用户名: 密码: 验证码:
基于高低压兼容工艺的高压驱动集成电路
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压功率集成电路是功率电子学的重要领域,它将高压功率器件与控制和保护电路单片集成,减少了系统中的元件数、互连数和焊点数,不仅提高了系统的可靠性、稳定性,而且减少了系统的功耗、体积、重量和成本,对实现军事装备和民用装置的小型化、智能化和节能化有着重要的意义。在功率单片集成技术中,隔离技术是基础,高低压兼容工艺是关键,可集成的高压功率器件是核心。为此,国内外众多学者提出一系列的可集成高压功率器件和隔离技术,用于硅基和SOI(Silicon On Insulator)基高低压兼容工艺中,以满足不同应用领域的要求。迄今,由于SOI基横向高压器件的纵向耐压限制,尚无实用1000V SOI高压集成电路;而薄膜SOI的背栅效应导致高端器件穿通击穿,使得已有100V以上级薄膜SOI高低压兼容工艺的顶层硅膜厚度至少为1.5μm;对于硅基厚外延高压BCD(BipolarCMOS DMOS)工艺,存在热过程时间长、隔离横向扩散大等不足,且由于DMOS(Double-diffused MOSFET)器件漏极引出带来高压互连(High VoltageInterconnection,HVI)等新的问题。
     本文围绕SOI高压器件耐压与背栅效应、高压互连技术和BCD工艺进行研究。提出SOI高压器件的场控REBULF(REduced BULk Field)模型,提出薄膜SOI高压器件的场氧离子注入IFO(Implantation after Field Oxide)技术,提出无浮空场板NFFP(No Floating Field Plate)高压互连结构。基于上述模型、技术和结构,开发PDP(Plasma Display Panel)寻址驱动电路、高压大电流控制电路和高压半桥驱动电路,其中控制电路和半桥驱动电路分别用于某军用装置和民用产品。本文主要有以下三方面工作:
     1、提出一种利用背栅场控实现体内场降低的场控REBULF模型。基于背栅场控效应,降低SOI横向高压器件体内漏端电场,而提高体内源端电场,突破习用结构的纵向耐压限制,提高SOI横向高压器件的击穿电压。借助数值仿真,分析背栅场控对厚膜SOI横向高压器件击穿特性的影响,在背栅电压为330V时,实现击穿电压为1020V的场控REBULF LDMOS(Lateral Double-diffused MOSFET),较习用结构提高47.8%。该模型的提出,为SOI基高压功率器件和高压集成电路的实现提供了一种新的设计思路。
     2、提出一种场氧离子注入IFO技术。该技术包含一个穿通击穿电压判据和一项注入工艺设计,可精确控制薄膜SOI背栅效应导致的高端厚栅氧器件的穿通击穿电压。基于IFO技术和隔离氧化共用技术,开发一种新的1μm超薄膜SOI高低压兼容工艺,将迄今100V以上级薄膜SOI高压工艺的顶层硅膜厚度从1.5μm降至1μm,实现高压NLDMOS(N-channel Lateral Double-diffused MOSFET)、厚栅氧PLDMOS(P-channel Lateral Double-diffused MOSFET)、5V CMOS的单片集成。利用基于IFO技术的薄膜SOI高低压兼容工艺,研制成功64位、80V、20mA PDP寻址驱动电路和用于某军用装置的120V、100mA高压大电流控制电路。
     3、提出NFFP高压互连结构。通过求解二维泊松方程,建立具有HVI的单RESURF(Reduced SURface Field)器件表面电场和电势解析模型,利用p-top降场层的结终端扩展作用以及圆形器件结构的曲率效应,增强具有HVI的横向高压器件漂移区耗尽,降低高压互连线对器件击穿特性的有害影响。实验与仿真结果表明,器件的击穿电压随着互连线宽度的减小而增加,并与p-top降场层浓度存在强的依赖关系,三维仿真结果与实验结果较吻合,而二维仿真并不能较好反映具有HVI的高压器件击穿特性。基于NFFP高压互连结构和硅基薄外延BCD兼容工艺,研制成功880V高压半桥驱动电路,并已形成民用产品。
High voltage power IC is one of the key areas of power electronics. The high voltage power IC allows for the integration of high voltage power devices, control and protection circuits. Since the high voltage power IC reduces the number of system components, interconnection and solder points, it has not only improved system reliability and stability, but also reduced its size, weight and cost. It is of great significance for the miniaturization, intelligence, energy saving of military and civilian equipment. The isolation technology is the basis, the high and low voltage compatible process is very important, and the integrated high voltage power devices are the core to the monolithic power integration technology. For this reason, many scholars at home and abroad have proposed a series of integrated high voltage power devices and isolation technology on bulk silicon and SOI (Silicon On Insulator). The devices and isolation technology are used for high and low voltage compatible process to meet the requirements of different application areas. However, due to the limit of vertical breakdown voltage of lateral SOI high voltage device, there is no any practical 1000 V SOI high voltage IC. Since punch-through breakdown induced by thin layer SOI back-gate effect, the thickness of the top silicon is at least 1.5μm for the existing over 100 V thin layer SOI process. The thick epitaxial Si-based high voltage BCD (Bipolar CMOS DMOS) process has several drawbacks. The long diffusion times result in wider isolation diffusion. The greater lateral diffusion reduces the amount of useful area on a chip. Another important problem for the Si-based high voltage BCD process is HVI (High Voltage Interconnection) metal line extended form the drain contact of DMOS (Double-diffused MOSFET).
     This dissertation focuses on breakdown voltage and back-gate effect of SOI high voltage device, HVI technology, and BCD process. A novel field-control REBULF (REduced BULk Field) model for SOI high voltage device, an IFO (Implantation after Field Oxide) technology for SOI high voltage device and a NFFP (No Floating Field Plate) HVI structure are proposed. Based on the proposed model, technology, and structure, we develop a PDP (Plasma Display Panel) data drive IC, a military high voltage high current control circuit, and a series of high voltage half bridge drive ICs. The high voltage high current control circuit has already been used in a military installation, and the high voltage half bridge drive IC products are available in the market. The three main results are as follows.
     1. A novel field-control REBULF model is proposed for improving the vertical breakdown voltage of lateral SOI high voltage device. The mechanism of the improved breakdown characteristics is that the electric field distributions of the active region are modulated by back-gate field-control effect. The bulk electric field at the drain side is reduced, the bulk electric field at the source side is increased, and the breakdown voltage of the lateral SOI high voltage device is improved. The impact of the back-gate bias on over 600 V lateral thick layer SOI high voltage device is discussed via numerical simulations. When the back-gate bias is 330V, the breakdown voltage of the field-control REBULF LDMOS (Lateral Double-diffused MOSFET) is 1020V, which is 47.8% greater than that of a conventional LDMOS. The novel model presents a new method for realizing SOI high voltage power device and high voltage IC.
     2. A novel IFO technology is proposed for high side thick gate oxide device to avoid punch-through breakdown induced by thin layer SOI back-gate effect. The technology includes a criterion of the punch-through breakdown and an implantation process for precise control of the punch-through breakdown voltage. Based on the proposed IFO technology and the conforming technology of isolation and oxidation, we develop a new thin layer SOI high and low voltage compatible process, which offers NLDMOS (N-channel Lateral Double-diffused MOSFET), PLDMOS (P-channel Lateral Double-diffused MOSFET) and 5 V CMOS devices. The thickness of the top silicon is decreased from 1.5μm to 1μm for the existing over 100 V thin layer SOI process. The thin layer SOI high voltage and low voltage compatible process based on IFO technology is successfully used for a 64-bit PDP data drive IC and a military high voltage high current control circuit. The operating voltage and output current of the PDP data drive IC are 80 V and 20 mA, respectively. The operating voltage and output current of the high voltage high current control circuit are 120 V and 100 mA, respectively. The high voltage high current control circuit has already been used in a military installation.
     3. A NFFP HVI structure is proposed to improve the breakdown characteristics of the high voltage device with HVI. An analytical model for the surface potential and electric field distribution of the single RESURF (Reduced SURface Field) device with HVI is presented by solving two-dimensional Poisson equation. Using the effects of junction termination extension of the p-top layer and the curvature of a circular structure, the breakdown voltage of the lateral high voltage device with HVI is improved by spreading the depletion region. Two- and three-dimensional simulation results are presented. The breakdown voltage of the LDMOS with HVI is not exact in the two-dimensional simulation. In agreement with the three-dimensional simulation, the experimental results show that the breakdown voltage of the LDMOS, which depends strongly on the concentration of the p-top layer, will increase with the reduction of the width of the HVI. Based on the proposed NFFP HVI structure and the developed thin epitaxial high voltage BCD process, an 880 V half bridge drive IC is successfully realized. The high voltage half bridge drive IC products are available for civilian areas.
引文
[1] Krishna S, Kuo J, Gaeta I S. An analog technology integrates bipolar, CMOS, and high-voltage DMOS transistors. IEEE Transactions on Electron Devices, 1984, 31(1):89-95
    
    [2] Andreini A, Contiero C, Galbiati P. A new integrated silicon gate technology combining bipolar linear, CMOS logic, and DMOS power parts. IEEE Transactions on Electron Devices, 1986, 33(12): 2025-2030
    [3] Contiero C, Andreini A, Galbiati P, et al. Design of a high side driver in multipower-BCD and VIPower technologies. 1987 International Electron Devices Meeting, Vol.33: 766-769
    [4] Taylor B E. Power integrated circuits and their applications. 1989 IEE Colloquium on Power Integrated Circuits, Vol.34: 1-2
    [5] Moons E, Willocx E, Beeck E O D, et al. A low-power low-noise CMOS compatible 80 V subscriber line interface circuit. 1990 IEEE Custom Integrated Circuits Conference, Vol.3: 1-5
    [6] Baiocchi A. New developments in mixed BIPOLAR/CMOS/DMOS technology for intelligent power applications. 1991 IEE Colloquium on Integrated Power Devices, Vol.10: 1-4
    [7] Castello R, Lari F, Siligoni M, et al. 100-V high-performance amplifiers in BCD technology for SLIC applications. IEEE Journal of Solid-State Circuits, 1992, 27(9): 1255-1263
    [8] Zojer B, Koban R, Petschacher R, et al. Integration of a subscriber line interface circuit (SLIC) in a new 170V smart power technology. 1995 International Symposium on Power Semiconductor Devices and ICs, Vol.7: 293-297
    [9] Diazzi C, Martignoni F, Nora P, et al. A power BCD chipset for automotive HID lamp ballast systems. 1996 IEEE Power Electronics Specialists Conference, Vol.27: 1766-1772
    [10] Shekar M S, Hartular A, Wrathall B, et al. Modeling the thermal transients in automotive power ICs. 1996 International Symposium on Power Semiconductor Devices and ICs, Vol.8: 223-226
    
    [11] Zojer B, Koban R, Petschacher R, et al. A 150V subscriber line interface circuit (SLIC) in a new BiCMOS/DMOS-technology. 1996 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Vol.4: 93-96
    [12] Shekar M S, Williams R K, Darwish M, et al. A robust lateral power MOSFET buffered H-bridge motor driver power IC. 1997 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Vol.5: 197-200
    [13] Williams R K, Mallikarjunaswamy S, Darwish M, et al. A novel automotive 60V load-dump protected ESD diode. 1997 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Vol.5: 357-360
    [14] Contiero C, Galbiati P, Palmieri M, et al. Smart power approaches VLSI complexity. 1998 International Symposium on Power Semiconductor Devices and ICs, Vol. 10: 11-16
    [15] Criscioize M, Fortuiza L, Imbruglia A, et al. Fuzzy logic controlled monolithic switching regulator in BCD technology. 2001 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Vol.9: 660-663
    [16] Theobald T, Fischer H, Kanert W, et al. An ignition IGBT with smart functions in chip on chip technology. 2001 International Symposium on Power Semiconductor Devices and ICs, Vol.13: 303-306
    [17] Vashchenko V A, Concannon A, Ter B M, et al. High performance SCR's for on-Chip ESD protection in high voltage BCD processes. 2003 International Symposium on Power Semiconductor Devices and ICs, Vol. 15: 261-264
    [18] Deng H F, Huang A Q, Feuerhache A, et al. Design of a monolithic 2 MHz fast transient voltage regulator chip. 2004 International Symposium on Power Semiconductor Devices and ICs, Vol.16: 383-386
    [19] Botti E, Grosso A, Meroni C, et al. Digital input audio power amplifiers in 0.6-μm BCD technology: two examples. 2004 International Symposium on Power Semiconductor Devices and ICs, Vol.16: 93-96
    [20] Lokhandwala A M, Mazumder S K. Discrete validation of a smart power ASIC (SPIC) for a distributed power system. 2004 Annual IEEE Power Electronics Specialists Conference, Vol.35: 3721-3727
    [21] Barbera A L, Randazzo V, Sueri S, et al. A monolithic electronic driver for fluorescent lamps. 2004 International Symposium on Power Semiconductor Devices and ICs, Vol.16: 329-331
    [22] Doom T S, Tuijl E V, Schinkel D, et al. An audio FIR-DAC in a BCD process for high power class-D amplifiers. 2005 European Solid-State Circuits Conference, Vol.31: 459-462
    [23] Annese M, Bertaiola S, Croce G, et al. 0.18 μm BCD high voltage gate (HVG) process to address advanced display drivers roadmap. 2005 International Symposium on Power Semiconductor Devices and ICs, Vol. 17: 159-162
    [24] Langeslag W, Pagano R, Schetters K, et al. A high-voltage compatible BCD SoC-ASIC performing valley-switching control of AC-DC power converters based on PFC and flyback cells. 2006 European Solid-State Circuits Conference, Vol.32: 2996-3001
    [25] Dulau L, Pontarollo S, Boimond A, et al. A new gate driver integrated circuit for IGBT devices with advanced protections. IEEE Transactions on Power Electronics, 2006,21(1): 38-44
    [26] Huque M A, Vijayaraghavan R, Zhang M, et al. An SOI-based high-voltage, high-temperature gate-driver for SiC FET. 2007 IEEE Power Electronics Specialists Conference, Vol.38: 1491-1495
    [27] Riccardi D, Causio A, Filippi I, et al. BCD8 from 7V to 70V: a new 0.18μm technology platform to address the evolution of applications towards smart power ICs with high logic contents. 2007 International Symposium on Power Semiconductor Devices and ICs, Vol.19: 73-76
    [28] Moscatelli A, Merlini A, Croce G, et al. LDMOS implementation in a 0.35 μm BCD technology (BCD6). 2000 International Symposium on Power Semiconductor Devices and ICs, Vol.12: 323-326
    [29] Kwon T H, Jeoung Y S, Lee S K, et al. Newly designed isolated RESURF LDMOS transistor for 60 V BCD process provides 20 V vertical NPN transistor. 2002 Device Research Conference, Vol.60: 67-68
    [30] Labate L, Moscatelli A, Stella R. A-BCD: Robust and performing RF LDMOS device integrated in a VLSI BCD silicon technology. 2003 IEEE Radio Frequency Integrated Circuits Symposium, Vol.7: 159-162
    [31] Dyer T, McGinty J, Strachan A, et al. Monolithic integration of trench vertical DMOS (VDMOS) power transistors into a BCD process. 2005 International Symposium on Power Semiconductor Devices and ICs, Vol.17: 47-50
    [32] Chan W W T, Sin J K O, Wong S S. An effective cross-talk isolation structure for power IC applications. 1995 International Electron Devices Meeting, Vol.41: 971-974
    [33] Chan W W T, Sin J K O, Mok P K T, et al. A power IC technology with excellent cross-talk isolation. IEEE Electron Device Letters, 1996, 17(10): 467-469
    [34]Cremoux G,Dubois E,Bardy S,et al.Simulations and measurements of cross-talk phenomena in BiCMOS technology for hard disk drives.1996 International Electron Devices Meeting,Vol.42:481-484
    [35]Pendharkar S.Integration of substrate-isolated high voltage devices in junction isolated technologies.2005 European Solid-State Circuits Conference,Vol.31:485-488
    [36]Fujii K,Torimaru Y,Nakagawa K,et al.400V MOS IC for EL display.1981 International Solid-State Circuits Conference,Vol.27:46-47
    [37]Martin R A,Buhler S A,Lao G.850V nmos driver with active outputs.1984 International Electron Devices Meeting,Vol.30:266-269
    [38]Falck E,Gerlach W,Reckel W.Calculation of the blocking capability of SOl power devices under the influence of interconnections.Microelctronics Journal,1996,27(2):201-207
    [39]Nolhier N,Charitat G,Zerrouk D,et al.Self-shielded high voltage SOl structures for HVIC's.1996 International Semiconductor Conference,Vol.2:267-270
    [40]Contiero C,Galbiati P,Merlini A,et al.Trend and issues in BCD smart power technologies.1999 IEEE Bipolar/BiCMOS Circuits and Technology Meeting,Vol.7:111-118
    [41]Gagnard X,Bonnaud O.Building-in reliability,application to bipolar/CMOS/DMOS technology.2002 International Symposium on the Physical and Failure Analysis of Integrated Circuits,Vol.9:147-151
    [42]Murari B,Contiero C,Gariboldi R.Smart power technologies evolution.2000 Industry Applications Conference,Vol.35:10-19
    [43]Contiero C,Murari B,Vigna B.Progress in power ICs and MEMS,"analog" technologies to interface the real world.2004 International Symposium on Power Semiconductor Devices and ICs,Vol.16:3-12
    [44]何杰,夏建白.半导体科学与技术.北京:科学出版社,2007,257-260
    [45]Contiero C,Andreini A,Galbiati P.Roadmap differentiation and emerging trends in BCD technology.2002 European Solid-State Device Research Conference,Vol.32:275-282
    [46]考林基.SOI技术.北京:科学出版社,1993
    [47]Nakagawa A,Yasuhara N,Baba Y.Breakdown voltage enhancement for devices on thin silicon layer/silicon dioxide film.IEEE Transactions on Electron Devices,1991,38(7):1650-1654
    [48]Sumida H,Hirabayashi A,Kumagai H.The characteristics of the lateral IGBT on the thin SOI film when the collector voltage of the IGBT is applied to the substrate.IEEE Transactions on Electron Devices,1994,41(7):1301-1303
    [49]Watabe K,Akiyama H,Terashima T,et al.A novel p-channel dual action device for HVIC.1997 IEEE Bipolar/BiCMOS Circuits and Technology Meeting,Vol.5:147-150
    [50]Sumida H,Hirabayashi A.Substrate bias effect of blocking capability of a lateral p-channel mosfet on SOI.Solid-State Electronics,1997,41(11):1773-1779
    [51]Sumida H,Hirabayashi A,Shimabukuro H,et al.A high performance plasma display panel driver IC using SOI.1998 International Symposium on Power Semiconductor Devices and ICs,Vol.10:137-140
    [52]Watabe K,Akiyama H,Terashima T,et al.An 0.8-μm high-voltage IC using a newly designed 600-V lateral p-channel dual-action device on SOI.IEEE Journal of Solid-State Circuits,1998,33(9):1423-1427
    [53]Kim J,Kim S G,Song Q S,et al.Improvement on p-channel SOl LDMOS transistor by adapting a new tapered oxide technique.IEEE Transactions on Electron Devices,1999,46(9):1890-1894
    [54]Krabbenborg B H,van der Pol J A.Robustness of LDMOS power transistors in SOI-BCD processes and derivation Of design rules using thermal simulation.2001 International Symposium on Power Semiconductor Devices and ICs,Vol.13:157-160
    [55]Roh T M,Lee D W,Koo J G,et al.Highly reliable LDMOSFETs employing uneven racetrack sources for PDP driver applications.2002 International Symposium on Power Semiconductor Devices and ICs,Vol.14:153-156
    [56]Sumida H,Hirabayashi A,Kobayashi H.A high-voltage lateral igbt with significantly improved on-state characteristics on SOI for an advanced PDP scan driver IC.2002International SOI Conference,Vol.28:64-65
    [57]Rob T M,Lee D W,Kim S G,et al.Highly reliable p-LDMOSFET with an uneven racetrack source for PDP driver IC applications.2003 International Symposium on Power Semiconductor Devices and ICs,Vol.15:236-239
    [58]Swanenberg M J,Ludikhuize A W,Grakist A.Applying DMOSTs,diodes and thyristors above and below substrate in thin-layer SOI.2003 International Symposium on Power Semiconductor Devices and ICs,Vol.15:232-235
    [59]Kawai F,Onishi T,Kamiya T,et al.Multi-voltage SOI-BiCDMOS for 14V&42V automotive applications.2004 International Symposium on Power Semiconductor Devices and ICs,Vol.16:165-168
    [60]Fuwa H,Hayakawa K.New design concept of ESD protection circuits in SO1 BiCDMOS LSI for automotive applications.2005 International SOI Conference,Vol.31:116-117
    [61]Duan B X,Zhang B,Li Z J.Anew partial SOl power device structure with P-type buried layer.Solid-State Electronics,2005,49(12):1965-1968
    [62]Wasekura M,Fuwa H,Segawa T,et al.An SOI-BiCDMOS chipset for automotive electronically controlled brake system.2006 International SO1 Conference,Vol.32:117-118
    [63]Sumida H,Maiguma H,Shimizu N,et al.250V-class lateral SOI devices for driving HDTV PDPs.2007 International Symposium on Power Semiconductor Devices and ICs,Vol.19:229-232
    [64]Wessels P,Swanenberg M,van Zwol H,et al.Advanced BCD technology for automotive,audio and power applications.Solid-State Electronics,2007,51(2):195-211
    [65]Wessels P J J.SOI based technology for smart power applications.2007 International SOI Conference,Vol.33:5 -7
    [66]Appels J A,Vaes H M J.High voltage thin layer devices(RESURF devices).1979International Electron Devices Meeting,Voi.25:238-241
    [67]Funaki H,Yamaguchi Y,Hirayama K,et al.New 1200 V MOSFET structure on SOI with SIPOS shielding layer.1998 International Symposium on Power Semiconductor Devices and ICs,Vol.10:25-28
    [68]Ludikhuize A W.A versatile 700-1200-V IC process for analog and switching applications.IEEE Transactions on Electron Devices,1991,38(7):1582-1589
    [69]Murari B.Smart power technology and the evolution from protective umbrella to complete system.1995 International Electron Devices Meeting,Vol.41:9-15
    [70]Contiero C,Galbiati P,Palmieri M,et al.Characteristics and applications of a 0.6 μm Bipolar-CMOS-DMOS technology combining VLSI non-volatile memories.1996 International Electron Devices Meeting,Vol.42:465-468
    [71]Terashima T,Yamamoto F,Hatasako K,et al.120 V BiC-DMOS process for the latest automotive and display applications.2002 International Symposium on Power Semiconductor Devices and ICs,Vol.14:93-96
    [72]Yasuhara N,Nakagawa A,Furukawa K.SOI device structures implementing 650 V high voltage output devices on VLSIs.1991 International Electron Devices Meeting,Vol.37:141-144
    [73] Stoisiek M, Oppermann K G, Schwalke U, et al. A dielectric isolated high-voltage IC-technology for off-Line applications. 1995 International Symposium on Power Semiconductor Devices and ICs, Vol.7: 325-329
    [74] Watabe K, Akiyama H, Terashima T, et al. A 0.8μm high voltage IC using newly designed 600V lateral IGBT on thick buried-oxide SOI. 1996 International Symposium on Power Semiconductor Devices and ICs, Vol.8: 151-154
    [75] Ito H, Isobe Y, Mizuno S, et al. Gate insulator characteristics on the bonded thick SOI wafers for automotive IC applications. 2001 International Workshop on Gate Insulator, Vol.1: 136-139
    [76] Hattori M, Ito F, Kako M. A very low on-resistance SOI BiCDMOS LSI for automotive actuator control. 2004 International SOI Conference, Vol.30: 171-173
    [77] Merchant S. Method for making an improved high voltage thin film transistor having a linear doping profile, US Patent, 5246870
    [78] Merchant S. Method for making an improved high voltage thin film transistor having a linear doping profile, US Patent, 5412241
    [79] Merchant S, Arnold E, Baumgart H, et al. High-breakdown-voltage devices in ultra-thin SOI. 1991 International SOI Conference, Vol.17: 150-151
    [80] Arnold E, Merchant S, Arnato M, et al. Comparison of junction-isolated and SOI high-voltage devices operating in the source-follower mode. 1992 International Symposium on Power Semiconductor Devices and ICs, Vol.4: 242-243
    [81] Merchant S, Arnold E, Baumgart H, et al. Dependence of breakdown voltage on drift length and buried oxide thickness in SOI RESURF LDMOS transistors. 1993 International Symposium on Power Semiconductor Devices and ICs, Vol.5: 124-128
    [82] Merchant S, Arnold E, Simpson M. Tunneling in thin SOI high voltage devices. 1995 International Symposium on Power Semiconductor Devices and ICs, Vol.7: 130-135
    [83] Paul A K, Leung Y K, Plummer J D, et al. High voltage LDMOS transistors in sub-micron SOI films. 1996 International Symposium on Power Semiconductor Devices and ICs, Vol.8: 89-92
    [84] Arnold E, Letavic T, Merchant S, et al. High-temperature performance of SOI and bulk-silicon RESURF LDMOS transistors. 1996 International Symposium on Power Semiconductor Devices and ICs, Vol.8: 93-96
    [85] Arnold E, Letavic T, Bhimnathwala H. High-temperature off-state characteristics of thin-SOI power devices. IEEE Transactions on Electron Devices Letters, 1996, 17(12): 557-559
    [86]Arnold E,Aquino R,Letavic T.High-field electron velocity in thin SOI films.1997International SOI Conference,Vol.23:74-75
    [87]Letavic T,Arnold E,Simpson M,et al.High performance 600 V smart power technology based on thin layer Silicon-on-insulator.1997 International Symposium on Power Semiconductor Devices and ICs,Vol.9:49-52
    [88]Letavic T,Arnold E,Simpson M,et al.600V single-chip power conversion system based on thin layer silicon-on-insulator.1998 International SOI Conference,Vol.24:133-134
    [89]Zingg R P,Werjland I,van Zwol H,et al.850V DMOS-switch in silicon-on-insulator with specific Ron of 13Ω-mm~2.2000 International SOI Conference,Vol.26:62-63
    [90]Merchant S,Arnold E.High voltage thin film transistor having a linear doping profile and method for making,US Patent,5300448
    [91]Merchant S.SOI transistor with improved source-high performance,US Patent,5362979
    [92]Letavic T,Simpson M.Lateral thin-film silicon-on-insulator(SOI) device having lateral depletion means for depleting a portion of drift region,US Patent,6028337
    [93]Zingg R P.Method of manufacturing a semiconductor device,US Patent,6376289
    [94]Letavic T,Simpson E,Arnold E,et al.600V power conversion system-on-a-chip based on thin layer silicon-on-insulator.1999 International Symposium on Power Semiconductor Devices and ICs,Vol.11:325-328
    [95]Letavic T,Albu R,Dufort B,et al.Thin-layer silicon-on-insulator high-voltage PMOS device and application.2002 International Symposium on Power Semiconductor Devices and ICs,Vol.14:73-76
    [96]Petruzzello J,Letavic T,van Zwol H,et al.A thin-layer high-voltage silicon-on-insulator hybrid LDMOS/LIGBT device.2002 International Symposium on Power Semiconductor Devices and ICs,Vol.14:117-120
    [97]Petruzzello J,Letavic T,Dufort B.SOI high voltage power FET with an internal voltage (current) sensing terminal.2003 International Symposium on Power Semiconductor Devices and ICs,Vol.15:224-227
    [98]Pawel S,Robberg M,Herzer R.600V SOI gate drive HVIC for medium power applications operating up to 200℃.2005 International Symposium on Power Semiconductor Devices and ICs,Vol.17:55-58
    [99]Letavic T,Petruzzello J,Claes J,et al.650V SOI LIGBT for switch-mode power supply application.2006 International Symposium on Power Semiconductor Devices and ICs,Vol.18:357-360
    [100]van der Pol J A,Ludikhuize A W,Huizing H G A,et al.A-BCD:An Economic 100 V RESURF Silicon-On-Insulator BCD technology for consumer and automotive applications.2000 International Symposium on Power Semiconductor Devices and ICs,Vol.12:327-330
    [101]Ludikhuize A W.A review of RESURF technology.2000 International Symposium on Power Semiconductor Devices and ICs,Vol.12:11-18
    [102]Ludikhuize A W,van der Pol J A,Heringa A,et al.Extended(180V) voltage in 0.6μm thin-Layer-SOI A-BCD3 technology on 1μm BOX for display,automotive & consumer applications.2002 International Symposium on Power Semiconductor Devices and ICs,Vol.14:77-80
    [103]Ludikhuize A W.Lateral 10-15V DMOST with very low 6 mOhm.mm2 on-resistance.2002International Symposium on Power Semiconductor Devices and ICs,Vol.14:301-304
    [104]Wessels P,Swanenberg M,Claes J,et al.Advanced 100V,0.13μm BCD process for next generation automotive applications.2006 International Symposium on Power Semiconductor Devices and ICs,Vol.18:197-120
    [105]Nitta T,Yanagi S,Miyajima T,et al.Wide voltage power device implementation in 0.25μm SOI BiC-DMOS.2006 International Symposium on Power Semiconductor Devices and ICs,Vol.18:341-344
    [106]谭开洲,杨谟华,徐世六,等.一种半绝缘键合SOI新型BCD结构.半导体学报,2007,28(5):763-767
    [107]Li Z J,Zhang B,Guo Y F,et al.The rule of field enhancement for buried dielectric layer of SOI high voltage devices.2007 International Conference on Communications,Circuits and Systems,Vol.5:1302-1305
    [108]Merchant S,Arnold E,Baumgart H,et al.Realization of high breakdown voltage(>700 V) in thin SOI devices.1991 International Symposium on Power Semiconductor Devices and ICs,Vol.3:31-35
    [109]Nakagawa A,Yamaguchi Y,Yasnhara N,et al.New high voltage SOI device structure eliminating substrate bias effects.1996 International Electron Devices Meeting,Vol.42:477-480
    [110]Rotter T,Stoisiek M.High-voltage extension(VBR ≥ 800 V) for smart-power SOI-technologies.2004 International Electron Devices Meeting,Vol.50:447-450
    [111]Akiyama H,Yasuda N,Moritani J,et al.A high breakdown voltage IC with lateral power device based on SODI structure.2004 International Symposium on Power Semiconductor Devices and ICs,Vol.16:375-378
    [112]Udrea F,Trajkovic T,Amaratunga G A J.Membrane high voltage devices - a milestone concept in power ICs.2004 International Electron Devices Meeting,Vol.50:451-454
    [113]Udrea F,Trajkovic T,Lee C,et al.Ultra-fast LIGBTs and superjunction devices in membrane technology.2005 International Symposium on Power Semiconductor Devices and ICs,Vol.17:159-162
    [114]罗小蓉,李肇基,张波,等.屏蔽槽SOl高压器件新结构和耐压机理.半导体学报,2005,26(11):2154-2158
    [115]罗小蓉,李肇基,张波,等.部分局域电荷槽SOI高压器件新结构.半导体学报,2006,27(1):115-120
    [116]Xiao R L,Zhang B,Li Z J.A novel 700 V SOI LDMOS with double-side trench.IEEE Electron Device Letters,2007,28(5):422-424
    [117]张波,段宝兴,李肇基.具有n~+浮空层的体电场降低LDMOS结构耐压分析.半导体学报,2006,27(4):730-734
    [118]段宝兴.横向高压器件电场调制效应及新器件研究:[博士学位论文].成都:电子科技大学,2007
    [119]乔明,方健,肖志强,等.1200V MR D-RESURF LDMOS与BCD兼容工艺研究.半导体学报,2006.27(8):1447-1452
    [120]Chen X B,Fan X E Optimum VLD makes SPIC better and cheaper.2001 International Conference on Solid-State and Integrated-Circuit Technology,Vol.6:104-108
    [121]Chen X B.Semiconductor power devices with alternating conductivity type high-voltage breakdown regions,US Patent,5216275
    [122]方健,乔明,李肇基.电荷非平衡super junction结构电场分布.物理学报,2006,55(7):3656-3663
    [123]Imam M,Hossain Z,Quddus M,et al.Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process.IEEE Transactions on Electron Devices,2003,50(7):1697-1701
    [124]Falck E,Gerlach W,Korec J.Influence of interconnections onto the breakdown voltage of planar high-voltage p-n junctions.IEEE Transactions on Electron Devices,1993,40(2):439-447
    [125]乔明,方健,李肇基,等.基于耦合式电平位移结构的高压集成电路.半导体学报,2006,27(11):2040-2045
    [126]Fujishima N,Takeda H.A novel field plate structure under high voltage intercormections.1990 International Symposium on Power Semiconductor Devices and ICs,Vol.2:91-96
    [127]Sakurai N,Nemoto M,Arakawa H,et al.A three-phase inverter IC for AC220V with a drastically small chip size and highly intelligent functions.1993 International Symposium on Power Semiconductor Devices and ICs,Vol.5:310-315
    [128]De Souza M M,Sankara Narayanan E M.Double resurf technology for HVICs.Electronics Letters,1996,32(12):1092-1093
    [129]Terashima T,Yoshizawa M,Fukunaga M,et al.Structure of 600V IC and a new voltage sensing device.1993 International Symposium on Power Semiconductor Devices and ICs,Vol.5:224-229
    [130]Mcarthur D,Mullen R.High voltage MOS transistor having shielded crossover path for a high voltage connection bus,US Patent,5040045
    [131]Terashima T.Structure for preventing electric field concentration in semiconductor device,US Patent,5270568
    [132]Terahima T,Yamashita J,Yamada T.Over 1000V n-oh LDMOSFET and p-oh LIGBT with JI RESURF Structure and Multiple Floating Field Plate.1995 International Symposium on Power Semiconductor Devices and ICs,Vol.7:455-459
    [133]Shimizu K,Rittaku S,Moritani J.A 600V HVIC process with a built-in EPROM which enables new concept gate driving.2004 International Symposium on Power Semiconductor Devices and ICs,Vol.16:379-382
    [134]Endo K,Baba Y,Udo Y,et al.A 500V 1A 1-Chip Inverter IC with a New Electric Field Reduction Structure.1994 International Symposium on Power Semiconductor Devices and ICs,Vol.6:379-383
    [135]Murray A F J,Lane W A.Optimization of interconnection-induced breakdown voltage in junction isolated IC's using biased polysilicon field plates.IEEE Transactions on Electron Devices,1997,44(1):185-189
    [136]Fujihira T,Yano Y,Obinata S,et al.Self-shielding:new high-voltage inter-connection technique for HVICs.1996 International Symposium on Power Semiconductor Devices and ICs,Vol.8:231-234
    [137]Fujihira T,Yano Y,Obinata S,et al.High voltage integrated circuit,high voltage junction terminating structure,and high voltage mis transistor,US Patent,6124628
    [138]Kim S L,Jeo C K,Kim M H,et al.Realization of Robust 600V High Side Gate Drive IC with a New Isolated Self-Shielding Structure.2005 International Symposium on Power Semiconductor Devices and ICs,Vol.17:143-146
    [139]Kim S L,Jeon C K,Kim M S,et al.1200V interconnection technique with isolated self-shielding structure.2006 International Symposium on Power Semiconductor Devices and ICs,Vol.18:369-372
    [140]Ranjan N.High voltage power integrated circuit with level shift operation and without metal crossover,US Patent,5801418
    [141]Terashima T,Shimizu K,Hine S.A new level-shifting technique by divided RESURF structure.1997 International Symposium on Power Semiconductor Devices and ICs,Vol.9:57-60
    [142]Yamazaki T,Kumagai N,Oyabe K,et al.New high voltage integrated circuits using self-shielding technique.1999 International Symposium on Power Semiconductor Devices and ICs,Vol.11:333-336
    [143]Kim J J,Kim M H,Kim S L,et al.The new high voltage level up shifter for HVIC.2002International Symposium on Power Semiconductor Devices and ICs,Vol.14:626-630
    [144]Kobayashi K,Yanagigawa H,Mori K,et al.High voltage SOI CMOS IC technology for driving plasma display panels.1998 International Symposium on Power Semiconductor Devices and ICs,Vol.10:141-144
    [145]Lee M R,Kwon O K,Lee S S,et al.SOI high voltage integrated circuit technology for plasma display panel drivers.1999 International Symposium on Power Semiconductor Devices and ICs,Vol.11:285-288
    [146]Kim J,Roh T M,Kim S G;et al.High-voltage power integrated circuit technology using SOI for driving plasma display panels.IEEE Transactions on Electron Devices,2001,48(6):1256-1263
    [147]李桦,宋李梅,杜寰,等。用于FED和PDP平板显示高压驱动电路的CMOS器件.发光学报,2005,26(5):678-683
    [148]Li X M,Zhuang Y Q,Zhang L,et al.Cost-effective VDMOS and compatible process for PDP scan-driver IC.Chinese Journal of Semiconductors,2007,28(11):1679-1684
    [149]Sun W F,Wu J H,Lu S L,et al.High-voltage power integrated circuit technology using bulk-silicon for plasma display panels data driver IC.Microelectronic Engineering,2004,71(1):112-118
    [150]Sun W F,Shi L X,Sun Z L,et al.High-voltage power IC technology with nVDMOS,RESURF pLDMOS,and novel level-shift circuit for PDP scan-driver IC.IEEE Transactions on Electron Devices,2006,53(4):891-896

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700