,the following studies have been carried out,and progresses have been made as follows:
     (1) A shipboard C18 solid phase extraction(SPE) method coupled with flow injection analysis(FIA) and colorimetric detection had been developed for the determination of ultra-trace amount of SRP in seawater.In the previous work,it was found that phosphomolybdenum blue(PMB) anion could react with a cationic surfactant, cetyltrimethylammonium bromide(CTAB) to yield a PMB-CTAB ion-pair compound, which could be efficiently extracted on a Sep-Pak C18 cartridge and eluted by 0.56 mol/L sulfuric acid ethanol solution,and thus determined with a spectrophotometer at 700 nm.In the present work,this previous method was further improved for field analysis on shipboard by optimizing the mode of adding reagents,the method of minimizing Schlieren effect,the parameters for reducing time for PMB-CTAB formation and sample loading.Under the optimized conditions,using seawater with salinity of 35 as a matrix,the linearity and the detection limit of the proposed method were found to be 3.4 to 515 nmol/L and 1.57 nmol/L,respectively.For samples with SRP concentration higher or lower than 20 nmol/L,the analysis time was 10 min/sample or 30 min/sample,respectively.The proposed method was applied on field during a cruise for one month in South China Sea.More than 200 samples collected from 32 stations were analyzed on shipboard laboratory.The relative standard deviation(RSD) ranged from 4.45 to 6.75%for the field analysis.In land-base laboratory,the seawater samples were analyzed with both the proposed method and the magnesium hydroxide-induced coprecipitation(MAGIC) method,and the results showed no significant difference with t test at the confidence interval 95%.
     (2) By the use of an 8-position valve and a lab-made spectrophotometer,a shipboard C18 SPE method coupled with sequential injection analysis(SIA) and colorimetric detection had been developed for the determination of ultra-trace amount of SRP in seawater.Using seawater with salinity of 35 as a matrix,the linearity and the detection limit of the proposed method were found to be 3.4 to 515 nmol/L and 1.26 nmol/L,respectively.For samples with SRP concentration higher or lower than 10 nmol/L,the analysis time was 10 min/sample or 30 min/sample,respectively.The proposed method was automatic,less reagents consuming and had been applied successfully during a one-month cruise in South China Sea for shipboard analysis of more than 500 samples.The RSD ranged from 4.07 to 4.68%.
     (3) A novel on-line HLB(Hydrophilic-lipophilic balance) SPE method coupled with SIA and colorimetric detection had been developed for the determination of ultra-trace amount of SRP in seawater.Under acidic condition,PMB could be first extracted on HLB solid phase,and then the adsorbed PMB could be rapidly eluted by a 0.15 mol/L NaOH solution,and thus determined with a lab-made detector at 740 nm. Experimental parameters,including the reagent concentration,the reaction time and temperature,the eluent concentration,the sample loading flow rate,and the eluting flow rate,were optimized with the experiments based on univariate experimental design.Under the optimized conditions,the calibration curve showed a linear range between 3.4 and 1134 nmol/L,and the detection limit and the recovery of the proposed method were found to be 1.42 nmol/L and 94.35%,respectively.The analysis time was 6~10 min/sample.Silicate concentration at 5000 times higher than that of phosphate would not interfere with the determination of SRP.The interference of 100 nmol/L arsenate could be masked by a reduction reagent.The RSD(n=7), which was determined at different time,was 2.50%for a sample with concentration of 31 nmol/L phosphate.Seawater samples were analyzed using both the proposed method and the MAGIC method,and the results of the two methods showed no significant difference using the t test at the confidence interval 95%.The proposed method was successfully applied in the land-base laboratory to determine about 200 seawater samples obtained from South China Sea.The proposed method has the potential to be developed as an in situ method.
     (4) A novel reverse flow injection analysis(rFIA) method coupled with liquid waveguide capillary cell(LWCC) and colorimetric detection for the determination of ultra-trace amount of SRP in seawater was established.Experimental parameters, including the reagent concentration,the sample:injection volume,the length of mixing coils and the sample flow rate,were optimized with the experiments based on univariate experimental design.Under the optimized conditions,the calibration curve showed a linear range between 8.25 and 165 nmol/L,and the detection limit and the recovery of the proposed method were found to be 0.5 nmol/L and 87.8~101.8%, respectively.The analysis time was 4 min/sample.240μmol/L silicate and 53.3 nmol/L arsenate showed no statistically significant effect on the signals of a blank and an 82.5 nmol/L sample.The RSDs for the determination of the samples at 24.7 and 82.5 nmol/L were 1.54%and 1.86%(n=9),respectively.Using the t-test at the 95% confidence level,the results of the proposed method and a segmented flow analyzer reference method for the determination of 2 samples showed no significant difference. The proposed method has the potential to be developed as an in situ method.
     (5) A shipboard system for ultra-trace SRP determination was designed and assembled.By the use of optical fibers,nuts and tubing,valves,pump,the light source and the detector could be integrated as a system.The controlling software programmed by Visual Basic 6.0 had a friendly interface and was easy to use.The lab-made detector was steady,and the RSD for the continuous determination of light intensity of a blank sample within 120 min was 0.026%(n=240),the biggest relative deviation was less than 0.06%.The experimental results of the accuracy for the lab-made detector and a commercial spectrophotometer for the determination of SRP showed no significant difference.
引文
[1]赖利,J.P;斯基罗,G.化学海洋学2[M].北京:海洋出版社,1982,267-268.
    [2]冯士榨,李风岐,李少菁 主编.海洋科学导论[M].北京:高等教育出版社,1999,134.
    [3]Dore,J.E.;Houlihan,T.,Hevel,D.V.,Tien,G.,Tupas,L.,Karl,D.M.Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater[J].Mar.Chem.1996,53:173-155.
    [4]Karl,D.M.Aquatic ecology-phosphorus,the staff of life[J].Nature.2000,406:31-33.
    [5]Cambridge,M.L.;Hocking,P.J.Annual primary production and nutrient dynamics of the seagrasses Posidonia sinuosa and Posidonia australis in south-western Australia[J].Aquat.Bot.1997,59:277-295.
    [6]Cadée,G.C.;Hegeman,J.Phytoplankton in the Marsdiep at the end of the 20th century:30years monitoring biomass,primary production,and Phaeocystis blooms[J].J.Sea Res.2002,48:97-110.
    [7]Thingstad,T.F.;Skjoldal,E.F.;Bohne,R.A.Phosphorus cycling and algal-bacterial competition in Sandsfjord,Western Norway[J].Mar.Ecol.-Prog.Ser.1993,99:239-259.
    [8]Karl,D.M.;Bjorkman,K.M.Phosphorus cycle in seawater:Dissolved and paniculate pool inventories and selected phosphorus fluxes[J].Method Microbiol.2001,30:239-270.
    [9]Zhang,Y.;Zhu,L.;Zeng,X.;Lin,Y.The biogeochemical cycling of phosphorus in the upper ocean of the East China Sea[J].Estuar.Coast.ShelfSci.2004,60:369-379.
    [10]Fdlmi,K.B.The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits[J].Earth-Sci.Rev.1996,40:55-124.
    [11]Pasquero,C.;Bracco,A.;Provenzale,A.Impact of the spatiotemporal variability of the nutrient flux on primary productivity in the ocean[J].J.Geophys.Res.2005,110:C07005.
    [12]张正斌,刘莲生编著.化学进展丛书-海洋化学进展[M].北京:化学工业出版社,2005,301-302.
    [13]McKelvie,I.D.;Peat,D.M.W.;Worsfold,P.J.Techniques for the quantification and speciation of phosphorus in natural waters[J].Anal.Proc.incl.Anal.Comm.1995,32:437-445.
    [14]Amint,A.;Andrieux,F.Concept and determination of exchangeable phosphate in aquatic sediments [J]. Wat. Res. 1996, 30: 2805-2811.
    [15] Robards. K.; McKelvie, I. D.; Benson, R. L.; Worsfold, P. J.; Blundell, N. J. Determination of carbon, phosphorus, nitrogen and silicon species in waters [J]. Anal. Chim. Acta. 1994, 287:147-190.
    [16] Jarvie, H. P.; Withers, P. J. A.; Neal, C. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity [J]. Hydrol. Earth Syst. Sci. 2002,6(1): 113-132.
    [17] Maher, W.; Woo, L. Procedures for the storage and digestion of natural waters for the determination of filterable reactive phosphorus, total filterable phosphorus and total phosphorus [J].Anal. Chim. Acta. 1998, 375: 5-47.
    [18] Smith, S. V. Phosphorus versus nitrogen limitation in the marine environment [J]. Limnol.Oceanogr. 1984,29: 1149-1160.
    [19] Krom, M. D.; Kress, N.; Brenner, S. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea [J]. Limnol. Oceanogr. 1991,36: 424-432.
    [20] Young, S. L.; Seiki, T.; Mukai, T.; Takimoto, K.; Okada, M. Limiting nutrients of phytoplankton community in Hiroshima bay, Japan [J]. Wat. Res. 1996, 30: 1490-1494.
    [21] Fujiki, T.; Toda, T.; Kikuchi, T. Phosphorus limitation of primary productivity during the spring-summer blooms in Sagami Bay, Japan [J]. Mar. Ecol.-Prog. Ser. 2004,283: 29-38.
    [22] Sarmiento, G; da Silva, M. P.; Naranjo, M. E; Pinillos, M. Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos [J]. J. Trop. Ecol. 2006,22: 203-212.
    [23] Cotnera, J. B.; Supleea, M. W.; Chena, N. W.; Shormann, D. E. Nutrient, sulfur and carbon dynamics in a hypersaline lagoon [J]. Estuar. Coast. Shelf Sci. 2004, 59: 639-652.
    [24] Sanudo-Wilhelmy, S. A.; Kustka, A. B.; Gobler, C. J.; Hutchins, D. A.; Yang, M.; Lwiza, K.;Burns, J.; Capone, D. G.; Raven, J. A.; Carpenter, E. J. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean [J]. Nature. 2001,411: 66-69.
    [25] Paytan, A.; McLaughlin, K. The oceanic phosphorus cycle [J]. Chem. Rev. 2007, 107:563-576.
    [26] Krom, M. D.; Herat, B.; Mantoura, R. F. C. Nutrient budget for the eastern Mediterranean:implications for phosphorus limitation [J]. Limnol. Oceanogr. 2004,49: 1582-1592.
    [27] Thingstad, T. F.; Krom, M. D.; Mantoura, R. F. C.; Flaten, G. A. F.; Groom, S.; Herut, B.;Kress, N.; Law, C. S.; Pasternak, A.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.;Tselepides, A.; Wassmann, P.; Woodward, E. M. S.; Riser, C. W.; Zodiatis, G.; Zohary, T.Nature of phosphorus limitation in the ultroligotrophic estern Mediterranean [J]. Science.2005,309: 1068-1071.
    [28] Karl, D. M.; Bjokman, K. M.; Dore, J. E.; Fujieki, L.; Hebel, D. V.; Houlihan, T.; Letelier, R.M.; Tupas, L. M. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA [J].Deep-Sea Research II. 2001, 48: 1529-1566.
    [29] Karl, D. M.; Letelier, R.; Hebel, D.; Tupas, L.; Dore, J.; Christan, J.; Wlnn, C. Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991-92 El Nino [J]. Nature.1995, 373:230-234.
    [30] Tyrrell T. The relative influence of nitrogen and phosphorus on oceanic primary productivity [J]. Nature. 1999,400: 525-531.
    [31] Chen, Y. L. L.; Chen, H. Y.; Karl, D. M.; Takahashi, M. Nitrogen modulates phytoplankton growth in spring in the South China Sea [J]. Cont. Shelf Res. 2004, 24: 527-541.
    [32] Wu, J.; Chung, S.-W.; Wen, L.-S.; Liu, K.-K.; Chen, Y.-L. L.; Chen, H.-Y.; Karl, D. M.Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea [J]. Global Biogeochem. Cycles. 2003, 17(1): 1008-1018.
    [33] Yimaz, A.; Tugrul, S. The effect of cold- and warm-core eddies on the distribution and stoichiometry of dissolved nutrients in the northeastern Mediterranean [J]. J. Mar. Syst.1998, 16:253-268.
    [34] Karl, D. M.; Tien, G. Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean [J]. Mar. Chem. 1997, 56: 77-96.
    [35] Cavender-Bares, K. K.; Karl, D. M.; Chisholm, S. W. Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean [J]. Deep-Sea Res. Part I-Oceanogr. Res. Pap. 2001,48: 2373-2395.
    [36] Wu, J. F. Sunda, W.; Boyle, E. A.; Karl, D. M. Phosphate Depletion in the Western North Atlantic Ocean [J]. Science. 2000, 289: 759-762.
    
    [37] 韩舞鹰.南海海洋化学[M].北京:科学出版社, 1998,289.
    
    [38] Karl, D. M.; Lukas, R. The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation[J].Deep-Sea Res.Part Ⅱ-Top.Stud.Oceanogr.1996,43:129-156.
    [39]Bjorkma,K.;Thomson-Bulldis,A.L.;Karl,D.M.Phosphorus dynamics in the North Pacific Subtropical Gyre[J].Aquat.Microb.Ecol.2000,22:185-198.
    [40]Broeck,N.V.D.;Moutin,T.;Rodier,M.;Bouteiller,A.L.Seasonal variations of phosphate availability in the SW Pacific Ocean near new Caledonia[J].Mar.Ecol.-Prog.Ser.2004,268:1-12.
    [41]Michaels,A.F.;Knap,A.H.Overview of the U.S.JGOFS Bermuda Atlantic Time-series study and the Hydrostation S program[J].Deep-Sea Res.Part Ⅱ-Top.Stud.Oceanogr.1996,43:157-198.
    [42]Zhang,J-Z.;Chi,J.Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide[J].Environ.Sci.Technol.2002,36:1048-1053.
    [43]Liang,Y.;Yuan,D.X.;Li,Q.L.;Lin,Q.M.Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection[J].Mar.Chem.2007,103:122-130.
    [44]袁梁英.南海北部营养盐结构特征[D].厦门大学硕士学位论文,2005.
    [45]Naldi,M.;Viaroli,P.Nitrate uptake and storage in the seaweed Ulva rigida C.Agardh in relation to nitrate availability and thallus nitrate content in a eutrophic coastal lagoon(Sacca di Goro,Po River Delta,Italy)[J].J.Exp.Mar.Biol.Ecol.2002,269:65-83.
    [46]Marchetti,R.;Provini,A.;Crosa,G.Nutrient load carded by the river Po into the Adriatic sea,1968-1987[J].Mar.Pollut.Bull.1989,20:168-172.
    [47]Turner,R.E.;Rabalais,N.N.Changes in the Mississippi River water quality this century-implications for coastal food webs[J].BioScience.1991,41:140-147.
    [48]Edmond,J.M.;Boyle,E.A.;Grant,B.;Stallard,R.F.The Chemical mass balance in the Amazon plume Ⅰ:the nutrients[J].Deep Sea Res.1981,28:1339-1374.
    [49]Edmond,J.M.,Spivack,A.,Grant,G.C.,Hu,M.-H.,Chen,X.,Chenge,S.,Zeng,X.Chemical dynamics of the Changiiang Estuary[J].Cont.Shelf Res.1985,4:17-36.
    [50]傅瑞标,沈涣庭.长江河口羽状锋溶解态无机氮磷的生物地球化学特征[J].海洋通报.2002.21(4):9-14.
    [51]Turner,R.E.;Raballals,N.N.;Zhang,Z.N.Phytoplankton biomass,production and growth limitations on the Huanghe(Yellow River) continental shelf[J].Cont.Shelf.Res.1990,10:545-571.
    [52]Bennekom,A.J.;Van & Wetsteijn,F.J.The winter distribution of nutrients in the southern bight of the North Sea(1961-1978) and in the estuaries of the Scheldt and the Rhine/Meuse [J].Neth.J.Sea Res.1990,25:75-87.
    [53]Justic,D.;Rabalais,N.N.;Turner,R.E.Stoichiometric Nutrient Balance and Origin of Coastal Eutrophication[J].Mar.Pollut.Bull.1995,30:41-46.
    [54]彭晓彤,周怀阳.海岸带营养盐生物地球化学研究评述[J].海洋通报.2002,21(3):69-77.
    [55]Moore,W.S.Review of the GEOSECS project[J].Nucl.lnstrum.Methods Phys.Res.1984,223:459-465.
    [56]Murphy,J.;Rilly,J.P.A modified single solution method for the determination of phosphate in natural waters[J].Anal Chim.Acta.1962,27:31-36.
    [57]Ormaza-gonzález,F.I.;Statham,P.J.A comparison of methods for the determination of dissolved and particulate phosphorus in natural waters[J].Wat.Res.1996,30:2739-2747.
    [58]Zimmermann,C.F.;Keefe,C.W.Determination of orthophosphate in estuarine and coastal waters by automated colorimetric analysis[S].United States Environmental Protection Agency,1997,EPA method 365.5.
    [59]国家海洋局.海洋监测规范[S].北京:海洋出版社,1991,179,277-281.
    [60]Levine,H.;Rowe,J.J.;Grimald,F.S.Molybdenum blue reaction and determination of phosphorus in waters containing arsenic,silicon,and germanium[J].Anal Chem.1955.27:258-262.
    [61]Müller,A.;Serain,C.Soluble molybdenum blues "des Pudels Kern"[J].Acc.Chem.Res.2000,33:2-10.
    [62]Drummond,L.;Mather,W.Determination of phosphorus in aqueous solution via formation of the phosphoantimonybdenum blue complex re-examination of optimum conditions for the analysis of phosphate[J].Anal Chim.Acta.1995,302:69-74.
    [63]Sj(o|¨)sten,A.;Blomqvist,S.Influence of phosphate concentration and reaction temperature when using the molybdenum blue method for determination of phosphate in water[J].Wat.Res.1997,31:1818-1823.
    [64]Pai,S.C.;Yang,C.C.;Riley,J.P.Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex[J].Anal.Chim.Acta.1990,229:115-120.
    [65]Neal,C.;Neal,M.;Wickham,H.Phosphate measurement in natural waters:two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies[J].Sci.Total Environ.2000,251/252:511-522.
    [66]Zhang,J-Z.,Fischer,C.J.,Ortner,P.B.Optimization of performance and minimization of silicate interference in continuous flow phosphate analysis[J].Talanta.1999,49:293-304.
    [67]Chen,H.W.;Brindel,I.D.;Le,X.C.Prereduction of arsenic(Ⅴ) to arsenic(Ⅲ),enhancement of the signal,and reduction of interference by L-cysteine in the determination of arsenic by hydride generation[J].Anal Chem.1992,64(6):667-672.
    [68]Tsang,S.;Phu,F.;Baum,M.M.;Poskrebyshev.,G.A.Determination of phosphate/arsenate by a modified molybdenum blue method and reduction of arsenate by S_2O_4~(2-)[J].Talanta.2007,71:1560-1568.
    [69]Lueck,C.H.;Boltz,D.F.Spectrophotometric study of modified heteropoly blue method for phosphorus,Anal.Chem.1956,28(7),1168-1171.
    [70]袁东星,梁英.海洋环境中痕量活性磷的分析技术研究进展[J].环境化学.2006,25(3):252-256.
    [71]梁英.海水中超痕量活性磷的检测方法研究[D].厦门大学博士学位论文,2006.
    [72]Patey,M.D.;Rijkenberg,M.J.A.;Statham,P.J.;Stinchcombe,M.C.;Achterberg,E.P.;Mowlem,M.Determination of nitrate and phosphate in seawater at nanomolar concentrations[J].Trends in Anal Chem.2004,27(2):169-182.
    [73]梁英,袁东星,林庆梅.沉淀分离富集-分光光度法测定海水中痕量活性磷酸盐[J].海洋环境科学.2006,25(3):81-85.
    [74]Karl,D.M.;Tien,G.MAGIC:A sensitive and precise method for measuring dissolved phosphorus in aquatic environments[J].Limnol.Oceanogr.1992,37:105-116.
    [75]Thomson-Bulldis,A.;Karl,D.M.Application of a novel method for phosphorus determinations in the oligotrophic North Paific Ocean[J].Limnol.Oceanogr.1998,43:1565-1577.
    [76]Rimmelin,P.;Moutin,T.Re-examination of the MAGIC method to determine low orthophosphate concentration in seawater[J].Anal,Chin,.Acta.2005,548:174-182.
    [77]赵颖翡.Mg(OH)_2共沉淀法测定溶解态低含量磷方法的研究及其应用[D].中国海洋大学硕士学位论文,2005.
    [78]Benitez-Nelson,C.R.;Karl,D.M.Phosphorus cycling in the North Pacific Subtropical Gyre using cosmogenic P-32 and P-33[J].Lin.nol.Oceanogr.2002,47:762-770.
    [79]Fuller,N.J.;West,N.J.;Made,D.;Yallop,M.;Rivlin,T.;Post,A.F.;Scanlan,D.J.Dynamics of community structure and phosphate status of picocyanobacterial populations in the GulfofAqaba,Red Sea[J].Lin.nol.Oceanogr.2005,50:363-375.
    [80]Karl,D.M.;Yanagi,K.Partial characterization of the dissolved organic phosphorus pool in the oligotrophic North Pacific Ocean[J].Limnol.Oceanogr.1997,42(6):1398-1405.
    [81]Bjorkman,K.M.;Karl,D.M.Bioavailability of dissolved organic phosphorus in the euphotic zone at station ALOHA,North Pacific Subtropical Gyre[J].Lin.nol.Oceanogr.2003,48:1049-1057.
    [82]Motomizu,S.;Toshiaki,W.;Kyoji,T.Solvent extraction-spectrophotometric determination of phosphate with molybdate and malachite green in fiver water and sea-water[J].Talanta.1984,31:235-240.
    [83]Kirkbright,G.F.;Narayanaswamy,R.;West,T.S.Spectrofluorimetric determination of orthophosphate as Rhodamine B molybdophosphate[J].Anal.Chem.1971,43:1434-1438.
    [84]Matsuo,T.;Shida,J.;Kudhara,W.Extraction-spectrophotometric determination of phosphate as the methylene blue molybodophosphate[J].Anal.Chim.Acta.1977,91:385-387.
    [85]王尊本,郑朱梓,陈素俭.海水中活性磷酸盐的萃取光度法测定[J].厦门大学学报自然科学版.1986,25(1):113-116.
    [86]Itano,T.;Itano,R.;Penniston,J.T.Determination of inorganic phosphate in the presense of nonionic detergents:A modifid isobutanol-benzene extraction method[J].Anal.Biochem.1980,101(1):196-199.
    [87]Di,J.;Liu,Q.;Li,W.Determination of trace phosphate ion with 3,3',5,5'-tetramethylbenzidine using a flotation-extraction preconcentration method and spectrophotometric detection[J].Talanta.2000,53:511-515.
    [88]Xue,Y.;Zheng X.W.;Li,G.X.Determination of phosphate in water by means of a new electrochemiluminescence technique based on the combination of liquid-liquid extraction with benzene-modified carbon paste electrode [J]. Talanta. 2007, 72: 450-456.
    [89] Dimson, P.; Brocto, S.; Majors, R. E. Automating solid phase extraction for HPLC sample preparation [J].Am. Lab. 1986,10: 82-94.
    [90] Vicente, F. A review of solid phase extraction: Basic principles and new developments [J].Chromatographia. 1995, 40: 474-483.
    [91] Yoshimura, K.; Ishii, M.; Tarutani, T. Microdetermination of phosphate in water by gel-phase colorimetry with molybdenum blue [J]. Anal. Chem. 1986, 58: 591-594.
    [92] Yoshimura, K.; Nawata, S.; Kura, G.. Gel-phase absorptionmetry of phosphate with molybdate and Malachite Green and its application to flow analysis [J]. Analyst. 1990, 115:843-848.
    [93] Taguchi, S.; Ito-Oka, E.; Masuyama, K.; Kasahara, I.; Goto, K. Application of organic solvent-soluble membrane filters in the preconcentration and determination of trace elements: spectrophotometric determination of phosphorus as phosphomolybdenum blue [J].Talanta. 1985,32:391-394.
    [94] Motomizu, S.; Susanto, J. P.; Oshima, M.; Mikasa, H.; Hori, Y. Ultra-trace determination of phosphate ion based on filtration-dissolution and flow-through spectrophotometric measurement [J]. Anal. Sci. 1995, 11:155-160.
    [95] Sabarudin, A.; Oshima, M.; Motomizu S. Ultratrace determination of phsphorus in ultrapurified water by a slope comparison method [J]. Anal. Chim. Acta. 2003, 481:311-319.
    [96] Freeman, P. R.; Mckelvie, I. D.; Hart, B. T.; Cardwell, T. J. Flow-injection for the determination of low-levels of phosphorus in natural waters [J]. Anal. Chim. Acta. 1990, 234:409-416.
    [97] Heckemann, H. J. Highly sensitive flow analysis determination of orthophosphate using solid phase enrichment of phosphomolybdenum blue without need for organic solvents in elution [J].Anal. Chim. Acta. 2000, 410: 177-184.
    [98] Yuchi, A.; Ogiso, A.; Muranaka, S.; Ogiso, T. N. Preconcentration of phosphate and arsenate at sub-ng ml-1 level with a chelating polymer-gel loaded with zirconium (IV) [J]. Anal.Chim. Ada. 2003,494: 81-86.
    
    [99] Taniai, T.; Sukegawa, M.; Sakuragawa, A.; Uzawa, A. On-line preconcentration of phosphate onto molybdate form anion exchange column[J].Talanta.2003,61:905-912.
    [100]Haberer,J.L.;Brandes,J.A.A high sensitivity,low volume HPLC method to determine soluble reactive phosphate in freshwater and saltwater[J].Mar.Chem.2003,82:185-196.
    [101]梁英,袁东星,林庆梅.固相萃取-分光光度法测定海水中痕量活性磷酸盐[J].分析化学.2005,33(8):1053-1057.
    []02]武汉大学编.分析化学(第四版)[M].北京:高等教育出版社,2000,217-218.
    [103]Lei,W.;Fujiwara,K.;Fuwa,K.Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry[J].Anal,Chem.1983,55:951-955.
    [104]Fuwa,K.;Lei,W.;Fujiwara,K.Colodmetry with a total-reflection long capillary cell[J].Anal,Chem.1984,56:1640-1644.
    [105]Ormaza-González,F.I.;Statham,P.J.Determination of dissolved inorganic phosphorus in natural-waters at nanomolar concentrations using a long-capillary cell detector[J].Anal.Chim.Acta.1991,244:63-70.
    [106]Dallas,T.;Dasgupta,P.K.Light at the end of the tunnel:recent analytical applications of liquid-core waveguides[J].Trends in Anal,Chem.2004,23(5):385-392.
    [107]Gimbert,L.J.;Worsfoid,P.J.Environmental applications of liquid core waveguide capillary cells coupled with spectroscopic detection[J].Trends in Anal,Chem.2004,26(9):914-930.
    [108]Gimbert,L.J.;Haygarth,P.M.;Worsfold,P.J.Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spectrophotometric detection[J].Talanta.2007,71(4):1624-1628.
    [109]Adornato,L.R.;Kaltenbacher,E.A.;Greenhow,D.R.;Byrne,R.H.High-resolution in situ analysis of nitrate and phosphate in the oligotrophic ocean[J].Environ.Sci.Technol.2007,41:4045-4052.
    [110]Li,Q.P.;Hansell,D.A.Intercomparison and coupling of magnesium-induced co-precipitation and long-path liquid-waveguide capillary cell techniques for trace analysis of phosphate in seawater[J].Anal,Chim.Acta.2008,611:68-72.
    [111]Ikebukuro,K.;Kubo,I.;Inagawa,M.;Sugawara,T.;Nakamura,H.;Arikawa,Y.;Suzuki,M.;Takeuchi,T.;Karube,I.Phosphate sensing system using pyruvate oxidase and chemiluminescence detection[J].Biosens.Bioelectron.1996,11:959-965.
    [112]Zui,O.V.;Birks,J.W.Trace analysis of phosphorus in water by sorption preconcentration and luminal chemiluminescence[J].Anal.Chem.2000,72:1699-1703.
    [113]Morais,I.P.A.;Mir6,M.;Manera,M.;Estela,J.M.;Cerdá,V.;Souto,M.R.S.;Rangel,A.O.S.S.Flow-through solid-phase based optical sensor for the multisyringe flow injection trace determination,of orthophosphate in waters with chemiluminescence detection[J].Anal Chim.Acta.2004,506:17-24.
    [114]Yaqoob,M.;Nabi,A.;Worsfold,P.J.Determination of nanomolar concentrations of phosphate in freshwaters using flow injection with luminal chemiluminescence detection[J].Anal.Chim.Acta.2004,510:213-218.
    [115]Nakamura,H.;Hasegawa,M.;Nomura,Y.;Arikawa,Y.;Matsukawa,R.;Ikebukuro,K.;Karube,I.Development of a highly sensitive chemiluminescence flow-injection analysis sensor for phosphate-ion detection using maltose phosphorylase[J].J.Biotechnol.1999,75:127-133.
    [116]Nakamura,H.;Tanaka,H.;Hasegawa,M.;Masuda,Y.;Arikawa,Y.;Nomura,Y.;Ikebukuro,K.;Karube,I.An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G(from Aerococcus viridans)[J].Talanta.1999,50:799-807.
    [117]Morais,I.P.A.;Tóth,I.V.;Rangel,A.O.S.S.An overview on flow methods for the chemiluminescence determination of phosphorus[J].Talanta.2005,66:341-347.
    [118]Liang,Y.;Yuan,D.X.;Li,Q.L;Lin,Q.M.Flow injection analysis of ultratrace orthophosphate in seawater with solid-phase enrichment and luminoi chemiluminescence detection.Anal Chim.Acta.2006,571:184-190.
    [119]Ruzicka,J;Hansen,E.H.著,徐淑坤,朱兆海.范世华,袁有宪,方肇伦 译.流动注射分析[M].北京:北京大学出版社,1991,19-21.
    [120]方肇伦.流动注射分析法[M].北京:科学出版社,1999,2-5.
    [121]Skeggs,L.T.An automatic method for colorimetric analysis[J].Amer.J.Cin.Pathol.1957,28:311-322.
    [122]Thabano,J.R.E.;Jens,C.T.;Sawula,G.M.Determination of orthophosphates using a macro segmented flow analyzer(MSFA) based on colorimetric detection[J].Talanta.2004,64:60-68.
    [123]Ruzicka,J.;Hansen,E.H.Flow Injection Analysis Part Ⅰ:A new concept of fast continuous flow analysis[J].Anal Chim.Acta.1975,78:145-147.
    [124]Johnson,K.S.;Petty,,R.L.Determination of phosphate in seawater by flow injection analysis with injection of reagent[J].Anal Chem.1982,54:1185-1187.
    [125]Motomizu,S.;Wakimoto,T.;Toei,K.Determination of trace amounts of phosphate in river water by flow-injection analysis[J].Talanta.1983,30:333-338.
    [126]Worsfold,P.J.;Clinch,J.R.;Casey,H.Spectrophotometric field-monitor for water-quality parameters-the determination of phosphate[J].Anal Chim.Acta.1987,197:43-50.
    [127]Wei,F.;Wu,Z.;Ten,E.The determination of trace of amounts of phosphate in natural-water by flow-injection fluorimetry[J].Anal.Let.1989,22:3081-3090.
    [128]Motomizu,S.;Li,Z.H.Trace and ultratrace analysis methods for the determination of phosphorus by flow-injection techniques[J].Talanta.2005,66:332-340.
    [129]Ruzicka,J.;Marshall,G.D.Sequential injection:a new concept for chemical sensors,process analysis and laboratory assays[J].Anal.Chim.Acta.1990,237:329-343.
    [130]Gubeli,T.;Christian,G.D.;Ruzicka,J.Fundamentals of sinusoidal flow sequential injection spectrophotometry[J].Anal Chem.1991,63:2407-2413.
    [131]Wang,J.;Taha,Z.Batch injection analysis[J].Anal Chem.1991,63:1053-1056.
    [132]Rocha,F.R.P.;Reis,B.F.;Zagatto,E.A.G.;Lima,J.F.C.;Lapa,R.A.S.;Santos,J.L.M.Multicommutation in flow analysis:concepts,applications and trends[J].Anal Chim.Acta.2002,468:119-131.
    [133]Estelar,J.M.;Cerdá,V.Flow analysis techniques for phosphorus:an overview[J].Talanta.2005,66:307-331.
    [134]美国FIAlab公司主页[Z].http://www.flowinjection.com/
    [135]美国O.I.分析仪器公司主页[Z].http://www.oico.com/
    [136]荷兰Skalar公司主页[Z].http://www.skalar.com/
    [137]英国Seal分析仪器有限公司主页[Z].http://www.seal-analytical.com/
    [138]上海新拓微波溶样测试技术有限公司主页[Z].hup://sh-xintuo.com/
    [139]美国Envirotech仪器公司主页[Z].http://www.envirotechinstruments.com/
    [140]美国Subchem公司主页[Z].http://www.subchem.com/
    [141]意大利Systea公司主页[Z].http://www.systea.it/
    [142]德国ME Grisard公司主页[Z].http://www.me-grisard.de/
    [143]范世福.光谱技术和仪器的新发展[J].光学仪器.2000,22(4):35-40
    [144]Thouron,D.,Vuillemin R.,Philippon,X.,Lourenco.A.,Provost,C.,Cruzado,A.An autonomous nutrient analyzer for oceanic long-term in situ biogeochemical monitoring[J].Anal.Chem.2003,75:2601-2609.
    [145]邹常胜.海水营养盐现场监测[J].海洋技术.2001,20(4):33-37.
    [146]温裕云.多通道营养盐自动分析系统的研制[D].厦门大学硕士学位论文,2004.
    [147]杨淑梅.论模块化设计与标准化.机械工业标准化与质量[J].1997,4:31-32.
    [148]范世福.现代分析仪器发展的前沿技术和设计思想.分析仪器[J].2000,3:1-4.
    [149]李国刚 编著.环境化学污染事故应急监测技术与设备[M].北京:化学工业出版社,2005.
    [150]Rios,A.;Escarpa,A.Cristina,M.;González,M.C.;Crevillén.A.G.Challenges of analytical microsystems[J].Trends in Anal.Chem.2006,25(5):467-479.
    [151]范世福.光谱技术和仪器的新发展.光学仪器[J].2000,22(4):35-40.
    [152]周南.当前分析仪器发展的方向.理化检验-化学分册[J].2001,37(6):284-285.
    [153]汪尔康主编.21世纪的分析化学[M].北京:科学出版社,1999.
    [1]Murphy,J.;Rilly,J.P.A modified single solution method for the determination of phosphate in natural waters[J].Anal,Chim.Acta.1962,27:31-36.
    [2]梁英.海水中超痕量活性磷的检测方法研究[D].厦门大学博士学位论文,2006.
    [3]Liang,Y.;Yuan,D.X.;Li,Q.L.;Lin,Q.M.Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and eolorimetric detection[J].Mar.Chem.2007,103:122-130.
    [4]Dore,J.E.;Houlihan,T.,Hevel,D.V.,Tien,G.,Tupas,L.,Karl,D.M.Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater[J].Mar.Chem.1996,53:173-185.
    [5]国家海洋局.海洋监测规范[S].北京:海洋出版社,1991,277-281.
    [6]Karl,D.M.;Tien,G..MAGIC:A sensitive and precise method for measuring dissolved phosphorus in aquatic environments[J].Limnol.Oceanogr.1992.37:105-116.
    [7]Berger,W.;Mccarty,H.;Smith,R.K.Environmental Laboratory Data Evaluation[M].Douglasville,GA,the Unites States:Genium Publishing Corporation,1996,2-11.
    [8]梁英,袁东星,林庆梅.固相萃取-分光光度法测定海水中痕量活性磷酸盐[J].分析化学.2005,33(8):1053-1057.
    [9]方肇伦.流动注射分析法[M].北京:科学出版社.1999,20-24.
    [10]美国Bio-chemvalve公司主页[Z].http://www.bio-chemvalve.com/
    [11]McKelvie,I.D.;Peat,D.M.W.;Matthews,G.P.;Worsfold,P.J.Elimination of the Schlieren effect in the determination of reactive phosphorus in estuarine waters by flow-injection analysis.Anal Chim.Acta.1997,351:265-271.
    [12]Chen,Y.L.L.;Chen,H.Y.;Karl,D.M.;Takahashi,M.Nitrogen modulates phytoplankton growth in spring in the South China Sea[J].Cont.Shelf Res.2004,24:527-541.
    [13]Wu,J.;Chung,S.-W.;Wen,L.-S.;Liu,K.-K.;Chen,Y.-L.L.;Chen,H.-Y.;Karl,D.M.Dissolved inorganic phosphorus,dissolved iron,and Trichodesmium in the oligotrophic South China Sea[J].Global Biogeochem.Cycles.2003,17(1):1008-101
    [1]Ruzicka,J.;Marshall,G.D.Sequential injection:a new concept for chemical sensors,process analysis and laboratory assays[J].Anal.Chim.Acta.1990,237:329-343.
    [2]方肇伦.流动注射分析法[M].北京:科学出版社.1999,55-56.
    [3]Berger,W.;Mccarty,H;Smith,R.K.Environmental Laboratory Data Evaluation[M].Douglasville,GA,the Unites States:Genium Publishing Corporation,1996,2-11.
    [4]梁英.海水中超痕量活性磷的检测方法研究[D].厦门大学博士学位论文,2006.
    [5]Liang,Y.;Yuan,D.X.;Li,Q.L.;Lin,Q.M.Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection[J].Mar.Chem.2007,103:122-130.
    [6]美国Valco仪器公司主页[Z]:http://www.vici.com/
    [7]温裕云.多通道营养盐自动分析系统的研制[D].厦门大学硕士学位论文,2004.
    [8]Heckemann,H.J.Highly sensitive flow analysis determination of orthophosphate using solid phase enrichment of phosphomolybdenum blue without need for organic solvents in elution [J].Anal.Chim.Acta.2000,410:177-184.
    [9]美国 TAOS 公司主页[Z]:http://www.taosinc.com/
    [10]Wu,J.;Chung,S.-W.;Wen,L.-S.;Liu,K.-K.;Chen,Y.-L.L.;Chen,H.-Y.;Karl,D.M.Dissolved inorganic phosphorus,dissolved iron,and Trichodesmium in the oligotrophic South China Sea[J].GlobalBiogeochem.Cycles.2003,17(1),1008-1018.
    [11]Chen,Y.L.L.;Chen,H.Y.;Karl,D.M.;Takahashi,M.Nitrogen modulates phytoplankton growth in spring in the South China Sea[J].Cont.Shelf Res.2004,24:527-541.
    [1]Waters公司.Waters液相色谱柱、配件和消耗品手册[Z],2006-2007,21-22.
    [2]Berger,W.;Mccarty,H;Smith,R.K.Environmental Laboratory Data Evaluation[M].Douglasville,GA,the Unites States:Genium Publishing Corporation,1996,2-11.
    [3]McKelvie,I.D.,Peat,D.M.W.,Matthews,G.P.,Worsfold,P.J.Elimination of the Schlieren effect in the determination of reactive phosphorus in estuarine waters by flow-injection analysis.Anal.Chim.Acta.1997,351:265-271.
    [4]梁英.海水中超痕量活性磷的检测方法研究[D].厦门大学博士学位论文,2006.
    [5]Drummond,L.;Mather,W.Determination of phosphorus in aqueous solution via formation of the phosphoantimonybdenum blue complex re-examination of optimum conditions for the analysis of phosphate[J].Anal.Chim.Acta.1995,302:69-74.
    [6]国家海洋局.海洋监测规范[S].北京:海洋出版社,1991.179,277-281.
    [7]Liang,Y.;Yuan,D.X.;Li,Q.L.;Lin,Q.M.Flow injection analysis of nanomolar level orthophosphate in seawater with solid phase enrichment and colorimetric detection[J].Mar.Chem.2007,103:122-130.
    [8]Heckemann,H.J.Highly sensitive flow analysis determination of orthophosphate using solid phase enrichment of phosphomolybdenum blue without need for organic solvents in elution [J].Anal.Chim.Acta.2000,410:177-184.
    [9]Levine,H.,Rowe,J.J.,Gdmaldi,F.S.Molybdenum blue reaction and determination of phosphorus in waters containing arsenic,silicon,and germanium.Anal.Chem.1955,27(2),258-262.
    [10]Zhang,J.-Z.;Fischer,C.J.;Ortner,P.B.Optimization of performance and minimization of silicate interference in continuous flow phosphate analysis[J].Talanta.1999,49:293-304.
    [11]Karl,D.M.,Tien,G.Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean.Mar.Chem.1997,56,77-96.
    [12]Chen,H.W.,Brindel,I.D.,Le,X.C.Prereduction of arsenic(Ⅴ) to arsenic(Ⅲ),enhancement of the signal,and reduction of interference by L-cysteine in the determination of arsenic by hydride generation.Anal.Chem.,1992,64(6),667-672.
    [13]Karl,D.M.,Tien,G,MAGIC:A sensitive and precise method for measuring dissolved phosphorus in aquatic environments[J].Limnol.Oceanogr.1992.37,105-116.
    [14]Chen,Y.L.L.;Chen,H.Y.;Karl,D.M.;Takahashi,M.Nitrogen modulates phytoplankton growth in spring in the South China Sea[J].Cont.ShelfRes.2004,24:527-541.
    [15]Wu,J.;Chung,S.-W.;Wen,L.-S.;Liu,K.-K.;Chen,Y.-L.L.;Chen,H.-Y.;Karl,D.M.Dissolved inorganic phosphorus,dissolved iron,and Trichodesmium in the oligotrophic South China Sea[J].Global Biogeochem.Cycles.2003,17(1):1008- 1018.
    [1]武汉大学主编.分析化学(第四版)[M].北京:高等教育出版社.2000:217-218
    [2]Dress,P.;Franke,H.Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide[J].Rev.Sci.lnstrum.1997,68:2167-2171.
    [3]Inya-Agha,O.;Stewart,S.;Veriotti,T.;Bruening,M.L.;Morris,M.D.Control of Teflon AF 2400 Permeability in a Liquid-Core Waveguide by an Ultra-Thin Crosslinked Polyamide Coating[J].Appl.Spectrosc.2002,56:574-578.
    [4]Gimbert,L.J.;Worsfold,P.J.Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection[J].Trends in Anal,Chem.2007,26:914-930.
    [5]Zhang,J-Z.;Chi,J.Automated analysis of nanomolar concentrations of phosphate in natural waters with liquid waveguide[J].Environ.Sci.Technol.2002,36:1048-1053.
    [6]Gimbert,L.J.;Haygarth,P.M.;Worsfold,P.J.Determination of nanomolar concentrations of phosphate in natural waters using flow injection with a long path length liquid waveguide capillary cell and solid-state spcctrophotometric detection[J].Talanta.2007,71(4):1624-1628.
    [7]Adornato,L.R.;Kaltenbacher,E.A.;Greenhow,D.R.;Byme,R.H.High-resolution in situ analysis of nitrate and phosphate in the oligotrophic ocean[J].Environ.Sci.Technol.2007,41:4045-4052.
    [8]Neves,M.S.A.C.;Souto,M.R.S.;Tdth,I.V.;Victal,S.M.A.;Drumond,M.C.;Rangcl,A.O.S.S.Spectrohotometric flow system using vanadomolybdophosphate detection chemistry and a liquid waveguide capillary cell for the determination of phosphate with improved sensitivity in surface and ground waster samples.Talanta.2008,doi:10.1016/i.talanta.2008.03.014
    [9]Li,Q.P.;Hansell,D.A.Intercomparison and coupling of maganesium-induced co-precipitation and long-path liquid-waveguide capillary cell techniques for trace analysis of phosphate in seawater.Anal.Chim.Acta.2008,611:68-72.
    [10]Johnson,K.S.;Petty,R.L.Determination of phosphate in seawater by flow injection analysis with injection of reagent.Anal.Chem.1982,54:1185-1187.
    [11]Saowapha,M.;McKelvie,I.D.Grace,M.R.;Rayanakom,M.;Grudpan,K.;Jakmunee,J.;Nacapricha,D.A reverse-flow injection analysis method for the determination of dissolved oxygen in fresh and marine waters.Talanta.2002,58:1285-1291.
    [12]Albcndin,G.;Mánuei-Vez,M.P.;Moreno,C.;Garcia-Vargas,M.Reverse flow-injection manifold for spectrofluorimetric determination of aluminum in drinking water.Talanta.2003,60:425-431.
    [13]Berger,W,Mccarty,H,Smith,R.K.Environmental Laboratory Data Evaluation[M].Douglasville,GA,the Unites States:Genium Publishing Corporation,1996.2-11.
    [14]Drummond,L.;Mather,W.Determination of phosphorus in aqueous solution via formation of the phosphoantimonybdenum blue complex re-examination of optimum conditions for the analysis of phosphate[J].Anal.Chim.,4cta.1995,302:69-74.
    [15]国家海洋局.海洋监测规范[S].北京:海洋出版社,1991,179,277-281.
    [16]Zhang,J.-Z.;Fischer,C.J.;Ortner,P.B.Optimization of performance and minimization of silicate interference in continuous flow phosphate analysis[J].Talanta.1999,49:293-304.
    [17] McKelvie, I.D., Peat, D. M. W., Matthews, G. P., Worsfold, P. J. Elimination of the Schlieren effect in the determination of reactive phosphorus in estuarine waters by flow-injection analysis [J]. Anal. Chim. Acta. 1997, 351: 265-271.
    [18] Levine, H., Rowe, J. J., Grimaldi, F.S. Molybdenum blue reaction and determination of phosphorus in waters containing arsenic, silicon, and germanium [J]. Anal. Chem. 1955, 27(2): 258-262.
    
    [19] Grasshoff, K. Methods of seawater analysis [M]. Verlag Chemie, New York, 1976, 121.
    [20] Karl, D.M., Tien, G. Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean. Mar. Chem. 1997, 56: 77-96.
    [21] Chen, H. W., Brindel, I. D., Le, X. C. Prereduction of arsenic (V) to arsenic (III),enhancement of the signal, and reduction of interference by L-cysteine in the determination of arsenic by hydride generation. Anal. Chem., 1992,64 (6): 667-672.
    [1]温裕云.多通道营养盐自动分析系统的研制[D].厦门大学硕士学位论文,2004.
    [2]杨淑梅.论模块化设计与标准化.机械工业标准化与质量[J].1997,4:31-32.
    [3]范世福.现代分析仪器发展的前沿技术和设计思想.分析仪器[J].2000,3:1-4.
    [4]范世福.光谱技术和仪器的新发展.光学仪器[J].2000,22(4):35-40.
    [5]周南.当前分析仪器发展的方向.理化检验.化学分册[J].2001,37(6):284-285.
    [6]美国Valco仪器公司主页[Z].http://www.vici.com/
    [7]美国Bio-Chem Valve仪器公司主页[Z].http://www.bio-chemvalve.com/
    [8]保定兰格恒流泵有限公司主页[Z].http://www.lgpump.com.cn/
    [9]美国FIAlab公司主页[Z].http://www.flowinjection.com/
    [10]南京春辉科技实业有限公司主页[Z].http://www.china-light-guides.com/
    [11]美国TAOS公司主页[Z].http://www.taosinc.com/
    [12]李长有.硅酸根浓度智能在线检测仪的研制[D].大连理工大学硕士学位论文,2003.
    [13]美国Microchip Technology公司主页[Z].http://www.microchip.com/
    [14]武峰.PIC系列单片机的开发应用技术[M].北京:北京航空航天大学出版社.1998.3.
    [15]李鸿吉.Visual Basic 6.0中文版编程方法详解[M].北京:科学出版社.2001.
    [16]桂万如,卢结成.基于VB6.0的光谱数据实时采集系统设计.江南大学学报(自然科学版)[J].2004,3(5):445-447.
    [17]王续跃,张绚.基于VB6.0的微机与单片机串行数据通讯.计算机工程[J].2002,28(7):267-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700