用户名: 密码: 验证码:
MR阻尼器的研究及其在升船机地震鞭梢效应上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从过去三十年到现在,许多研究者都在探索运用结构保护系统来减小外部动力荷载给土木工程结构所造成的危害,比如地震和台风。这些系统通常是增加阻尼装置来增强结构的能量耗散能力。一种最有前途的新装置是磁流变(MR)阻尼器,它具有机械构造简单、动力范围宽广、能量需求低和输出力大的特点,这类装置已经被证明能很好的运用于土木工程结构来抵抗强震和强风。本文对MR阻尼器的智能控制方法进行了系统的研究,并提出了三个方面的改进,即阻尼器装置、磁滞效应解决方法和智能控制方法。
     本文在MR阻尼器的准静态力学模型基础上,设计制作了新型MR阻尼器,该阻尼器具有适用范围广,性能稳定的特点。讨论了几何尺寸对阻尼器性能和阻尼器的两个重要指标:阻尼力大小和动力可调范围的影响。在不同电流输入,不同振幅输入和不同频率输入下对自制阻尼器进行了性能测试。并且,提出采用内置弹簧蓄能器的方法,解决了由于蓄能器补偿不足而造成的阻尼力滞后现象。
     本文对MR阻尼器的固有属性磁滞效应对控制效果的影响进行了系统的研究。分析表明,磁滞效应会给控制带来不利影响,并且随着磁滞时间的增加而趋于严重。本文提出采用神经网络预测的方法来减小磁滞效应对振动控制效果的不利影响,得出了一些有价值的结论。研究表明,通过神经网络预测能有效补偿磁滞时间,使控制效果能接近无磁滞效应的控制效果。
     本文提出了考虑磁滞效应的修正Bingham仿真模型。通过该模型得到样本数据,建立了能够模拟MR阻尼器逆向工作特性的逆模式神经网络模型。文中将该模型分别与两种控制方法(LQR控制方法和模糊控制方法)连接,形成了MR阻尼器的智能控制。研究表明,智能控制能够给MR阻尼器输入连续的控制电流,从而实现了MR阻尼器的连续可调。仿真分析表明,智能控制效果优于半主动控制效果,控制力能够很好的跟踪主动控制力。
     本论文还研究了MR阻尼器技术在水工结构三峡升船机上的应用。基于三峡升船机的三维有限元模型,本文建立了二维串联多自由度动力模型,利用二维模型进行了结构的动力特性分析。分析表明,升船机塔柱的抗侧刚度比顶部厂房柱的抗侧刚度大很多,引起了升船机顶部厂房强烈的地震鞭梢效应,使得升船机顶部厂房地震反应的控制成为升船机抗震设计中的关键问题之一。本文提出了屋盖MR智能隔震系统来解
    
    决顶部厂房的鞭梢效应问题,采用模糊半主动控制方法和模糊智能控制方法对该系统
    实施智能控制。仿真分析表明,屋盖MR智能隔震系统是一种有效实用的智能控制系
    统,模糊智能控制方法和模糊半主动控制方法能有效控制MR阻尼器,达到理想的控
    制效果。相比而言,模糊智能控制实现了MR阻尼器的控制电流连续可调,控制效果
    更好。
     本论文首次完成了安装屋盖MR智能隔震系统装置的升船机结构模型的振动台
    试验。试验结果表明:被动隔震装置能很好的解决三峡升船机结构模型的地震鞭梢效
    应问题,但是隔震层的层间侧移太大,安全性要求得不到保证。屋盖MR智能隔震系
    统装置的性能明显优于被动隔震装置,是一种安全实用的隔震装置。模糊智能控制方
    法能有效控制MR智能隔震系统,其控制效果明显比Passive一。ff控制和被动隔震的效
    果好。通过仿真分析与试验结果的比较,也证实了本文提出的仿真算法和模糊智能控
    制方法的正确性。
Over the past three decades, many interests have been generated to apply structural protective systems to mitigate the effects on civil engineering structures suffering from dynamic hazards, such as earthquake and strong wind. These systems always employ damping devices to intensify the energy dissipation ability of civil engineering structures. One of the most promising devices is magnetorheological (MR) fluid dampers. Because of their mechanical simplicity, high dynamic range, low power requirements and large force capacity, they have been shown to mesh well with application demands and constraints to offer an attractive means against severe earthquake and strong wind. The focus of this dissertation is the extensive research on MR dampers, including devices designing, improvement of the MR damper response time and intelligent control algorithm.
    New type of MR damper is designed and made based on the quasi-static model, so called parallel-plate model of MR dampers, which has the advantage of high dynamic range and stable performance. Effects of geometry on MR damper performance, controllable force and dynamic range are also discussed. Experimental results for the variable input current tests, amplitude-dependent tests, frequency-dependent tests are presented. The testing results imply that the MR damper resisting force increases as the applied current increases. The low carbon steel, which has a high permeability, increases the magnetic field in the gap and the saturation current resulting in an increased damping force. Due to relative high viscosity of MR fluid, eliminating air pockets in the damper and air dissolved in the fluid is very difficult. The trapped air results in a force lag in the MR damper responses. To reduce the effect of trapped air on damper performance, a pressurized spring accumulator is utilized, which has the advantage of mechanical simplicity over ordinary acridine accumulator.
    Magnetic hysteresis is the resisting force lag the controllable current due to the MR fluid response time and the resistance of magnetic material, which is the intrinsic characteristic of MR dampers. When the resistance force is large, magnetic hysteresis will have more serious effect on the performance of MR dampers. Therefore, resolving the problem of magnetic hysteresis is very significant to the structural controlling because of the large-scale MR dampers used in civil engineering structures. In order to decrease control infection resulting from the magnetic hysteresis of MR dampers, neural network prediction is proposed in this paper. Response prediction is to predict the future response through 4 to 5 past structural response, so that enough time is won to compute and generate the control force. The simulation results of this study imply that magnetic hysteresis of MR dampers can really influence the semi-active control whereas neural network prediction can successfully compensate for the response time of MR dampers.
    Taking into account of magnetic hysteresis of MR dampers, revised Bingham model for MR dampers is proposed in this dissertation. Training data is obtained from this model and is used to train the neural network. As a result, a inverse neural network model is established for MR dampers, which can be connected with LQR controlling method or fuzzy controlling method to form the intelligent control for MR dampers. The simulation results show that intelligent control can obtain the continuous controlling current for MR
    
    
    
    dampers, consequently, the resistance force of MR dampers can also be adjusted continuously.
    The application of intelligent controlling algorism on MR dampers is discussed in this dissertation. Ship-lifting structure whose main function is to lift the coming-and-going ships vertically to cut short the dam crossing time, is a kind of new structure in water conservancy works. Due to the great weight of the ship itself, it needs to be lifted to such a height that the ship-lifting structure has some particular features including huge lifting force, huge load and unusual struct
引文
[1] Yao, J. T.P., "Concept of Structural Control," Journal of the Structural Division, ASCE, 98(ST7), 1567-1574,(1972).
    [2] Uang, C-M., and Bertero, V.V.(1988). "Use of energy as a design criterion in earthquake-resistant design." Report No. UCB/EERC-88/18, university of California, Berkeley.
    [3] Housner, G.W. et al.(1997). "structural control: past, present, and future." J.Engrg. Mech., ASCE, 123:897-971.
    [4] Buckle, I.G., and Mayes, R.L.(1990). "Seismic isolation history, application, and performance-a would view." Earthquake Spectra, 6:161-201.
    [5] Soong, T.T., and Costantinou, M.C.(1994). "Passive Energy Dissipation Systems in Structural Engineering" , John Wiley & Sons, England.
    [6] Mayes, R.L., Sveinsson, B.L., and Buckle, L.G.(1988). "Analysis, design and testing of the isolation system for the Salt Lake City and County Building." Proc, International Seismic Isolation/Historic Preservation Symposium, Salt Lake City, UT.
    [7] Walters, M., Elsesser, E., and Allen, E.W.(1986). "Base isolation of the existing City and County Building in Salt Lake City." Proc. Seminar on Base Isolation and Passive Energy Dissipation, Applied Technology Council, Report No. 17.
    [8] Asher, J.W. et al.(1990). "Seismic isolation of the USC University Hospital." Proc. 4th U.S. Nat. Conf. on Earthquake Engrg., 3:529-538.
    [9] Youssef, N. et al. (1995). "Passive control of the Los Angeles City Hall." Proc. Joint ASME/JSME pressure Vessels and Piping Conf., Seismic Shock and Vibration ISOLATION, 319:241-248.
    [10] Asher, J.W., Young, r.p., and Ewing, R.D.(1994). "Seismic isolation design of the San Bernardino County Medical Ceter replacement project." Proc. 1st World Conf. on Struct. Control, FA3:58-67.
    [11] Soong, T.T., and Dargush, G.F.(1997). Passive Energy Dissipation SySTEMS IN Structural Engineering, John Wiley & Sons, England.
    [12] Soong, T.T., and Spencer Jr., B.F.(2001). " Supplemental energy dissipation: state-of-the-art and state-of-the-practice." Engineering Structures, submitted.
    [13] Clark, P.W., Aiken, I.D., Tajirian, F.,Kasai, K.,Ko,E., and Kimura, I.(1999). "Design procedures for buildings incorporating hysteretic damping devices." Proc. Int. Post-Smirt Conf. Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures, 1:317-337.
    [14] Ou, J.P., and Wu, B.(1995). "Experiment comparison of the properties of friction and
    
    mild steel yielding energy dissipators and their effects on reducing vibration of structure under earthquake." Earthquake Engrg and Engrg. Vib., 15:45-62.
    [15] Xia, C., and Hanson, R.D.(1992). "Influence of ADAS element parameters on building seismic response." J.Struct. Engrn., ASCE, 118:1903-1918.
    [16] Aiken, I.D., and Kelly, J.M.(1990). "Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures." Report No. UCB/EERC-90/03, university of Califormia, Berkeley, CA.
    [17] Aprile, A., Inaudi, J.A., and Kelly, J.M.(1997). "Evolutionary model of viscoelastic dampers for structural applications." J.Engrg. Struct., 123:551-560.
    [18] Crosby, P., Kelly, J.M., and Sjingh, J.(1994). "Utilizing viscoelastic dampers in the seismic retrofit of a thirteen story steel frame building." Structures Congress Ⅻ, Atlanta, GA, pp.1286-1291.
    [19] Constanitinou, M.C., and Symans, M.D.(1992). "Experimental and analytical investigation of seismic response of structures with supplemental fluid viscous dampers." Report No. NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, NY.
    [20] Constantinou, M.C., Symans, M.D., Tsopelas, P., and Taylor, D.P.(1993). "Fluid viscous dampers in applications of seismic energy dissipation and seismic isolation." Proc. ATC-17-1 Seminar on seismic Isolation, Passive Energy Dissipation, and Active Control, 2:581-591.
    [21] Arima, F., Miyazaki, M., Tanaka, H., and Yamazaki, Y.(1988). "A study on building with large damping using viscous damping walls." Proc. 9th World Conf. on Earthquake Engrg., Tokyo, 5:821-826.
    [22] Miyazaki, M., and Mitsusaka, Y.(1992). "Design of a building with 20% or greater damping." Proc. 10th World Conf. on Earthquake Engrg., Madrid, pp.4143-4148.
    [23] Abe, M. and Fujino, Y. (1994). "Dynamic characterization of multiple tuned mass dampers and some design formulas." Earthquake Engrg. and Sturct. Dyn., 23:813-835.
    [24] Li, C.(2000). "Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration." Earthquake Engrg. and Struct. Dyn.,29:1405-1421.
    [25] Balendra, T., Wang, C.M., and Cheong, H.F.(1995). "Effectiveness of tuned liquid column dampers for vibration control of towers." Engrg. Struct., 17:668-675.
    [26] Bamerji, P., Murudi, M., Shah, A.H., and Popplewell, N. (2000). "Tuned liquid dampers for controlling earthquake response of structures." Earthquake Engrg. and Struct. Dyn., 29:587-602.
    [27] Perry, C.L., Fierro, E.A., Sedarat, H., and Scholl, R.E. (1993). "Seismic upgrade in San Francisco using energy dissipation devices." Earthquake Spectra, 9:559-579.
    
    
    [28] Martinez-Romero, E. (1993). "Experiences on the use of supplemental energy dissipators on building structures." Earthquake Spectra, 9:581-625.
    [29] Mahmoodi, P., Robertson, L.E., Yontar, M., Moy, C., and Feld, I. (1987). "Performance of viscoelastic dampers in World Trade Center Towers." Dynamic of Structures Congress, Orlando, FL.
    [30] Dyke, S.J., Spencer Jr., B.F., Quast, P., Sain, M.K., Kaspari, Jr., D.C., and Soong, T.T.(1995). "Acceleration feedback control of MDOF structures." J.Engrg. Mech., ASCE, 122(9):907-918.
    [31] Magana, M.E., and Rodellar J.(1998). "Active nonlinear robust control of cablestayed bridges in the presence of strong vertical ground motion due to earthquakes." Proc. 2nd World Conf. on Struct. Control, 3:1947- 1956.
    [32] Adhikari, R., Yamaguchi, H., and Yamazaki, T.(1998). "Modal space sliding-mode control of structures." Earthquake Engrg. and Struct. Dyn., 27:1303-1314.
    [33] Cai, G.P., Huang, J.Z., Sun, F., and Wang, C.(2000). "Modified sliding-mode bang-bang control for seismically excited linear structures." Earthquake Engrg. and struct. Dyn., 29:1647-1657.
    [34] Baba, K., Yabushita, N., Kasumoto, H., Murakami, H., and Inoue, H. (1998). "Model reference adaptive control on soil-structure interaction systems under earthquake disturbance." Proc. 2nd Would Conf. on Struct. Comtrol, 2:1549-1559.
    [35] Battaini, M., Casciati, F., and Faravelli, L.(1998). "Fuzzy control of structural vibration. An active mass system driven by a fuzzy controller." Earthquake Engrg. and Sturct. Dyn., 27:1267-1276.
    [36] Hung, S.L., and Lai C.M.(2001). "Unsupervised fuzzy neural network structural active pulse controller." Earthquake Engrg. and Struct. Dyn., 30: 465-484.
    [37] Bani-hani, K., and Ghaboussi, J.(1998). "Neural networks for structural control of a benchmark problem, active tendon system." Earthquake Engrg. and Struct. Dyn., 27:1225-1245.
    [38] Agrawal, A.K., and Yang, J.N.(1997). "Optimal polynomial control of seismic-excited linear structures." J. Engrg. Mech., ASCE, 122:753-761.
    [39] Mei, G., Kareem, A., and Kantor, J.C.(2001a). "Real-time model predictive control of structures under earthquakes." Earthquake Engrg. and Struct. Dyn., 30:995-1019.
    [40] Mei, G., Kareem, A., and Kantor, J.C.(2001b). "Model predictive control of structures under earthquakes using acceleration feedback." J. Engrg. Mech., ASCE, in press.
    [41] Reinborn, A.M., and Riley, M.A.(1994). "Control of bridge vibrations with hybrid devices." Proc. 1 st World Conf. on Struct. Control, TA2:50-59.
    [42] Dyke, S.J., Spencer Jr., B.F., Sain, M.K., and Carlson, J.D.(1998). "An experimental study of MR dampers for seismic protection." Smart. Mat. and Struct., 5:693-703.
    [43] Jansen, L.M., and Dyke, S.J. (2000). "Semiactive control strategies for MR dampers:
    
    comparative study." J. Engrg. Mech., ASCE, 126(8):795-803..
    [44] Johnson, E.A., Baker, G.A., Spencer Jr., B.F., and Fujino, Y.(2001a). "Semiactive Damping of Stay Cables." J. Engrg. Mech., ASCE.
    [45] Johnson, E.A., Baker, G.A., Spencer Jr., B.F., and Fujino, Y.(2001b). "Semiactive Damping of Cables with sag." Computer-Aided Civil Infrastructure Engineering.
    [46] Feng. Q., and Shinozuka, M.(1990). "Use of a variable damper for hybrid control of bridge response under earthquake." Proc. U.S. Nat. Workshop on Struct. Control Res., USC Publ. No. CE-9013.
    [47] Symans, M.D., Constantinou, M.C., Taylor, D.P., and Gamjost, K.D.(1994). "Semi-active fluid viscous dampers for seismic response control." Proc. 1st Would Conf. on Struct. Control, FA4:3-12.
    [48] Symans, M.D., and Constantinou, M.C.(1997). "Seismic testing of a building structure with semi-active fluid damper control system." Earthquake Engrg. and Struct. Dyn., 26:757-777.
    [49] Kobori, T., Takahashi, M., Nasu, T., Niwa N., and Ogasawara, K.(1993). "Seismic response controlled structure with active variable stiffness system." Earthquake Engrg. and Struct. Dyn., 22:925-941.
    [50] Kurata, N., Kobori, T., Takahashi, M., Niwa, N., and Midorikawa, H.(1999). "Actual seismic response controlled building with semi-active damper system." Earthquake Engrg. and Struct. Dyn., 28:1427-1447.
    [51] Kurata, N., Kobori, T., Takahashi, M., Ishibashi, T., Niwa, N., Tagami, J., and Midorikawa, H.(2000). "Forced vibration test of a building with semi-active damper system." Earthquake Engrg. and Struct. Dyn., 29:629-645.
    [52] Patten W.N.(1998). "The 1-35 Walnut Creek Bridge: an intelligent highway bridge via semi-active structural control." Proc. 2nd World Conf. on Struct Control, 1:427-436.
    [53] Patten W.N.(1999). "Field test of an intelligent stiffener for bridges at the 1-35 Walnut Creek Bridge." Earthquake Engrg. and Struct. Dyn., 28:109-126.
    [54] Dodwell, D.J., and Cherry, S.(1994). "Structural control using semi-active friction damper." Proc. 1st World Conf. on Struct. Control, FA1:59-68.
    [55] Feng, Q., Shinozuka, M., and Fujii, S.(1993). "Friction-controllable sliding isolated systems." J.Engrg. Mech., ASCE, 119:1845-1864.
    [56] Inaudi, J.A.(1997). "Modulated homogeneous friction: a semi-active damping strategy." Earthquake Engrg. and Struct. Dyn., 26:361-376.
    [57] Haroun, M.A., Pires, J.A., and Won, A. (1994). "Active orifice control in hybrid liquid column dampers," Proc. 1st Would Conf. on Struct. Control, FA1:69-78.
    [58] Lou, J.Y.K., Lutes, L.D., and Li, J.J(1994). "Active tuned liquid damper for structural control." Proc. 1st World Conf. Struct. Control, TP1:70-79.
    [59] Yalla, S.K., and Kareem, A.(2001). "Modeling TLDs using impact characteristics:
    
    experiments and system identification." Earthquake Engrg. and Struct. Dyn.
    [60] Phillips, R.W.(1969). "Engineering applications of fluids with a variable yield stress." Ph.D thesis, University of California, Berkeley, California.
    [61] Burton, S.A., Makris, N., Konstantopoulos, L., and Antsaklis, P.J.(1996). "Modeling the response of ER damper: phenomenology and emulation." J.Engrg. Mech., 122:897-906.
    [62] Gavin, H.P., Hanson, R.D., and Filisko, F.E.(1996a). "Electrorheological dampers, part 1: analysis and design." J. Applied Mech., ASME, 63:669- 675.
    [63] Gavin, H.P., Hanson, R.D., and Filisko, F.E.(1996b). "Electrorheological dampers, part 1: analysis and design." J. Applied Mech., ASME, 63:676- 682.
    [64] Markis, N., Burton, S.A., Hill, D., and Jordan, M.(1996). "Analysis and design of ER damper for seismic protection of structures." J. Engrg. Mech., 122:1003-1011.
    [65] Ehrgott, R., and Masri, S.F.(1992). "Modeling the oscillatory dynamic behavior of electrorheological materials in shear." Smart Mat. and Struct., 1:275-285.
    [66] Chang, C.C., and Roschke, P.(1998). "neural network modeling of a magnetorheological damper." J. Intelligent Material Systems and Structures, 9:755-764.
    [67] Stanway, R., Sproston, J.L., and Stevens, N.G.(1987). "Non-linear modeling of an electrorheological vibration damper." J. Electrostatics, 20:167-184.
    [68] Gamoto, D.R., and Filisko, F.E.(1991). "Dynamic mechamical studies of electrorheological materials: moderate frequencies." J. Rheology, 35(3): 399-425.
    [69] Kamath, G.M., and Wereley, N.M.(1996). "A nonlinear viscoelastic- plastic model for electrorheological fluids." Smart Mat. and Struct., 6:351-359
    [70] Kamath, G.M., Hurt, M.K., and Wereley, N.M.(1996). "Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers." Smart Mat. and Struct., 5:576-590.
    [71] Dyke, S.J., Spencer Jr., B.F., Jr.,Sain, M.K., and Caroson, J.D.(1996a). "Modeling and control of magnetorheological dampers for seismic response reduction." Smart Mat. and Struct., 5:565-575.
    [72] Dyke, S.J., Spencer Jr., B.F., Jr.,Sain, M.K., and Caroson, J.D.(1996b). "seismic response reduction using magnetroheological dampers." Proc. IFAC World Cong., vol. L, Int. Fed. Of Automatic Control, pp. 145-150.
    [73] Dyke, S.J., and Spencer Jr., B.F.(1997). "A comparison of semi-active control strategies for the Mrdamper." Proc. of the IASTED International Conf., Intelligent Information System, The Bahamas.
    [74] Ramallo, J.C., Johnson, E.A., and Spencer Jr., B.F.(2001). "Smart base isolation systems." J.Engrg. Mech., ASCE.
    [75] Carlson, J.D., and Spencer Jr., B.F.(1996a). "Magneto-rheological fluid dampers:
    
    scalability and design issues for application to dynamic hazard mitigation." Proc. 2nd Workshop on Structural Control: Next Generation of Intelligent Structures, Hong Kong, China, pp. 99-109.
    [76] Carlson, J.D., and Spencer Jr., B.F.(1996b). "Magneto-rheological fluid dampers for semi-active seismic control." Proc. 3rd International Conference on Motion and Vibration Control, vol. 3, Chiba, Japan, pp. 35-40
    [77] Yang, G, Ramallo, J.C., Spencer Jr., B.F., Carlson, J.D., and Sain, M.K. (2000a). "Dynamic Performance of large-scale MR fluid dampers." Proc. 14th ASCE Engineering Mechamics Conference, CD-ROM, Austin, Texas.
    [78] Yang, G., Ramallo, J.C., Spencer Jr., B.E, Carlson, J.D., and Sain, M.K. (2000b). "Large-scale MR fluid dampers: dynamic performance considerations." Proc. International Conference on Advances in Structure Dynamics, vol, 1, Hong Kong, Chian, pp. 341-348.
    [79] Yang, G., Spencer Jr., B.F., Carlson, J.D., and Sain, M.K. (2001a). "Large-scale MR fluid dampers: modeling, and dynamic performance considerations." Engineering Structures.
    [80] Yang, G., Spencer Jr., B.F., Carlson, J.D., and Sain, M.K.(2001b). "Dynamic modeling and performance considerations on full-scale Mrfluid dampers." Proc. 8th International Conference on Structural Safety and Reliability, Newport Beach, CA.
    [81] Yang, G., Jung, H.J., and Spencer Jr., B.F.(2001 c). "Dynamic model of full-scale MR dampers for civil engineering applications." Proc. US-Japan Workshop on Smart Structures for Improved Seismic Performance in Urban Region, Seattle, WA.
    [82] Spencer Jr., B.F., Dyke, S.J., Sain, M.K., and Carlson, J.D.(1997a). "Phenomenological model of a magnetorheological damper." J.Engrn. Mech., ASCE, 123:230-238.
    [83] Lee, D.Y., and Wereley, N.M.(2000). "Analysis of electro- and magneto-rheological flow mode dampers using Herschel-Bulkley model." Proc. SPIE Smart Structure and Materials Conference, vol.3989, Newport Beach, California, pp.244-252.
    [84] Wereley, N.M., and Pang, L. (1998). " Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models." Smart Materials and Structures, 7:732-743.
    [85] Wereley, N.M., Pang, L., and Kamath, G.M.(1998). "Idealized hysteresis modeling of electrorheological and magnetorheological dampers." J. Intelligent Mat., Systems and Struct., 9:642-649.
    [86] Spencer Jr., B.F., Carlson, J.D., Sain, M.K., and Yang, G.(1997b). "On the current status of magnetorheological dampers: seismic protection of full-scale structures." Proc. American Control Conf., pp.458-462.
    [87] Akbay, Z., and Aktan, H.M.(1990). "Intelligent energy dissipation devices." Proc. 4th
    
    U.S. Nat. Conf. on Earthquake Engrg., 3:427-435.
    [88] Coleman. T., Branch, M.A., and Grace, A.(1999). Optimization Toolbox for Use with Matlab: User's Guide. Version2, Natick, M.A.
    [89] De Stefano, A., Sabia, D., and Sabia, L.(1999). "Probabilistic neural networks for seismic damage mechanism prediction." Earthquake Engrg. and Struct. Dyn., 28: 807-821.
    [90] Engineering Note(1999a). "Designing with MR Fluids." Lord Materials Division.
    [91] Engineering Note(1999b). "Magnetic Circuit Design." Lord Materials Division.
    [92] Faravelli, L., and Yao, T.(1996). "Use of adaptive network in fuzzy control of civil structures." Microcomputers in Civil Engrg., 11:67-76.
    [93] Ghaboussi, J., and Joghataie, A.(1995). "Active control of structures using neural networks." J.Engrg. Mech., ASCE, 121:555-567.
    [94] Hung, S.L., Kao, C.Y., and Lee, J.C.(2000). "Active pulse structural control using artificial neural networks." J.Engrg. Mech., 126:839-849.
    [95] Liut, D.A., Matheu, E.E., Singh, M.P., and Mook, D.T.(1999). "Neural-network control of building structures by a force-matching training scheme." Earthquake Engrg. and Struct. Dyn.,28:1601-1620.
    [96] 长江水利委员会,三峡大坝永久导航结构研究,湖北科学技术出版社,中国湖北,1997。
    [97] 陈厚群,胡晓等,三峡升船机塔柱结构抗震试验研究,地震工程与工程振动,1999,19(1):47-53
    [98] 吴杰芳,陈敏中等,三峡工程垂直升船机建筑结构整体抗震计算,长江科学院学报,1997,14(3):43-46
    [99] 李桂青,霍达,邹祖军(1991),结构控制理论及其应用,武汉工业大学出版社
    [100] 周福霖(1997),工程结构减震控制,地震出版社
    [101] 周强,瞿伟廉,磁流变阻尼器的两种力学模型和试验验证,地震工程与工程振动,22(4),2002,144-150
    [102] 瞿伟廉主编(1991),高层建筑和高耸结构的风振控制,武汉测绘科技大学出版社
    [103] 周锡元,阎维明,杨润林(2002),建筑结构的隔震、减振和振动控制,建筑结构学报,23(2):2-12
    [104] 庸家祥,刘再华(1993),建筑结构基础隔振,华中理工大学出版社
    [105] 吴波,李惠(1997),建筑结构被动控制的理论和应用,哈尔滨工业大学出版社
    [106] 陶宝祺主编(1997),智能材料结构,国防工业大学出版社
    [107] 杜善义,冷劲松,王殿富(2001),智能材料系统和结构,科学出版社
    [108] 瞿伟廉,李卓球,袁润章,项海帆(1999),智能材料—结构系统在土木工程中的应用,地震工程与工程振动,19(3):49-55
    [109] 瞿伟廉,袁润章,项海帆(1999),ER智能材料—减震结构体系的研究,振动
    
    工程学报,12(2):193-201
    [110]欧进萍,关新春(1999),土木工程智能结构体系研究与发展,地震工程与工程振动,19(2):21-28
    [111]王社良(2000),形状记忆合金在结构控制中的应用,陕西科学出技术出版社
    [112]瞿伟廉,陈朝晖,徐幼麟(2000),压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制,地震工程与工程振动,20:94-99
    [113]欧进萍,杨飏,关新春(2002),结构振动的压电摩擦阻尼控制分析,中日结构减震及健康监测研讨会暨第三届中国结构抗振控制年会,上海
    [114]王军武(2002),单层厂房排架结构地震反应的压电材料智能混合控制,武汉理工大学博士学位论文
    [115]陈波(2001),压电材料智能力矩控制器对建筑结构地震反应的主动控制,武汉理工大学硕士论文
    [116]易明,靳晓雄(2001),用于车内减振降噪的智能材料和结构的研究,汽车技术,26-29
    [117]杨大智(2000),智能材料与智能系统,天津大学出版社
    [118]陈非遐,杨大智(2000),超磁致伸缩材料在智能结构中的应用,智能材料与集成系统发展战略文集,大连
    [119]欧进萍,关新春(1998),磁流变耗能器及其性能,地震工程与工程振动,18:74-81
    [120]欧进萍,关新春(1999),磁流变耗能器的性能试验研究,地震工程与工程振动,19:76-81
    [121]关新春,欧进萍(2001),磁流变耗能器的阻尼力模型及其参数确定,振动与冲击,20:5-9
    [122]吕明云(2002),大坝升船机地震鞭梢效应的MR智能半主动控制研究,武汉理工大学博士学位论文
    [123]瞿伟廉,徐幼麟(2001),ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制,地震工程与工程振动,21:24-31
    [124]瞿伟廉,王军武,徐幼麟,陈朝晖(2000),ER/MR智能阻尼器耦联的带裙房高层建筑结构地震反应的半主动控制,地震工程与工程振动,20:87-95
    [125]瞿伟廉,吕明云,李学安(2002),屋盖MR智能隔震系统对升船结构顶部厂房地震鞭梢效应的模糊控制,地震工程与工程振动,22:129-137
    [126]瞿伟廉,陈静,徐幼麟(2002),MR阻尼器耦联的带裙房高层建筑的半主动控制试验研究,中日结构减震及健康监测研讨会暨第三届中国结构抗振控制年会,上海
    [127]李忠献,吴林林,徐龙河,周云(2002),磁流变阻尼器的构造设计与性能研究,中日结构减震及健康监测研讨会暨第三届中国结构抗振控制年会,上海
    [128]陈勇(2001),采用ER/MR阻尼器作斜拉索振动的半主动控制,浙江大学博士学位论文
    [129]邬喆华,陈勇,楼文娟等(2002),斜拉索采用MR阻尼器振动控制的试验研
    
    究,中日结构减震及健康监测研讨会暨第三届中国结构抗振控制年会,上海
    [130]陈水生(2002),大跨度斜拉索的振动及被动、半主动控制,浙江大学博士学位论文
    [131]官建国(2001),电流变液新材料,世纪之交的中国高分子科学。功能高分子(第十九章),化学工业出版社,北京
    [132]王刚,欧进萍(2000),结构振动的模糊建模与模糊控制规则提取,国际结构振动控制和健康诊断学术研讨会,中国深圳
    [133]张利芬,欧进萍(2000),结构模糊控制规则优化生成的遗传算法,国际结构振动控制和健康诊断学术研讨会,中国深圳
    [134]阎石,李宏男(2000),建筑结构模糊振动控制研究,国际结构振动控制和健康诊断学术研讨会,中国深圳
    [135]李宏男,金峤,赵保东(2002),遗传BP神经网络主动AMD对偏心结构的减震控制,中日结构减震及健康监测研讨会暨第三届中国结构抗振控制年会,上海
    [136]张薇敬,欧进萍(2002),基于粗糙集理论的结构振动模糊控制,中日结构减震及健康监测研讨会暨第三届中国结构抗振控制年会,上海
    [137]李宏男(1998),结构多维抗震理论与设计方法,科学出版社
    [138]李士勇等(1990),模糊控制和智能控制理论与应用,哈尔滨工业大学出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700