用户名: 密码: 验证码:
大麦不同类型引进种质资源的遗传多样性及DH群体育种性状遗传研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大麦(Hordeum vulgare)是世界上第四大作物,也是我国重要农作物之一,兼啤用、饲用和食用价值,并且具有较强的抗旱、耐低温和耐盐碱能力。中东两河流域及附近地区(新月沃土)是大麦的起源中心之一,野生大麦群体在长期的进化过程中形成了适应中东地区特异环境的基因型,同时世界各地也具有丰富的大麦资源,是遗传育种和生物技术研究的重要物质基础。本研究目的是为外引大麦种质资源的合理利用积累资料和提供理论依据,对外引种质的改良和在育种中科学利用而服务,并力图建立一种筛选和鉴定指标与评价方法,以促进优异性状遗传规律和机理的研究。可见探讨如何更好的利用外引种质资源,促进建立引进大麦遗传多样性保护机制等这些是摆在我们面前的重要课题。主要结果如下:
     1.对不同地区大麦资源表型的差异进行综合分析,根据107个大麦品种(系)等主要农艺性状的调查,比较它们的生长特点以及在陕西杨凌地区的生长表现,对其适应性进行评价比较。通过主成分分析结果表明,5个综合主成分可代表大麦12个表型变量91.0268的原始数据信息量。利用模糊隶属函数度量D值进行WPGMA聚类,可将107份材料划分为4类,聚类结果可以较好地反映这些引进种质资源的选育和分布区域特点,其中野生群体综合表现较好,在品种的选育上有很高的利用价值。
     2.采用内含子切接点引物(intron-splice junction primer)和长随机引物的PCR分子标记方法,对不同国家和地区大麦的遗传多样性进行了检测。结果表明,所用的6个引物共扩增出稳定清晰的条带58条,其中44条(76%)为多态性条带。根据PCR扩增的条带建立[1、0]型数据矩阵,采用NTSYSpc2.1数据软件进行遗传相似系数计算,算术平均的非加权成对分组法(UPGMA法)构建聚类树状图。结果表明:不同地区大麦品种(系)有很高的遗传多样性,野生材料与栽培大麦品种(系)和农家种间的遗传差异较大,后两者间的遗传差异次之,各品种(系)之间的遗传差异较小。反映出这些材料较为明显的地理分布关系和区域特征。
     3.培养皿发芽法和盆栽研究不同浓度NaCl胁迫对引进国外的30份大麦种质的影响,其中栽培大麦14份,大麦双单倍体(Steptoe x Morex)6份,野生大麦10份。在萌发期采用86mM、171 mM、257 mM和342 mM NaCl溶液处理,试验结果表明,品种(系)耐盐性由强到弱为:Harrington、Barbican26、Tapgolbor、Steptoe、DH40 > Schooner、ModabaLR25、Sloop、Kerabua29、Cyprus25、Clipper、22-55、22-28、22-30、22-43、DH116、DH126、DH66、DH55> Jrbid LR14、Khemus27、KoRv25、22-25> Prior24、Tabigha barley、22-42> DH127> Morex、To barley> Yahudiya;在不同浓度NaCl胁迫下,通过苗期光合速率(Pn)、蒸腾速率(Tr)、气孔导度(GS)、胞间CO2浓度(Ci)、叶绿素(Chl)、丙二醛(MDA)、游离脯氨酸(Pro)、超氧化物歧化酶
     (SOD)和过氧化氢酶(CAT)的测定,运用主成分分析法和模糊隶属函数法对30份国外引进的大麦品种(系)耐盐性进行综合分析。结果表明:随着盐浓度增大,引进大麦品种(系)除SOD、CAT和Pro外,其它指标与对照相比均有所下降。根据综合评价值可知,其耐盐性由强到弱为:22-25,22-30,DH-116,Tabigha,Modaba,22-55,DH-55,22-28,Tar-pgolbor,KoRv,KHEMUS,Steptoe,Harrington,Clipper,Jrbid,Cpyrus,DH-66,Prior,Morex,22-43, TObarley,Barbican,22-42,DH-40,Schooner,DH-127,Kerab,Sloop, Yahudiya,DH-126.苗期表现耐盐性高的材料,在芽期则不一定表现出高耐盐性。如22-25、DH-116和Tabigha苗期相对耐盐,而芽期耐盐性一般。反之亦然,如Harrington、Barbican和Tapgolbor。表明大麦在不同的发育阶段其耐盐能力有所不同,大麦芽期耐盐性和苗期耐盐性之间没有必然联系。
     4.采用干旱胁迫(drought stress,DS)和灌溉(well watered,WW)两种处理,利用120份DH系为试验材料,对该群体株高株高(PH)、穗长(SL)、穗下节长(TFIL)、主穗小穗数(MES)、主穗穗粒数(GPS)、千粒重(WTG)、行有效分蘖(RT)、有效分蘖(MT)、产量(YP)9个数量性状进行遗传分析。同时以各性状的抗旱系数(DRI)作为衡量DH系耐旱性的指标,结果表明,应用主成分分析法将不同性状集成为几个相互独立的综合指标,根据综合指标对各性状的抗旱性的贡献,利用隶属函数分析法求出各株系抗旱性综合评价值(D值),提出了5个反应大麦主要耐旱性状的主成分,对120个DH系的耐旱性能力进行综合评价。DH93和DH55等,具有较强的抗旱性,DH29、DH2、DH103、DH88等的抗旱性却较低;在两种水分条件下,DH群体各性状的表型值对数介于双亲之间,且出现超亲分离,变异系数在5.34%-38.07%之间。DH群体及其亲本各性状表型值普遍表现为雨养条件下的高于正常灌溉的。DH群体各性状的遗传力和调控性状的基因数目在雨养和灌溉条件下有较大差异。结果表明:在雨养条件下的遗传力株高最高,为0.68,而产量最低,为0.26,其他7个性状介于二者之间。而灌溉条件下的遗传力主穗小穗数最高,为0.93,而穗长最低,为0.17,其他7个性状介于二者之间。在雨养条件下(Y)依基因对数(X)线性回归方程为Y=-0.0192X+0.7305(r=-0.9351),回归系数-0.0192与0的差异显著(t=-6.9824,df=7),而灌溉条件下(Y)依基因对数(X)线性回归方程为Y=-0.0172X+0.6934(r=-0.8036),回归系数-0.0172与0的差异显著(t=-3.5723,df=7),表明多基因性状易受环境影响,同时也佐证了多基因遗传学说。②估算各性状的偏度和峰度系数,分析影响各性状的基因作用方式,结果表明:灌溉条件下的控制主穗小穗数、主穗穗粒数这些性状的基因间存在互补作用,而控制千粒重这一性状的基因间可能没有互作。雨养条件下的株高和行有效分蘖数多基因间有互补作用。
Barley (Hordeum vulgare) is not only the world's fourth largest crop but also one of our important crops, and malting, feed and food value, and has high drought, low temperature and salinity capacity. Middle East, Mesopotamia and the surrounding areas (Fertile Crescent) is one of the centers of origin of barley, wild barley populations in the long process of evolution created the environment to adapt to specific genotype in the Middle East, while parts of the world also has rich resources of barley, Genetic breeding and biotechnology is an important material basis for research. Purpose of this study is to introduce outside the rational use of barley germplasm accumulated data and provide a theoretical basis, the improvement of foreign germplasm and breeding science in the use of the service, and attempt to establish a screening and identification of indicators and evaluation methods in order to promote Genetic Merit rules and mechanism. Shows how to make better use of foreign germplasm resources, promote the establishment of the introduction of the genetic diversity of barley mechanism is before us these important issues. The main results are as follows:
     1. On resources in different parts of the phenotypic differences between barley comprehensive analysis of barley varieties under 107 (lines) and other major agronomic traits of the survey to compare their growth characteristics and growth areas in Shaanxi Yangling performance, evaluation of its adaptability comparison. Through principal component analysis showed that five principal components can represent the integrated barley 91.0268 12 phenotypic variables the raw data volume of information. Fuzzy membership function values WPGMA clustering metric D can be divided into four 107 class materials, clustering results can reflect the introduction of germplasm resources, breeding and distribution of regional characteristics, including better overall performance of wild populations, in Variety have high value in use.
     2. All contacts with intron primers (intron-splice junction primer) and long random primers PCR molecular markers for different countries and regions, the genetic diversity of barley were tested. The results show that the use of six primers amplified clear bands of a stable,58 of which 44 (76%) were polymorphic. PCR amplified bands according to established [1,0] data matrix, using the data software NTSYSpc2.1 genetic similarity coefficient, the unweighted arithmetic average pair group method (UPGMA method) dendrogram constructed. The results showed that:different regions of barley varieties (lines) with high genetic diversity of wild and cultivated barley material (lines) and the farmers that genetic variation among species, genetic differences between the two after the second, all varieties (line) genetic differences between the small. These materials reflect the geographic distribution of the more obvious relations and regional characteristics.
     3. Petri dish germination and pot of different concentrations of NaCl stress on the introduction of foreign germplasm of 30 barley, of which 14 were cultivated barley, barley double haploid (Steptoe x Morex) 6 copies of wild barley 10. In the germination stage using 86 mM,171 mM,257 mM and 342 mM NaCl solution treatment, test results show that the varieties (lines) of Salt Tolerance from strong to weak to:Harrington, Barbican26, Tapgolbor, Steptoe, DH40> Schooner, ModabaLR25, Sloop, Kerabua29, Cyprus25,Clipper,22-55,22-28 ,22-30,22-43, DH116, DH126, DH66, DH55> Jrbid LR14, Khemus27, KoRv25,22-25> Prior24, Tabigha barley,22-42> DH127> Morex, To barley> Yahudiya; at different concentrations of NaCl, through the photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (GS), intercellular CO2 concentration (Ci), chlorophyll (Chl), malondialdehyde (MDA), proline (Pro), superoxide dismutase (SOD) and catalase (CAT) determination, using principal component analysis and fuzzy membership function on the 30 imported barley varieties (lines) a comprehensive analysis of salt tolerance. The results show that:with the salt concentration increases, the introduction of barley varieties (lines) except SOD, CAT and Pro, the other indicators have declined compared with the control. According to comprehensive evaluation values obtained, the salt from strong to weak as:22-25,22-30, DH-116, Tabigha, Modaba,22-55, DH-55,22-28, Tarpgolbor, KoRv, KHEMUS, Steptoe, Harrington, Clipper, Jrbid, Cpyrus, DH-66, Prior, Morex,22-43, TObarley, Barbican,22-42, DH-40, Schooner, DH-127, Kerab, Sloop, Yahudiya, DH-126. Seedling salt tolerance of high performance materials, not necessarily in the bud the performance of high salt tolerance. Such as 22-25, DH-116 and Tabigha relatively salt-tolerant seedlings, while the general tolerance of jute. Vice versa, such as Harrington, Barbican and Tapgolbor. That of barley at different developmental stages vary its salt tolerance, salt tolerance of barley malt and salt tolerance has no necessary relation.
     4. By drought stress (drought stress, DS) and irrigation (well watered, WW) two treatments, using 120 DH lines as materials, height of the group height (PH), ear length (SL), ear The following section length (TFIL), kernels (MES), the main spike grain number (GPS), grain weight (WTG), row tillers (RT), effective tiller (MT), yield (YP) 9 orders of Genetic analysis of traits. The characters in both the drought factor (DRI) as a measure of drought tolerance of the DH system indicators, results demonstrate that the principal component analysis integrated into several different characters independent of the composite indicator, based on the comprehensive index of drought resistance traits contributions, membership function analysis using the strains calculated value of comprehensive evaluation of drought resistance (D value), presented five major drought response of barley principal component traits of drought tolerance in 120 DH lines comprehensive evaluation of sexuality. DH93 and DH55, etc., with strong drought resistance, DH29, DH2, DH103, DH88 and other drought resistance is low; in both water conditions, DH group phenotypic value of each log between their parents, and transgressive segregation occurred, the coefficient of variation between 5.34%~38.07%. DH population and their parents the value of the common phenotypic expression is higher than under rainfed conditions of normal irrigation. DH group and the hereditary traits of genes regulating the number of rain-fed and irrigated conditions are quite different. The results showed that:in the rain-fed conditions, the maximum height of heritability, was 0.68, while the lowest yield of 0.26, the other seven traits between. The irrigation of genetic advocated kernels highest,0.93, and minimum ear length, was 0.17, the other seven traits between. In rain-fed conditions (Y) according to the number of genes (X) linear regression equation Y=-0.0192X+0.7305 (r=-0.9351), regression coefficient-0.0192 and significant difference between 0 (t=-6.9824, df= 7), irrigation (Y) according to the number of genes (X) linear regression equation Y=-0.0172X+0.6934 (r=-0.8036), regression coefficient of-0.0172 and 0, significantly different (t=-3.5723, df= 7), show that the multi-gene traits susceptible to environmental influences, but also evidence that multiple genes genetics.②estimate the characteristics of skewness and kurtosis coefficient, analysis of genes influence the trait mode of action, results showed that:Irrigation control kernels, the main spike grain number of genes these traits exist between complementary and control of grain weight between the genes of this trait may not have interaction. Rainfed conditions, plant height and line number of effective tillers and more genes are complementary.
引文
仇建德,王新其,金小妹.1993.大麦种质资源耐湿性鉴定研究初报中国大麦文集(三).南昌江西科技出版社:34-39
    陈丽华,李高原.2001.青海野生大麦种质资源鉴定与评价.青海农林科技,(3):1
    陈宣民,杨雨后,高达时.1991.中国大麦种质资源抗赤霉病的初步鉴定.浙江农业科学,(2):1991~1992
    陈晓静,沈会权,乔海龙,陈和,陈健,陶红.2007.大麦种质资源形态特征及农艺性状的分析.江苏农业学报,23(6):532~535
    陈英,何平,陆朝福,徐云碧.1999.籼粳交加倍单倍体后代性状遗传的研究.作物学报,25(4):451~457
    董玉琛.1995.生物多样性及作物遗传多样.植物品种资源,3:1~5
    傅同良.1995.33个玉米自交系遗传主成分和距离分析.中国农业科学,28(5):46~53
    冯志祥,何琳,李佰如.2004.沿江棉区新型优质轻简高效种植方式.上海农业科技,(4):75
    冯宗云,张义正,凌宏清.2002.大麦基因组中的微卫星标记及其应用.遗传,24(6):727~733
    冯宗云,张义正,张立立等.2003.应用微卫星标记研究西藏野生二棱大麦的遗传多样性及地理分化.高技术通讯,13(10):46-53
    冯宗云,刘仙俊,张义正,凌宏清.2006.应用微卫星标记研究西藏野生大麦的遗传多样性.遗传学报,33(10):917~928
    高洁,祁新,蔚荣海,彭辉,王玉兰.2006.对丝黑穗病不同抗性的玉米自交系的遗传多样性研究,28(5):490~498
    高梅影,邝幸泉.1994.桂花上柑橘全爪螨种群动态的主成分分析和模糊聚类.华中农业大学学报,13(1):35~39
    黄德崇.2000.特早熟大麦“申麦3号”.农村百事通,(1):12
    胡福顺.1977.抗旱性鉴定.见:李杏普主编.小麦遗传资源研究.北京:中国农业大学出版社:45-63
    黄培忠,刘云芳.1994.大麦黄花叶病抗源的转育与利用.中国农业科学,27(1):1-7
    洪棋斌,侯磊,罗小英,李德谋,肖月华,裴炎,杨开俊,甲错.2001.应用RAPD分析川西北高原青稞的遗传背景.中国农业科学,34(2):133~138
    胡荣海,昌小平.1996.反复干旱法的生理基础及其应用.华北农学报,11(3):51~56
    黄如鑫,陈和,陈健,吴春,陈晓静,李安生,张敬,方红曼.1998.啤酒大麦新品种单二的选育及优质高产栽培技术.大麦科学,3:29-30
    侯永翠,颜泽洪,魏育明,郑有良.2005.利用RAPD标记分析大麦种质资源的遗传多样性.植物遗传资源学报,6(2):145~150
    景蕊莲.2007.作物抗旱节水研究进展.中国农业科技导报,9(1):1~5
    罗定泽,赵佐成,周明德,沈国坤.2000.四川师范大学学报(自然科学版)23(3):272~276
    李贵全,张海燕,季兰.2006.不同大豆材料抗旱性综合评价.应用生态学报,17(12):2408~2412
    李俊周,刘艳阳,崔党群.2005.小麦DH群体数量性状的遗传分析.麦类作物学报,25(3):16~ 19
    李兰芬.2006.大麦资源鉴定评价及优异种质筛选.黑龙江农业科学,(2):3~5
    李立会,景蕊莲译(Damania A B编著).1996.生物多样性与小麦改良.北京:中国农业科技出版社:138~172
    卢良恕(主编).1996.中国大麦学.北京:中国农业出版社
    梁银丽,陈培元.1998.旱地小麦品种的特征特性.见:山仑,陈培元主编.旱地农业生理生态基础.北京:科学出版社:259~266
    李文军.1992.保护世界的生物多样性.生物多样性译丛(一)(中国科学院生物多样性委员会).北京:中国科学技术出版社
    李向华,常汝镇.1998.中国春大豆品种聚类分析及主成分析.作物学报,24(3):325~332
    李正玮,糜黍.1981.不同穗型类群的生态特征及其在栽培和育种上的意义.中国农业科学,5:57~63
    马得泉.1997.中国近缘野生大麦种质资源的搜集与性状鉴定.大麦科学,(1):1~4
    马得泉,徐廷文.2000.西藏野生大麦种质资源品质评价.西南农业学报,(1):31~38
    孟凡磊,强小林,佘奎军,唐亚伟,胡银岗.2007.西藏主要农区青稞品种的遗传多样性分析.作物学报,33(11):1910~1914
    马俊虎,黄培忠,陈恭,秦国卫,刘玉芳,徐阿炳,朱睦元.我国大麦黄花叶病抗源筛选及地理分布研究.中国农业科学,1994,25(7):39~44
    马克平.1993.试论生物多样的概念.生物多样,(Ⅰ):20~22
    孟庆立,关周博,冯佰利,柴岩,胡银岗.2009.谷子抗旱相关性状的主成分与模糊聚类分析.中国农业科学,42(8):2667~2675
    马育华.1982.植物育种的数量遗传学基础.南京:江苏科学技术出版社
    钮福祥,华希新,郭小丁,邬景禹,李泱民,丁成伟.1996.甘薯品种抗旱性生理指标厦其综合评价初探.作物学报,22:392~398
    奥野忠一.1971.多变量解析法.日科技连
    彭传新,郭介华.1988.陆地棉数量性状遗传差异的研究.中国农业科学,211(4):26~32
    裴鑫德.1991.多元统计分析及应用.北京:北京农业大学出版社:89~188
    普晓英,曾亚文,杨树明,杜娟,赵大伟,杨涛.2009.啤酒大麦新品系产量性状与品质性状170、的相关和主成分分析.大麦与谷类科学,1:1~9
    钱骅,刘友良.1995.大麦根液泡膜Na+/H+逆向运输与盐分区域化分配的关系.南京农业大学学报,18(2):16~20
    钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,13~36
    荣廷昭,潘光堂,黄玉碧.2003.数量遗传学.北京:中国科学技术出版社
    孙立军.1994.中国大麦遗传资源目录(1988~1993).北京:农业出版社
    孙立军,陆炜,张京.1999.中国大麦种质资源鉴定评价及其利用研究.中国农业科学,32(2):112
    孙立军编著.2001.中国大麦遗传资源和优异种质.北京:中国农业科技出版社
    邵启全.1982.西藏野生大麦.北京:科学出版社
    沈前华.1995.大麦品种数量性状多元遗传分析及其应用研究Ⅰ.江西农业学报,7(2):101~108
    沈前华.1977.大麦品种数量性状的聚类分析研究.南昌大学学报(理科版),21(4):302~305
    沈禹颖.1997.三种盐生境植物叶表的扫描电镜观察(简报).草业学报,6(3):32~36
    唐启义,冯明光.2002.实用统计分析及其DPS数据处理系统.北京:科学出版社,249~255,280~284
    王中仁.1994a.植物遗传多样性和系统学研究中的等位酶分析.生物多样性,2(2):38~43
    王中仁.1994b.植物遗传多样性和系统研充中的等位酶分析(续).生物多样性,2(2):91~95
    王中仁.1996.植物等位酶分析.北京,科学出版社
    王建林,胡书银,李建国.1996.西藏裸大麦主要性状的遗传参数研究.遗传,18(2):15~17
    魏秀俭,杨婉身,潘光堂.2005.22个玉米自交系的耐旱性综合分析.干旱地区农业研究,23(1):134~137
    卫云宗,乔蕊清,刘新月.2001.高产耐旱冬小麦育种技术及其评价方法研究.华北农学报,16(3):17~22
    王占升,朱汉,一前宣正.1995.牧草耐盐力及盐碱地引种试验.中国草地,2:38~42
    王建平,孙传清,李逢超.2000.T两套水稻籼粳交DH群体的亲和性及其遗传分析.作物学报,26(6):86-90
    魏亦农,曹连莆.2003.二棱啤酒大麦品种资源农艺性状的聚类分析和主成分分析.种子,3:69~70
    韦泽秀,梁银丽,山田智,曾兴权,周茂娟,黄茂林,吴燕.2009.不同水肥条件下番茄土壤微生物群落多样性及其与产量品质关系.植物生态学报,33(3):580~586
    谢承陶.1993.盐渍土改良原理与作物抗性.北京:中国农业科技出版社:184~233
    许帼英,李柱,安沙舟,等.2008.木地肤幼苗细胞膜透性和酶系统对盐胁迫的适应性研究.草业科学,25(12):51~55
    雄奴塔巴.2005-04-005.大麦条纹病发生特征及防治措施.西藏农业科技,27(5):39~44
    许如根,吕超,缪丽霞.2005.大麦杂种优势利用研究Ⅲ.大麦异棱型和同棱型F1杂种的优势特征.作物学报,31(12):1537~1543
    徐廷文.1978.几个大麦品种的矮秆遗传规律研究.遗传学报,5(3):235~243
    徐廷文.1982.中国栽培大麦的分类和变种鉴定.中国农业科学,(6):39~46
    徐廷文.1982.中国栽培大麦的起源与进化.遗传学报,1982,9(6):440~446
    徐廷文.1993.大麦的起源和分类系统研究进展.北京:中国农业出版社
    徐廷文,冯宗云.1999.大麦密直穗型矮杆遗传资源及其育种应用.作物品种资源,(3):8~9
    肖炳光,张燕春,卢秀萍,王绍坤.2000.烤烟品种主成分分析和聚类分析.种子,2:27~29
    阮成江,何祯祥,钦佩,谢民.2003.海滨锦葵数量性状的相关和主成分分析.南京林业大学学报(自然科学版),27(5):6~10
    余凤群,金明源,肖才升.1998.甘蓝型油菜DH群体几个数量性状的遗传分析.中国农业科学,31(3):1~4
    杨劲松.2008.中国盐渍土研究的发展历程与展望.土壤学报,45(5):837~845
    余玲,王彦荣,孙建华.1999.野大麦种子萌发条件及抗逆性研究.草业学报,8(1):50~57
    袁名宜,孙海宁,张佩兰,刘洋,熊国富.1997.蚕豆主要数量性状的遗传主成份和数量分类.遗传,19(5):14~16
    严俊,陈剑平,Y. Gutterman, E.Nevo.2007.以色列野生二棱大麦农艺性状差异及相关性分析.麦类作物学报,27(6):969~973
    杨文新,沈秋泉,杨建明.2002.大麦赤霉病抗性研究及抗原开拓.麦类作物学报,22(2):91~93
    易燕明.1998.用灰色关联分析和主成分分析方法对旱灾等级进行综合评估.广东气象,增2(4):
    33-35
    于智勇,丁毅.2007.中国西藏与中东地区近缘野生大麦遗传多样性的SSR标记分析.武汉大学学报(理学版),53(2):231-238
    邹裕春,刘仲齐译(S.拉加拉姆等.).1994.CIMMYT的小麦育种.成都:四川科学技术出版社
    张赤红,张京.2008.大麦品种资源遗传多样性SSR标记评价.麦类作物学报,28(2):214~219
    张镝,丁毅.2007.基于AFLP标记的中国西藏近缘野生大麦遗传多样性分析.遗传,29(6):725~730
    赵福庚,刘友良,章文华.2002.大麦幼苗叶片脯氨酸代谢及其与耐盐性的关系.南京农业大学学报,25(2):6~10
    周广和,钱幼亭.1993.从大麦中筛选BYDV抗源.中国大麦文集(3):19~33
    朱惠琴,张宪银,薛庆中.2004.烟草两个DH群体农艺性状的遗传分析.浙江大学学报:农业与生命科学版,30(5):477~481
    郑慧莹,李建东.1999.松嫩平原盐生植物与盐碱化草地的恢复.北京:科学出版社
    张京.1998.中国大麦主要矮源的遗传等位测验.作物学报,(24):42~46
    张京,刘旭.2005.大麦种质资源描述规范和数据标准.北京:中国农业出版社:17~24
    朱睦元,黄培忠.1999.大麦育种与生物工程.上海科学技术出版社
    郑靓,张正圣,陈利,万群,胡美纯,王威,张轲,刘大军,陈笑,魏新琦.2008.IT-ISJ标记及其在陆地棉遗传图谱构建中的应用.中国农业科学,41(8):2241~2248
    张能义,薛庆中.1997.水稻DH群体数量性状的遗传分析.作物学报,23(1):123~126
    张树根,蒋钟仁,邢永萍,李春玲.2008.一个辣椒杂交种的加倍单倍体(DH)群体果实性状的遗传分析.园艺学报,35(4):515~520
    张小燕,张跃进,潘高峰.2006.日本不同棱型大麦种质资源农艺性状的差异.麦类作物学报,26(6):38~41
    章元明,盖钧镒,王永军.2001.利用P1、P2和DH或RIL群体联合分离分析的拓展,23(5):467~470
    章元明,盖钧镒.2000.利用P1、P2和DH或RIL群体联合分离分析的拓展.遗传学报,2000,27(7):634~640
    张正斌,王德轩著.1992.小麦抗旱生态育种.西安:陕西人民教育出版社:3~12
    周泽其.1981.两个不同地区的二棱野生大麦的比较研究,遗传学报,8(4):344~349
    张朝阳,许桂芳.2009.利用隶属函数法对4种地被植物的耐热性综合评价.草业科学,26(2):57~60
    Damania A B and Yau S K.1991. Barley Genetics:9-11
    Allaby R G, Brown T A.2003. AFLP data and the origins of domesticated crops. Genome,46:448~453
    Allan B, John Fr, Brian H, Peter H, Gordon M, W P.2004. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome.Genome.ProQuest Biology Journals,47(2):389
    Anna O, Waclaw O.2002. The use of RAPD and semi-random markers to verify somatic hybrids beteeen diploid lines of solanum tuberosum L.Cellular & Molecular Biology Letters Volume,7:671~676
    Apse M P, Aharon G S, Snedden W A, Blumwald E.1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Sicence,285 (5431):1256~1258
    Asfaw Z, VonBothmer R.1990. Hybridization between landrace varieties of Ethiopian barley (Hordeum vulgare ssp. vulgare) and the progenitor of barley (H. vulgare ssp.spontaneum)..3Hereditas,112:57~
    64
    Austin D F, Lee M.1998. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci,38:1296~1308
    Ayers R S, Westcot D W.1985. Water quality for agriculture. Italy:FAO Irrigation and Drainage. Rome, 29(1):174
    Backes G, Hatz B, Jahoor A, Fischbeck G.2003. RFLP diversity within and between major groups of barley in Europe. Plant Breeding,122:291~299
    Badr A, Mueller K, Schaefer-pregl E I, Rabey H, Effgen S, Ibrahim H H, Pozzi C, Rohde W, Salamini F. 2000. On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol,17:499~ 510
    Baek HJ, Beharav A, Nevo E.2003. Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet 106:397~410
    Barr A R, Jefferies S P, Brou G S, Chalmers K J, Kretschmer J M, Boyd W J R, Collins H M, Roumeliotis S, Logue S J, Coventry S J, Moody D B, Read B J, Poulsen D, Lance R C M, Platz G J, Park R F, Panozzo J F, Karakousis A, Lim P, Verbyla A P, Eckermann P J.2003. Mapping and QTL analysis of the barley population Alexis × Sloop. Australian Journal of Agricultural Research,54:1117~ 1123
    Baskin C C, Baskin J M.1998. Seeds-ecology,biogeography,and evolution of dormancy and germination. Academic,San Diego Academic Press
    Baum M, Grando, S, Ceccarelli S.2004. Localization of quantitative trait loci for dryland characters in barley by linkage mapping.Challenges and Strategies for Dryland Agriculture, CSSA Special Publication,32:191~202
    Baum B R, Nevo E, Ohnson D A, Beiles A.1997. Genetic diversity in wild barley in the Near East:A molecular analysis using random amplified polymorphic DNA (RAPD). Genetic Resources and Crop Evolution,44(2):147~157
    Becker J, Heun M.1995. Barley microsatellites:allele variation and mapping. Plant Mol Biol,27:835~ 845
    Becker J, Vos P, Kuiper M, Salamini F, Heun M.1995. Combined mapping of AFLP and AFLP markers in barley. Mol. Gen. Genetics,249:65~73
    Bennett M D, Smith L B.1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society (London) B Biological Sciences,274:221~274
    Bilgic H, Steffenson B J, Hayes M P.2005. Comprehensive genetic analyses reveal defferential expression of spot blotch resistance in four populations of barley. Theor Appl Genetics,111:1238-1250
    Blum A.1988. Plant breeding for stress environments. CRC Press:43~77
    Bouslama M, Schapaugh W T J.1984. Stress tolerance in soybeans. I.Evaluation of three screening techniques for heat and droughttolerance. Crop Science,4(5):933~937
    Bothmer R, Von J N, Jorgensen R B, Linde-laursen I.1995. Anecogeographical study of the genus Hordeum. Systematic and Ecogeographic Studies of Crop Genepools,7. Rome, Italy:International Plant Genetic Resources Institute (IPGRI),2nd ed:29
    Brochmann C. Soltis P S.1992. Recurrent formatton and polyploids in Draba (Brassicaceae)Amer J Bot 1992 79(6i:673~688)
    Caranta C, Palloix A.1979. Both common and specific genetic factors are involved in polygenetic resistance of pepper to several potyviruses. Theor Appl Genet,54:267~271
    Caranta C, Palloix A.1996. Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviruses. Theor Appl Genet,92:15~20.
    Castillo A M, Valles M P, Cistue L.2000. Comparison of anther and isolated microspore culures in barley:Effects of culture density and regeneration medium. Euphytica.113(1):1~8
    Ceccarelli S.1987. Diversity for morphological and agronomic characters in Hordeum vulgare ssp. Spontaneum C.Koch.Genetica Agraria,41(2):131~141
    Ceccarelli S, Grando S, Vanleur J A G.1987. Genetic diversity in barley landrances from Syria and Jordan. Euphytica,36:389~405
    Ceccarelli S, Grando S, Van Leur J A G.1995. Barley landrances in the Fertile Crescent offer new breeding options for stress environments. Diversity,11:112~113
    Chabane K, Ablett G A, Cordeiro G M, Valkoun J, Henry R J.2005. EST versus genomic derived microsatellite markers for genotyping wild and cultivatedbarley. Genetic Resour Crop Evol,52:903~ 909
    Chaudhary, B D, Singh V P.1975. Genetic divergence in some Indian and exotic barley varieties and their hybrids.Indian Journal Genetics Plant Breeding,35:409~413.
    Choo T M.1981a. Doubled haploids for estimating mean andvariance of recombination values. Genetics, 97:165~172
    Choo T M.1981b. Doubled haploids for studying the inheritance of quantitative characters. Genetics,99: 525~540
    Choo T M, Reinbergs E.1982b. Estimation of the number of genes in doubled haploid populations of barley. Can. J. Genet. Cytol,24:337~341
    Choo T M.1985. Use of hapolids in breeding barley. Plant Breeding Reviews,3:219~252
    Choo T M, Reinbergs E.1982a. Analysis of skewness and kurtosis for detecting geneinteraction in a doubled haploid population. Crop Science,22:231~235
    Choo T M.1999. Barley research in eastern Canada.Procecdings of the canadian barley symposium'99: 61~69
    Choumane W, Achtar S, Valdoun J.1998. Genetic variation in core and base barley collections form WANA as revealed by RAPDs, Triticeae Ⅲ. Proceedings of the Third International Triticeae Symposium, Aleppo, syria:159~163
    Clarke J.1982. Excised leaf water retention capacity as an indicator of drough tresistance of triticumgeno types. Can J Plant Sci,62:571~576
    Clarke J M, Romagosa I. Jana S. Srivastava J P, McCaig T N.1989. Relationship of excised leaf water loss rate and yield of durum wheat in diverse environments. Can J Plant Sci,69:1075~1081
    Collaku A, Harrison S A.2005. Herltability of watorlogging tolerance in wheat. Crop Science,45:722~ 727
    Cseuz L, Kertesz Z, M atuz J.1998. Wheat breeding system with special at tention to tolerance toabioticst resses. In:A E Slinkard (ed.). Proceedings of the 9th International Wheat. Genetics Sympo sium. Vo 1. 4. Saskatchew an, Canada:University Extension Press:13~15
    Cuadrado A, Schwarzacher T.1998. The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma,107(8):587~594
    Dahleen L S, Agrama H A, Horsley R D, Steffenson B, Schwarz P B, Mesfin A, Franckowiak J D.2003. Identification of QTLs associated with Fusarium head blight resistance in Zhedar 2 barley. Theor Appl Genetics,108:95~104
    Dawson I K, Chalmers K J, Waugh R, etal.1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol,2:151~159
    Duvick D N.1996. Plant breeding, an evolutionary concept. Crop Sci,36:539~548
    Dayanandan S, Bawa K S, Kesseli R.1997. Conservation of microsatellites among tropical tree(Leguminosae). American Journal of Botany,84(12):1658~1663
    Elena K K, Rajeev K V, Marion S R.2006. A comparative assessment of genetic diversity in cultivated barley collected in different decades of the last century in Austria, Albania and India by using genomic and genic simple sequence repeat (SSR) markers. Plant Genetic Resources,4(2):125~133
    Ellis R P, Forster B P, Waugh R, Bonar N, Handley L L, Robinson D, Gordon D C, Powell W.1997. Mapping physiological traits in barley. New Phytologist,137:149~157
    Ellis R P, McNichol J W, Baird E, Booth A, Lawrence P, Thomas B, Powell Wl.1997. The use of AFLPs to examine genetic relatedness in barley. Mol Breeding,3:59~369
    Ellis.Society of Civil Engineers, Reston, VA, USA, pp. 1~17.Ellis RP, Forster BP, Robinson D, et al. 2000. Wild barley, a source of genes for crop improvement in the 21 st century?. ExpBot,51:9~11
    E. Nevo and A. Beiles.1989. Genetic diversity of wild emmer wheat in Israel and Turkey. Theoretical and Applied Genetics,3(77):421~455
    Epstein E.1983. In better crops for food. Ciba Foundation Symposium,97:61~82
    FAO 2004. http://apps.fao.org
    FAOSTAT data.2006. http://www.faostat.fao.org/faostat, last assessed February
    Farquhar G D, Richards R A.1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian J Plant Physiol,11:539~555
    Feng Z Y, Zhang L L, Zhang Y Z, Ling H Q.2006. Genetic diversity and geographical differentiation of cultivated six-rowed naked barley landraces from the Qinghai-Tibet plateau of China detected by SSR analysis. Genetics and Molecular Biology,29(2):101~105
    Feng Zongyen, Zhang Yizheng, Zhang Lili, Ling Hougqing.2005. Further molecular evidence for the Hordeum vulgare ssp.Sponta,ummin Tibet as ultimate progenitor of chinese cultivated barley. High Teclmology Letters,11(3):320~324
    Fetch T G J,Steffenson B J, Nevo E.2003. Diversity and sources of multiple disease resistance in Hordeum spontaneum. Plant Disease,12:1439~1448
    Fischbeck G.2003. Diversification through breeding. In:von Bothmer R, van Hintum T, Knupffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier Science,Amsterdam:29~52
    Flowers T J, Hajibagheri M A.2001. Salinity tolerance in Hordeum vulgare:ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil,231:1~9
    Foroughi-wehr B, Wenzel G.1990. Recurrent selection alternating with haploid steps a rapid breeding procedure for combing agronomic traits in inbreeders.Theoretical and Applied Genetics,80:564~568
    Forster B P.1999. Studies on wild barley, Hordeum spontaneum C. Koch at the Scottish Crop Research Institute. In:Wasser SP, (eds.) Evolutionary theory and processes:modern perspectives. London: Kluwer Academic Publishers,325~344
    Forster B P, Ellis R P, Thomas W T B,Newton A C, Tuberosa R, This D, Elenein R A, Bahri M H, Ben Salem M.2000. The development and application of molecular markers for abiotic stress tolerance in barley. J. Exp. Bot,51:19~27
    Forster B P, Pakniyat H, Macaulay M, Matheson W, Phillips M S,Thomas W T B,Powell W.1994. Variation in leaf sodium content of Hordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden Promise. Heredity,73:249~253
    Forster B P, Russel J R, Ellis R P, Handley L L, Robinson D,Hackett C A, Nevo E, Waugh R, Gordon D C, Keith R, Powell W.1997. Lacating genotypes and genes for abiotic stress tolerance in barley:a strategy using maps, markers and the wild species. New phytologist,137:141~147
    Frank R B, Ana G B M.2001. RAPD data do not support a second center of barley domestication in Morocco. Genetic Resources and Evolution,48:13~19
    Fufa E Assefa.1995. A Response of barley to waterlogging:impruvod varieties Versus local eultivats IAR Newleter AgriculturalResearch,10:6~7
    Garvin, D F, Brown, A H D, Burdon, J J.1997. Inheritance and chromosome locations of scald-resistance genes derived from Iranian and Turkish wild barleys. Theoretical and Applied Genetics,94:1086~ 1091
    Greenway H, Munns R.1980. Mechanisms of salt tolerance in non-halophytes. Annual Review Plant Physiol,31:149-190
    Giese H, Holm-Jensen A G, Mathiassen H, Kj(?)r B, Rasmussen S k, Jensen H B.1994. Distribution of RAPD markers on a linkage map of barley. Hereditas,120:267~273
    Giessen J E, Hoffmann W, Schottenloher R.1956. Die Gersten Athiopiens and Erythraas.Z.Pflanzenzuchtg, 35:377~440
    Graner A, Bjφrnstad A, Konishi T, Ordon F.2003. Molecular diversity of the barley genome. In R. von Bothmer, T. van Hintum, H. Knupffer and K. Sato (ed.) Divarsity in barly, The Netherlands, ELSEVIER,121~141
    Gunter B, Jihad O, Asmelash W, Amor Y, Ahmed J.2009. High genetic diversity revealed in barley (Hordeum vulgare)collected from small-scale farmer's fields in Eritrea. Genet Resour Crop Evol,56: 85~97
    Hamza S,Hamida W B, Rebai A, Harrabi M.2004. SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica,135:107~118 A simple sequence repeat-based linkage map of barley.Genetics,156:1997~2005
    Handly L L, Eviatar N, John A R.1994. Chromosome 4 controls potential water use efficiency (δ13C) in barley. J Exp Bot,280:1661~1663
    Han F, Ullrich S E, Clancy J A, Romagosa I.1999. Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Science,143(1):113~118
    Harlan J R.1968. On the origin of barley.In:USDA Agriculture Handbook,338:9~31
    Harlan J R.1995. Barley Yellow Mosaic Virus Complex.Theor.Appl.Genet,98:285~290
    Harlan J R, Zohary D.1966. Distribution of wild wheats and barley. Science 153:1074~1080
    Haro R, Baneulos M A, Quintero F J, Rubio F, Alonso R N.1993. Genetic basis of sodium tolerance in yeast. A medel for plants. Physiol Plant,89:868~874
    Hashiguchi S, Morishima H.1969. Estimation of genetic contribution of principal components to
    individual variates concerned. Bionettics,25(1):9-16
    Hayes P M, Cerono J, Witsenboer H, Kuiper M, Zabeau M,Sato K,Kleinhofs A,Kudrma D,Kilian A,Aaghai-Maroof m, Hoffman D.1997. and the North American Barley Genome Mapping Proeject. Characterizing and exploiting genetic diversity and quantitative traits in barley (Hordeum vulgare) using AFLP markers. Journal of Quantitative Trait Loci(http://probe.nalUSDA.gpv:8000/otherdocs /jqtl),3:attiche 2
    Hayes P M,Chen F Q,Corey A, Pan A, Chen T H H, Baird E, Powell W, Thomas W, Waugh R, Bedo Z, Karsai I, Blake T, Oberthur L.1996. The Dicktoo xMorex population:a model for dissecting components of winter hardiness in barley. In:P. H. Li and T. H. Chen (ed.). Plant Cold Hardiness. Plenum Press,New York,USA
    Hayes P M, Liu B H, Knapp S J, Chen F, Jones B, Blake T, Franckowiak J D, Rasmusson D,Sorrells M E, Ullrich S E, Wesenberg D, Kleinhofs A.1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl.Genet,87:392~401
    Hearne C, Ghosh S, Todd J.1993. Microsatellites for tinkle analysis of genetic traits. Tmnds in Genetics, (8):288~294
    Hoekstra S, Ziderveld, M H, Louwerse, J D, Heidekamp, F, Mark,F V D.1992. Anther and microspore culture of Hordeum VulgareL.cv.lgri.Plant Science,86:89~96
    Hukman W J, Fornari C S, Tanaka C K.1989. A comparison of the effect of salt tolerant and a salt sensitive cultivar of barley. Plant Physiol,90:1444~1465
    Hura T, Hura K, Grzesiak S.2009. Physiological and biochemical parameters for identification of QTLs controlling the winter triticale drought tolerance at the seedling stage. Plant Physiology and Biochemistry,47:210~214
    Hussaini S H, Goodman M M, Timothy D H.1977. Multivariate analysis and the geographical distribution of the world collection of Finger Millet. Crop Sci,17:257~63
    Rlsla, Aragu'e's R, Royo A.1998. Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crops Res,58:97~107
    Ivandic V, Hackett C A, Zhang Z J, Staub J E, Nevo E, Thomas W T B, Forster B P.2000. Phenotypic responses of wild barley to experimentally imposed water stress. J Exp Bot,51:2021~2029
    Jahoor A, Fishchbeck G.1993. Identification of New genes for mildew resistance of barley at the mla locus in lines derived from Hordeum spontaneum. Plant breeding,110(2):116~122
    Jana S, Pietrzak L N.1988. Comparative assessment of genetic diversity in wild and primitive cultivated barley in center of diversity. Genetics 1,19:981~990
    Jaradat A A, Shahid M, Al-Maskri A.2005. Genetic diversity in the bati barley land race from Oman:Ⅱ. Response to salinity ress. Crop Sci,44:997~1007
    Jianhui J B Q, Haiyan W, Aizhong C, Suling Wang, Peidu C, Lifang Z, Yu D, Dajun L, Xiue W.2008. STS markers for powdery mildew resistance gene Pm6 in wheat. Euphytica,163:159~165
    Jihad O, Gunter B, Asmelash W, Amor Y, Ahmed J.2007. The Horn of Africa as a centre of barley diversification and a potential domestication site. Theor Appl Genet,114:1117~1127
    Kaiser R, Friedt W.1989. Chromosomal location of resistance to barley yellow mosaic virus in German winter-barley identified by trisomic analysis. Theoretical and Applied Genetics,77(2):241~
    Kamoshita A, Babu R C, Boopathi N M, Fukai S.2008. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research,(109):1~23
    Kanazin V, Talbert H, See D, Decamp P, Nevo E, Blake T.2002. Discovery and assay of single nucleotide polymorphisms in barley (Hordeum vulgare L.). Plant Mol Biol,48:529~537
    Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K.1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology,17:287~291
    Katerji N, Van Hoorn J, Hamdy A, Bouzid N, Mahrous S, Mastrotilli M.1992. Effect of salinity on water stress, growth and yield of broadbeans. Agric. Water Manage,21:107~117
    Katerji N, Van Hoorn J W, Hamdy A, Mastrotilli M.2003. Salinity effect on crop development and yield analysis of salt tolerance according to several classification methods. Agric. Water Manage,62: 37~66
    Katerji N, Vanhoom J W, Hamdy A, Mastrorilli M, Fares C, Ceccarelli S, Grando S, Oweis T.2006. Classification and salt tolerance analysis of barley varieties. Agricultural water management,85: 184~192
    Koornneef M, Alonso-Blanco C, Peeters A J M.1997. Genetic approaches in plant physiology. New Phytologist,137:1~8
    Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A.2003. Snipping polymorphisms from large EST collections in barley(Hordeum vulgare L.). Mol Genet Genom,270: 24-33
    Kuiper D, Schuit P J C.1990. Auctal cytokinin concerntration in plant tissue as an indicator for salt resistance in cereal.Plant and Soil,1990:243~250
    Kutcher H R, Bailey K L, Rossnagel B G, Legge W G.1996. Identification of RAPD markers for common root rot and spot blotch (Cochliobolus sativus) resistance in barley. Genome,39(1):206~215
    Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S.1995. A consensus linkage map of barley. Mol. Breed,1:389~395
    Lehmann, L, VonBothme R.1988. Hordeum spontaneum and landraces as a gene resource for barley breeding. In M.L. Jorna and L.A.J. Slootmaker (ed.) Cereal breeding related to integrated cereal production. Proceedings of the conference of the Cereal Section of EUCARPIA, The Netherlands, Pudoc Wageningen,190~194.
    Leland E F, Eugene V M.1994. Crop response and managementon salt affected soils. In:Pessarakli N. Handbook of Plant and Crop Stress. New York:M.Dekker:149~180
    Liu Z W, Biyashev R M, Maroof S.1996. Development of simple sequence repeat DNA markers and their integration into a barley linkage map. TAG Theoretical and Applied Genetics,93:869~876
    Luckett, D J, Smithard, R A.1992. Doubled haploid production by anther culture for Australian barley breeding.Australia Journal of Agriculture research, (43):67~78
    Luo M C, Dyorak J.1996. Molecular mapping of an aluminium tolerance locus on Chromosome 4D of Chinese spring wheat. Euphytica,91(1):31~35
    Maas E V, Grattan S R.1999. Crop yields as affected by salinity. In:Skaggs, R W, van Schilfgaarde J.Agricultural Drainage(vol 38).Agron:Monograph,38:55~108
    Maas E V, Hoffman G J.1997. Crop salt tolerance, current assessment Journal Irrigation and Drainage Division. ASCE,103(1):115~134
    Mano Y, Kawasaki S, Takaiwa F, Komatsuda T.2001. Construction of a genetic map of barley (Hordeum vulgare L.) cross 'Azumamugi' × 'Kanto Nakate Gold' using a simple and efficient amplified fragment-length polymorphism system. Genome,44(2):284-292
    Mansour M F, Lee-Stadelmann O Y, Stadelmann E J.1993. Solute potential and cytoplasmic viscosity in Triticum aestivum and Hordeum vulgare under salt stress A comparison of salt resistant and salt sensitive lines and cultivars.Journal of Plant Physiology,142(5):623~628
    Mano Y, Takeda K.1997. Mapping quantitative trait loci for salt tolerance at germination and seedling stage in barley (Hordeum vulgare L.). Euphytica,94(3):263~272
    Meyer R C, Lawrence P E, Young G R, Thomas W T B, Powell W.2000. SSRs and SNPs-diagnostic tools for Barley yellow mosaic virus. In:logue S (ed) Barley genetics VIII,proceedings of the 8th international Barley genetics symposium,vol Ⅱ. Dept Plant Sciences, Adelaide University,Adelaide, Australia, pp 144~146
    Mihailescu A, Giura A.2001. The use of the wild species Hordeum bulbosum L. in Romanian barley breeding programmes. In W. Swiecicki, B. Naganowska and B. Wolko(ed.) Broad variation and precise characterization-limitation for the future. Proceedings of the XVIth EUCARPIA Section Genetic Resources workshop, Poznan, Poland, Prodruck,343~347
    Molnar S J, James L E, Kasha, K J.2000. Inheritance and RAPD tagging of multiple genes for resistance to net blotch in barley. Genome,43:224~231
    Morgan J M.1993. Osmo regulation as a selection criterion for drought tolerance in wheat. Aust. J. Agric.Res,34:607~614
    Munns R.1993. Physiological processes limiting plant growth in salinesoils:some dogmas and hypotheses. Plant Cell Environ,16:15~24
    Munns R, Husain S, Rivelli A R, James R A, (Tony) Condon A G, Lindsay M P, Lagudah E S, Schachtman D P, Hare R A.2002. Avenues for increasing salt tolerance of crops, and the role of physiologicallybased selection traits. Plant Soil,247:93~105
    Munns R, Schachtman D P, Condon A G.1995. The significance of a two-phase growth response to salinity in wheat and barley. Aust. J. Plant Physiol,22:561~569
    NachitM M.1998. A ssociat ions of grain yield in dryland and carbon isotope discrim ination with molecular markers in durum (Triticum tu rg id um L. vardurum). In:A E Slinkard (ed.). Proceedings of the 9th Internat ional Wheat Genetics Symposium. Vo l.1. Saskatchew an, Canada:Universith Extension Press:218~224
    Nagata K, Shimizu H, Terao T.2002. Quantitative trait loci for nonstructural carbohydrate accumulation in leaf sheaths and culms of rice (Oryza sativa L.) and their effects on grain filling. Breed Sci,52: 275~283
    Nakamura T, Osaki M, Ando M.1996. Differences in mechanisms of salt tolerance between rice and barley plants. Soil Science and Plant Nutrition,42(2):303~314
    Nei M, Li W.1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA,76:5269~5273
    Nevo E.1992. Origin,evolution,population genetics and resources for breeding of wild barley. Hordeum
    spontaneum,in the Fertile crescent.In:PR Shewry(Ed.).Barley:Genetics, Biochemistry. Molecular Biology and Biotechnology,CAB International. Wallingford.Oxon.UK,5:19~43
    Nevo E.1997. Apelbaum-Elkaher I, Garty J. Beiles A Natural selection causes microscale allozyme diversity in wild barley and a lichen at'Evolution Canyon'Mt.Carmel Israel. Heredity,78:373~382
    Nevo E, Baum B, Beiles A, Johnson D A.1998. Ecological correlates of RAPD DNA diversity of wild barley in(Hordeum spontaneum) in the Fertile Crescent. Genetic Resources and Crop Evolution,45(2): 151~159
    Nevo E.2004. Population genetic structure of cereal wild progenitors. In:Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Press, Dordrecht,135~163.
    Nevo E, Krugman T, Beiles A.1993. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel.Plant Breed,110:338~341
    Novotny J, Ohnovtkova L.2000. Effects of free and chelated iron on in vitro androgenesis in barley and Wheat.Plant cell,Tissue and Organ Cultrue,63(1):35~40
    Orton T J.1980. Chromosomal variability in tissue cultures and regenerated plants of Hordeum. Theor Appl Genet,56:101~112
    Peter L, Morrell, Michael T C.2007. Genetic evidence for a second domestication of barley east of the Fertile Crescent. PNAS,104:3289~294
    Petrusal M, Winicol L.1997. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem,35:303~310
    Pillen K, Zacharias A, Leon J.2004. Comparatice AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. Spontaneum. Theor Appl Geneics,108:1591~1601
    Poehlman J M.1979. Breeding Field Crops. Second edition. The AVI Publishing Co. Inc., Westport, Connecticut.
    Powell W, Thomas W T B, Baird E, Lawrence P, Booth A, Harrower B, McNicol J W, Waugh R.1997. Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity,79:48~59
    Primmer C R, Eu G H.1998. Patterns of molecular evolution in avian micmsatellhes. Mol Biol Evol,15(8): 997~1008
    Qi X, Lindhout P.1997. Development of AFLP markers in barley. Mol Gen Genetics,54:330~336
    Qi X, Stam P, Lindhout P.1998. Use of locus-specific AFLP markers to construct a high density molecular map in barley. Theor Appl Genetics,96:376~384
    Rafalski A, Gidzinska M, WiCniewska I.1997. PCR-based systems for evaluation of relationships among maize inbredS. In:Tsaftaris A ed.Genetics, Biotechnology and Breeding of Maize and Sorghum. Royal Soc.Chem. Cambridge. UK,106~111
    Rajaram S, Braun H J, Ginkel M V.1996. CIMMYT's approach to breed for drought tolerance. Euphytica, 92:147~153
    Ramsay L M, Ivanissevich S A.2000. Simple Sequence Repeat-Based Linkage Map of Barley. Genetics, 156:1997~2005
    Randhawa A S, Sharma S K, Dhaliwal H S.1988. Screening for drought to lerance in wheat. Crop Improv, 15:61~64
    Rao RV, Hodgkin T.2002. Genetic diversity and conservation and utilization of plant genetic resources.
    Plant cell.Tissue and Organ Culture,68:1~19
    Reddy P V, Soliman K M.1997. Identification of wild and cultivated Hordeum species two-primer RAPD fragments. Biologic Plantanim,39(4):543~552
    Richards R A, Rebetzke G J, Condon A G.1998. Genetic improvement of water use efficiency and yield of dryland wheat. In:A E Slinkard (ed.). P roceedings of the 9th Internat ionalW heat Genet ics Sympo sium. Vo 1.1. Saskatchew an, Canada:U niversity Extension Press:57~60
    Rohlf J F.2000. NTSYSpc:Numerical Taxonomy and Mulitivariate Analysis System. Version 2.1, Users Guide. Exeter Software, Setauket, New York
    Romagosa I, Han F, Clancy J A, Ullrich S E.1999. Individual locus effects on dormancy during seed development and after ripening in barley. Crop Sci,39:74~79
    Ellis R P, Forster B P, Robinson D, Handley L L, Gordon D C, Russell J R, Powell W.2000. wild barley:a source of genes for crop improvement in the 21st century? Journal of Expermental Botany,51(342): 9~17
    Russell J, Fuller J, Young G, Thonlas B, Taramino G, Macaulay M, Waogh R, Powell W.1997. Discriminating between barley genotypes using miemsatellite markers. Genome,40:442~450
    Russell J R, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W.2004. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome,47:389~398
    Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R.1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714~722
    Robin G A, Terence A B.2003. AFLP data and the origins of domesticated crops. Genome,46:448~453
    Roustai M, Tahir M, Amiri A.1998. The role of coleoptile length and crown node dep thin cold and drought tolerance of wheat. In:A E Slinkard (ed.). Proceedings of the 9th Internat ional Wheat Genet ics Sympo sium. Vo l.4. Saskatchew an, Canada:University Extension Press:77~79
    Saghai-Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W.1994. Extraordinarily polymorphic microsatellite DNA in barley:species diversity, chromosomal locations, and population dynamics. PNAS,91:5466~5470
    SCH, N C,HA YES P M.1991. Gametophytic selection in a winter xspring barley cross. Genome,34: 918~922
    Schwarz G, Michalek W, Mohler V, Wenzel G, Jahoor A.1999. Chromosome landing at the Mla locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP markers. Theor Appl Genetics,98:521~530
    Seal H.1964. Multivariate Statistical analysis for biologist,London:Methuen
    Shammon M C, Rhoades J D, Draper J H.1998. Assessment of salt tolerance in rice cultivars in response to salinity problems in California. Crop Science,38(2):395~398
    Shao H B,Liang Z S,Shao M A, Sun S M, Hu Z M.2005. Dynamic changes of anti-oxidative enzymes of 10 wheat genotypes at soil water deficits.Colloids and Surfaces B:Biointerfaces,42:187~195
    Sharma S C, Sethi G S.1998. Excised-leaf water retention as a selection criterion for drough t to lerance in wheat (T riticum aestivum L). In:A E Slinkard (ed.). Proceedings of the 9th International Wheat Genetics Symposium. Vo l.4. Saskatchew an, Canada:U niversity Extension Press:83~85
    Sharma S K, Goyal S S.2003. Progress in plant salinity resistance research:need for an integrative paradigm.Goyal S S. Crop Production in Saline Environments. N.Y:Food Products Press:387~407
    Simons G, VanderLee T, Diergaarde P, Van-Daelen R, Groenendik J, Frijters A, Buschges R, Hollricher K, Topsch S, Schulze-Lefert P, Salamini F, Zabeau M,Vos P.1997. AFLP-based fine mapping of the mlo gene to a 30-kb DNA segment of the barley genome. Genomics,44:61~70
    Singh D.1980. Genetic divergence for some quantitative characters in barley.Indian J.Genet,40:391~395
    Skolnick M H, Wallace R B.1988, Simultaneous analysis of multiply polymorphic loci using amplified sequence polymorphism (ASPS). Genomics 2:273~279
    Slafer G A, Araus J L.1998. Improving wheat responses to abioticstresses. In:A E Slinkard(ed.). Proceedings of the 9th Internat ional W heat Genetics Syposium. Vo l.1.Saskatchewan, Canada: University Extension Press:201~213
    Snape J W, Sarma R, Quarrie S A, Fish L, Galiba G,Sutka J.2001. Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica,120:309~315
    Soden A, Henschke P A, Langridge P.1996. PCR differentiation of commercial yeast strains using intron splice site primers. Appl Environ Microbiol,62:4514~4520
    Struss D and Plieske J.1998. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet,97:308~315
    Swanston J S, Ellis R P.2002. Genetics and breeding of malting quality attributes. In:G. A. Slafer, J.-L. Molina-Cano, R. Savin, J. Araus, and J. Romagosa (eds). Barley Science. Food Products Press, Binghamton:85~114
    Takai T, Fukuta Y, Shiraiwa T, Horie T.2005. Time-related mapping of quantitative trait loci controlling grain filling in rice (Oryza sativa L.).J Exp Bot,56:2107~2118
    Tanji K K.1990. Nature and extent of agricultural salinity. In:Tanki, K.K.(Ed.), Agricultural Salinity Assessment and Management. American
    Tenaillon M I, Sawkins M C,Anderson L K, Stack S M, Doebley J, Gaut B S.2001. Patterns of diversity and recombination along chromosome I of maize (Zea mays ssp.mays L.) Genetics,162:1401~1413
    Teulat B, Borries C, This D.2001. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth chamber under two water regimes Theor Appl Genet,103:161~170
    Thiel T, Kota R, Grosse I, Stein N, Graner A.2004. SNP-CAPS:a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res,32:55~63
    Thomas W.2002. Molecular marker-assisted versus conventional selection in barley breeding. In:Slafer, G.A.,Molina-Cano, J., Savin, R., Araus, J., Romagosa, I. (eds), Barley Science:Recent Advances from MolecularBiology to Agronomy, New Views on the Origin of Cultivated Barley. The Haworth Press, Inc., New York:177~204
    Thevenot C, Simond C E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul J L.2005. QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot,56:945~958
    Tinkerl N A, Mather D E, Rossnagel B G, Kasha K J, Kleinhofs A, Hayes P M, Falk D E, Ferguson T, Shugar L P, Legge W G, Irvine R B, Choo T M, Briggs K G, Ullrich S M, Saghai-Maroof M A, Scoles G J, Hoffman D, Dahleen L S, Kilian A, Chen F, Biyashev R M, Kudrna D A, Steffenson B
    J.1996. Regions of the genome that affect agronomic performance in two-row barley. Crop Sci,36:1053~1062
    Todd G W, Webster D L.1965. Effect of repeated drought periods on photo synthesis and survival of cereal seedlings. A gronomy Journal,57:399~404
    Tolbert D M, Qualset C O, Jain S K, Craddock J C.1979. A diversity analysis of a world collection of barley. Crop Science,19:787~794
    Toojinda T, Baird E, Booth A, Broers L, Hayes P, Powell W, Thomas W, Vivar H, Young G 1998. Introgerssion of quantitative trait loci (QTLs) determining stripe rust resistance in barley, an example of marker-assisted line development. Theor Appl Genetics,96:123~131
    Tosihide N, Mannbu I, Poontariga H, Mika N, TeruhiroT, Tetsuko T.1996. Distribution of glycinebetaine in old and young leaf blades of salt-stressed barley plants. Plant Cell Physiol,37(6):873~877
    Turpeinen T, Vanhala T, Nevo E, Nissila E.2003. AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel.Theoretical Applied Genetics,106:1333~1339
    Turuspekov Y, Nakamura K, Waugh R.2000. Application of SSR markers for genetic diversity assessment in barley(H. vulgare L.). Barley GeneticsVI II, Australia, Adelaide, Ⅱ:66~68
    Upadhyaya H D.2005. Variability for drought resistance related traits in the mini core collection of peanut. Crop Science,45(4):1432~1440
    UPOV.1994. Guidalines for the conduct of tests for distinctness, uniformity and stability(barley). Publication TG/19/10,Geneva:1~34
    U W, Sadlerl A.1991. Low nudeotide diversity in man. Genetics,129:513~523
    Vanhala T K, VanRijn C P E, Buntjer J, Stam P,Nevo E, Poorter H, VanEeuwijk FA.2004. Environmental, phenotypic and genetic variation of wild barley (Hordeum spontaneum) from Israel. Euphytica 137: 297~309
    Van-Rijn C A.2001. A physiological and genetic analysis of growth characteristics in Hordeum spontaneum. Ph.D. Thesis
    Varshney R K, Korzun V, Borner A.2004. Molecular maps in cereals:methodology and progress. In: Gupta PK and Varshney RK (eds) Cereal Genomics. Dordrecht:Kluwer, pp.35~82
    Vetelainen M.1994. Exotic barley germplasm:variation and effects on agronomic traits in complex crosses. Euphytica,79:127~136
    VonKorff M, Wang H, Leon J, Pillen K.2005. AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgerssed from wild barley. Theor Appl Genetics,111:583~590
    Wang R R, Zhang X Y.1996. Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus. Chromosome Res.4:583~587
    Ward D J.1962. Some evolutionary aspects of certain morphologic characters in a world collection of barley. USDA Tech Bull,1276:1~1112
    Waugh R, Bonar N, Baird E, Thomas B, Craner A, Hayes P, Powell W.1997. Homology of AFLP products in three mapping populations of barley. Mol Gen Genetics,255:311~321
    Waugh R, Mclean K, Flavell A J, Pearce S R, Kumar A.1997. Genetic distribution of BARE-1-like
    retrotransposable elements in the barley genome revealed by sequence-specific amplified polymorphism (S-SAP). Mol. Gen. Genet,253:687~694.
    Weerasena J S, Steffenson B J, Falk A B.2004. Conversion of an amplified fragment lenth polymorphism marker into a co-dominant marker in th mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genetics,1087:712~719
    Song W N, Langridge P.1991. Identification and mapping polymorphism in cereals based on polymerase chain reaction. Theor Appl Genet,82:209~216
    Song W N, Henry R.1994. Polymorphisms in amyl gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet,89:509~513
    Song W N, Henry R.1995. Molecular analysis of the DNA polymorphism of wild barley (Hordeum spontaneum) using the polymerase chain reaction. Genet Res Crop Evol,42:273~281
    Welsh J M, Clelland M.1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res,19:7213~7218
    Williams J G K, Kubelik A R, Livak K J.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,18:6531~6535
    Yan J, Chen G x, Cheng J, Nevo E, Gutterman Y.2008. Phenotypic variation in caryopsis dormancy and seedling salt tolerance in wild barley, Hordeum spontaneum,from different habitats in Israel. Genet Resour Crop Evol,55:995~1005
    Yokoi S, Quintero F J, Cubero B, Ruiz M T, Bressan R A, Hasegawa P M, Pardo J M.2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+antiporters in the salt stress response. Plant,30:529-539
    Yoshiro M, Kazuyoshi, Takeda.1998.Genetic resources of salt tolerance in wild Hordeum species. Euphytica,103:137~141
    Yoshiro M, Kazuyoshi T.1997. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Ordeum vulgare L).Euphytica,94:263~272
    Zhang F C, Gutterman Y.2003. The trade-off between breaking of dormancy of caryopses and revival ability of young seedlings of wild barley (Hordeum spontaneum).Can J Bot,4:375~382
    Zhang Z Y, Xin ZY, Larkin P J.2001. Molecular characterization of a Thinopyrum intermedium Group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome,44:1129~1135
    Ziaudidin A, Marsolis A, Simion E, Kasha K J.1992. Improved poant regeneration from 2heat anther and barley microspore culture using phenylacetic acid(PAA). Plant Cell Report,(11):486~498
    Zohary D, Hopf M.1993. Domestication of plants in the Old World. Oxford Science Publications.116~ 122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700