用户名: 密码: 验证码:
CZA/SAPO-34复合催化剂的构建及其CO加氢制低碳烃的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低碳烃是一类重要的基本有机化工原料,由煤或天然气经合成气制取低碳烃,是低碳烃生产的最重要的非石油技术路线之一。本文提出的CZA/SAPO-34复合催化剂,它是一种将CO加氢制取甲醇催化剂CZA(CuO/ZnO/Al2O3)与甲醇脱水催化剂SAPO-34分子筛组合为双功能或核壳结构的复合催化剂,采用这种催化剂可将甲醇合成与甲醇制备低碳烃耦合在一起,实现由CO加氢直接制备低碳烃。而且CZA/SAPO-34复合催化剂可以通过不断打破甲醇合成反应的化学反应平衡促使反应一直向生成物的方向进行,进而提高CO的转化率和低碳烃的选择性,这在热力学上是十分有利的。因此构建CZA/SAPO-34复合催化剂并将其用于CO加氢制备低碳烃反应具有重要的理论和现实意义。
     论文首先研究了CZA/SAPO-34双功能催化剂上CO加氢制备低碳烃在不同反应温度下CO转化率和产物选择性,其反应机理为:CO和H2被CZA催化为甲醇,甲醇扩散到SAPO-34分子筛上生成烯烃,生成的烯烃再与CZA接触发生加氢反应生成烷烃。低温时SAPO-34主要作为二甲醚合成催化剂。随着反应温度的升高,低碳烃的选择性逐渐升高,反应温度为400℃时,C2-C4碳氢化合物的选择性在总碳氢化合物产物中高达96.5%。反应温度为280,320和360℃时,SAPO-34主要有三种类型的积碳物种,分为“活性积碳”和“惰性积碳”,“活性积碳”促进碳氢化合物生成,而“惰性积碳”抑制碳氢化合物生成。而反应温度为400和440℃时,只有“活性积碳”存在,因此400和440℃时主要产物是碳氢化合物。结合反应结果与催化剂性能,CZA/SAPO-34双功能催化剂上CO加氢直接生成低碳烃反应优选400℃为较佳反应温度。
     其次,采用预涂覆中间过渡层法在CZA颗粒表面制备SAPO-34分子筛膜,从而得到CZA@SAPO-34核壳结构催化剂。采用该方法可成功制备出完整且交互生长良好的SAPO-34分子筛膜,膜层致密连续,无裂痕或针孔等缺陷存在。研究结果表明,Y-Al2O3中间过渡层的引入在分子筛膜合成过程中起两种作用。它一方面保护CZA避免受分子筛膜合成液的破坏,另一方面在分子筛膜合成过程中也起促进作用。氧化铝层表面大量的A1-O键更易与SAPO-34分子筛的T-04四面体单元结合,从而参与到SAPO-34分子筛膜的成膜过程中,同时,水热合成过程中在中间过渡层表面形成的AI-O-T-O4层也有效抑制了合成液中生成的NH3对核心催化剂CZA的还原作用。
     将CZA@SAPO-34核壳结构催化剂用于CO加氢制备低碳烃反应,CZA@SAPO-34核壳结构催化剂的甲醇选择性低于CZA+10%SAPO-34催化剂,体现了核壳结构催化剂的结构优势。而CO转化率却低于CZA+10%SAPO-34催化剂,这是由于核壳结构催化剂制备过程中的高温水热合成导致CZA的催化活性降低。通过N-CZA、CuO、CA-CZ和AC-CZ对核心催化剂进行改进,研究发现水热合成过程会引起核心催化剂Cu/ZnO固溶体中的ZnO晶体变化,进而降低核心催化剂的活性。
     最后,制备了CZA@Composite-SAPO-34核壳结构催化剂,该制备方法可避免高温水热合成过程核心催化剂的失活。CZA@Composite-SAPO-34的壳层膜是由γ-Al2O3和SAPO-34分子筛颗粒组成的复合膜,核心与壳层催化剂之间的协同作用发挥出了其核壳结构优势。
With the gradual depletion of petroleum reserves, it would be very desirable to effectively convert syngas (H2and CO) to light hydrocarbons for syngas can be obtained through the gasification of coal or natural gas. C2-C4hydrocarbons have environmentally benign characteristics and can been used as clean fuels and raw chemical feedstock. Therefore, the synthesis of C2-C4hydrocarbons from coal or biomass-derived syngas has drawn increasing attention for the resource constraints of petroleum. The present study focuses on the preparation of CZA/SAPO-34composite catalyst and explores its performance in direct production of hydrocarbons from syngas over the above catalyst. CZA (CuO/ZnO/Al2O3) catalyst is typical catalyst for methanol synthesis from syngas, and SAPO-34zeolite can catalyze methanol into light hydrocarbons. Therefore, the CZA/SAPO-34composite catalyst might catalyze the two reactions in a consecutive order and relieve the thermodynamic constraint. The application of CZA/SAPO-34composite catalyst in CO hydrogenation to produce hydrocarbons directly has theoretical and practical significance.
     Firstly, in this dissertation, the synthesis of C2-C4hydrocarbons from syngas was investigated over CZA/SAPO-34bifunctional catalyst at temperatures ranging from240to440℃. The results indicate higher temperatures make the Cu metal aggregated and lead to the deactivation of CZA. Reaction temperatures have significant effect on the selectivity of C2-C4hydrocarbons and coke species of SAPO-34. The 'active coke' acts both as intermediates and as coke depositions. While the 'inert coke' acts only as coke depositions. The predominant products are dimethyl ether (DME) and methanol at temperatures from280to360℃and a small amount of hydrocarbons are found due to the deactivation of SAPO-34caused by a type of coke named 'inert coke'. While96.5%selectivity of C2-C4hydrocarbons in products of all hydrocarbons can be obtained at400℃for less coke named 'active coke' and the absent of 'inert coke' Comprehensive consideration of the characteristics of bifunctional catalyst, the moderate temperature for C2-C4hydrocarbons synthesis from syngas might be approximately400℃.
     Secondly, the present study focuses on synthesis of SAPO-34zeolite membrane on the surface of CZA catalyst particles by intermediate layer to form CZA@SAPO-34core-shell structured catalyst. CZA particles have relatively brittle surface and it leads to big challenge to coat SAPO-34zeolite membrane on their surface. To overcome above shortcomings, the intermediate layer of alumina was introduced to the surface of CZA particles and acted as a barrier to the high-temperature hydrothermal and acidic condition on the one hand, on the other hand it also acted as a transition to enhance SAPO-34zeolite membrane adherence to the surface of CZA particles. With the help of alumina layer, continuous and dense zeolite membrane was obtained on the surface of CZA particles. The Al-0bonds on the surface of the intermediate layer prefer to combine with the tetrahedral units of T-O4of SAPO-34zeolite which acts as protector of CZA particles against wild synthetic conditions of zeolite membrane. Simultaneously, Al-0bonds of the intermediate layer involve in the formation of tetrahedral units of SAPO-34zeolite membrane which may promote the adherence of the zeolite membrane.
     The prepared CZA@SAPO-34core@shell structured catalyst has been used in CO hydrogenation to produce hydrocarbons. The selectivity of methanol on CZA@SAPO-34catalyst is lower than CZA+10%SAPO-34bifunctional catalyst which indicates the structural advantages of core@shell structured catalyst. However, CO conversion of CZA@SAPO-34catalyst is lower than CZA+10%SAPO-34bifunctional catalyst which is due to the catalytic activity of CZA is distroyed by the wild hydrothermal synthesis condition of SAPO-34zeolite membrane. The reason of the lower catalytic activity of CZA@SAPO-34is studied by exploring N-CZA, CuO, CA-CZ and AC-CZ as core catalyst. The change of ZnO in Cu/ZnO solid solution during the process of hydrothermal synthesis is considered as the main reason and it can reduce the number of the active sites of Cu/ZnO solid solution which is related to the degree of deactivation of the corresponding core@shell structured catalyst.
     Finally, a novel core@shell structured catalyst of CZA@Composite-SAPO-34is prepared and its advantage is the preparation method can solve the problem of the deactivation of the core catalyst by avoiding exploring the method of hydrothermal synthesis. The shell is composed of γ-Al2O3and SAPO-34zeolite which possesses excellent pore structures and CZA@Composite-SAPO-34catalyst can realize the advantages of the core@shell structure.
引文
[1]沈师孔.天然气转化利用技术的研究进展[J].石油化工.2006,35(9):799-809.
    [2]Gates B C, Katzer J R, Schuit G C. Chemistry of catalytic processes [M]. McGraw-Hill New York,1979.
    [3]Kang S, Bae J W, Jun K, et al. Dimethyl ether synthesis from syngas over the composite catalysts of Cu-ZnO-Al2O3/Zr-modified zeolites. Catalysis Communications.2008,9(10):2035-2039.
    [4]Liu J, Qiao S Z, Chen J S, et al. Yolk/shell nanoparticles:new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications. 2011,47(47):12578-12591.
    [5]Joo S H, Park J Y, Tsung C, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nature Materials.2009,8(2): 126-131.
    [6]Cargnello M, Jaen J D, Garrido J H, et al. Exceptional activity for methane combustion over modular Pd@ CeO2 subunits on functionalized Al2O3. Science.2012, 337(6095):713-717.
    [7]Caro J, Noack M. Zeolite membranes-recent developments and progress. Microporous and Mesoporous Materials.2008,115(3):215-233.
    [8]Mcleary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors:Progress and prospects. Microporous and Mesoporous Materials. 2006,90(1):198-220.
    [9]Li Y, Yang W. Microwave synthesis of zeolite membranes:a review. Journal of Membrane Science.2008,316(1):3-17.
    [10]Yang G, Tsubaki N, Shamoto J, et al. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society.2010,132(23):8129-8136.
    [11]Khan E A, Rajendran A, Lai Z. Synthesis of Ni-SiO2/Silicalite-1 core—shell micromembrane reactors and their reaction/diffusion performance. Industrial & Engineering Chemistry Research.2010,49(24):12423-12428.
    [12]Miyamoto M, Kamei T, Nishiyama N, et al. Single crystals of ZSM-5/Silicalite composites. Advanced Materials.2005,17(16):1985-1988.
    [13]He J, Liu Z, Yoneyama Y, et al. Multiple-functional capsule catalysts:A tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. Chemistry-A European Journal.2006,12(32):8296-8304.
    [14]He J J, Xu B L, Yoneyama Y, et al. Designing a new kind of capsule catalyst and its application for direct synthesis of middle isoparaffins from synthesis gas. Chemistry Letters.2005,34(2):148-149.
    [15]He J, Yoneyama Y, Xu B, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. Langmuir.2005,21(5):1699-1702.
    [16]Yang G, He J, Zhang Y, et al. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas. Energy & Fuels.2008,22(3):1463-1468.
    [17]Yang G, Tan Y, Han Y, et al. Increasing the shell thickness by controlling the core size of zeolite capsule catalyst:Application in iso-paraffin direct synthesis. Catalysis Communications.2008,9(15):2520-2524.
    [18]Fujimoto K, Saima H, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:IV. Selective synthesis of C2, C3, and C4 paraffins from synthesis gas. Journal of Catalysis.1985,94(1):16-23.
    [19]Fujimoto K, Kudo Y, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:Ⅱ. Direct synthesis of aromatic hydrocarbons from synthesis gas. Journal of Catalysis.1984,87(1): 136-143.
    [20]Yang R, Yu X, Zhang Y, et al. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel.2008,87(4):443-450.
    [21]Liang J, Li H, Zhao S, et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Applied Catalysis.1990,64:31-40.
    [1]Van Dyk J C, Keyser M J, Coertzen M. Syngas production from South African coal sources using Sasol—Lurgi gasifiers. International Journal of Coal Geology.2006, 65(3):243-253.
    [2]Rath L K, Longanbach J R. A perspective on syngas from coal. Energy Sources. 1991,13(4):443-459.
    [3]Ma X, Ge Q, Ma J, et al. Synthesis of LPG via DME from syngas in two-stage reaction system. Fuel Processing Technology.2013,109(0):1-6.
    [4]Davis B H. Fischer-Tropsch Synthesis:Reaction mechanisms for iron catalysts. Catalysis Today.2009,141(1-2):25-33.
    [5]Schulz H. Short history and present trends of Fischer-Tropsch synthesis. Applied Catalysis A:General.1999,186(1-2):3-12.
    [6]Zhang Q, Liu P, Fujiyama Y, et al. Synthesis of light hydrocarbons from syngas in near-critical phase. Applied Catalysis A:General.2011,401(1-2):147-152.
    [7]Zhang Q, Li X, Asami K, et al. Synthesis of LPG from synthesis gas. Fuel Processing Technology.2004,85(8-10):1139-1150.
    [8]Fujimoto K, Saima H, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:IV. Selective synthesis of C2, C3, and C4 paraffins from synthesis gas. Journal of Catalysis.1985,94(1):16-23.
    [9]Fujimoto K, Kudo Y, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:Ⅱ. Direct synthesis of aromatic hydrocarbons from synthesis gas. Journal of Catalysis.1984,87(1): 136-143.
    [10]Chinchen G C, Short G D, Williamson J G. Catalyst [Z]. Google Patents,1988.
    [11]Waugh K C. Methanol synthesis. Catalysis Today.1992,15(1):51-75.
    [12]Ning W, Shen H, Liu H. Study of the effect of preparation method on CuO-ZnO-Al2O3 catalyst. Applied Catalysis A:General.2001,211(2):153-157.
    [13]Choi Y, Futagami K, Fujitani T, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts—morphology effect or active site model. Applied Catalysis A: General.2001,208(1):163-167.
    [14]Weedon G G. Process for the production of methanol from synthesis gas:Fuel and Energy Abstracts [Z]. Elsevier,1997,38,80.
    [15]Deng J F, Sun Q, Zhang Y L, et al. A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2+H2-Comparison of various preparation methods. Applied Catalysis A:General.1996,139(1-2):75-85.
    [16]Spencer M S. Precursors of copper/zinc oxide catalysts. Catalysis Letters.2000, 66(4):255-257.
    [17]Li J, Inui T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures. Applied Catalysis A:General.1996,137(1):105-117.
    [18]Moser W R. Preparation and structural properties of Cu-Zn-Al-oxides:a comparative study between the hydrodynamic-cavitational and classical route. Journal of Materials Science.2003,38(9):1917-1924.
    [19]Sun Q, Zhang Y, Chen H, et al. A novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst:Structure, surface properties, and activity for methanol synthesis from CO2+H2. Journal of Catalysis.1997,167(1):92-105.
    [20]房德仁,刘中民,黎晓琼,等.加料方式对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].燃群化学学报.2005,32(6):734-739.
    [21]房德仁,刘中民,黎晓琼,等.沉淀pH对CuO/ZnO/Al2O3系催化剂前体性质的影响[J].石油化工.2004,33(7):622-626.
    [22]Zhai X, Shamoto J, Xie H, et al. Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase. Fuel.2008,87(4):430-434.
    [23]Robinson W, Mol J C. Copper surface area and activity in CO/H2/CO2 of Cu/ZnO/Al2O3 methanol synthesis catalysts. Applied Catalysis.1990,63(1):165-179.
    [24]Sun J T, Metcalfe I S, Sahibzada M. Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering. Industrial & Engineering Chemistry Research.1999, 38(10):3868-3872.
    [25]Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science.2012,336(6083):893-897.
    [26]Lim H, Park M, Kang S, et al. Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst:influence of carbon dioxide during hydrogenation. Industrial& Engineering Chemistry Research.2009,48(23):10448-10455.
    [27]Yang R, Yu X, Zhang Y, et al. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel.2008,87(4):443-450.
    [28]Reubroycharoen P, Yamagami T, Vitidsant T, et al. Continuous low-temperature methanol synthesis from syngas using alcohol promoters. Energy & Fuels.2003,17(4):817-821.
    [29]Liu X, Lu G Q, Yan Z, et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2. Industrial & Engineering Chemistry Research.2003,42(25):6518-6530.
    [30]Tsubaki N, Zeng J, Yoneyama Y, et al. Continuous synthesis process of methanol at low temperature from syngas using alcohol promoters. Catalysis Communications.2001,2(6):213-217.
    [31]Chinchen G C, Denny P J, Parker D G, et al. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts:use of 14 C-labelled reactants. Applied Catalysis.1987,30(2):333-338.
    [32]Burch R, Golunski S E, Spencer M S. The role of hydrogen in methanol synthesis over copper catalysts. Catalysis Letters.1990,5(1):55-60.
    [33]胡云行,黄爱民,蔡俊修,等.雾化高温分解法铜基甲醇合成催化剂的活性位[J].催化学报.1993,14(6):415-419.
    [34]Jia M, Li W, Xu H, et al. The effect of additives on Cu/HZSM-5 catalyst for DME synthesis. Catalysis Letters.2002,84(1-2):31-35.
    [35]Batyrev E D, Shiju N R, Rothenberg G. Exploring the activated state of Cu/ZnO (0001)-Zn, a model catalyst for methanol synthesis. The Journal of Physical Chemistry C.2012,116(36):19335-19341.
    [36]Derrouiche S, Lauron-Pernot H, Louis C. Synthesis and treatment parameters for controlling metal particle size and composition in Cu/ZnO materials-first evidence of Cu3Zn alloy formation. Chemistry of Materials.2012,24(12):2282-2291.
    [37]Andreasen J W, Rasmussen F B, Helveg S, et al. Activation of a Cu/ZnO catalyst for methanol synthesis. Journal of Applied Crystallography.2006,39(2): 209-221.
    [38]Yang R, Fu Y, Zhang Y, et al. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter. Journal of Catalysis.2004,228(1):23-35.
    [39]Castricum H L, Bakker H, van der Linden B, et al. Mechanochemical reactions in Cu/ZnO catalysts induced by mechanical milling. The Journal of Physical Chemistry B.2001,105(33):7928-7937.
    [40]Xiao J, Frauenheim T. Activity and synergy effects on a Cu/ZnO (0001) surface studied using first-principle thermodynamics. The Journal of Physical Chemistry Letters.2012,3(18):2638-2642.
    [41]Chen H Y, Chen L, Lin J, et al. Comparative surface studies of high-Zn-level and commercial Cu/ZnO/Al2O3 catalysts. The Journal of Physical Chemistry B.1998, 102(11):1994-2000.
    [42]Ahmadi S M A, Askari S, Halladj R. A review on kinetic modeling of deactivation of SAPO-34 catalyst during Methanol to Olefins (MTO) process. Afinidad.2014,70(562):130-138.
    [43]Travalloni L, Gomes A C, Gaspar A B, et al. Methanol conversion over acid solid catalysts. Catalysis Today.2008,133:406-412.
    [44]Baek S, Lee Y, Jun K, et al. Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion. Energy & Fuels.2009,23(2):593-598.
    [45]Bjorgen M, Svelle S, Joensen F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species. Journal of Catalysis. 2007,249(2):195-207.
    [46]Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:Ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society.2006, 128(46):14770-14771.
    [47]Chen D, Granvold A, Moljord K, et al. Methanol conversion to light olefins over SAPO-34:Reaction network and deactivation kinetics. Industrial& Engineering Chemistry Research.2007,46(12):4116-4123.
    [48]Wu X, Abraha M G, Anthony R G. Methanol conversion on SAPO-34:reaction condition for fixed-bed reactor. Applied Catalysis A:General.2004,260(1):63-69.
    [49]Gayubo A G, Aguayo A T, Sanchez Del Campo A E, et al. Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst. Industrial & Engineering Chemistry Research.2000,39(2):292-300.
    [50]Hirota Y, Murata K, Miyamoto M, et al. Light olefins synthesis from methanol and dimethylether over SAPO-34 nanocrystals. Catalysis Letters.2010,140(1-2): 22-26.
    [51]Baek S, Lee Y, Jun K, et al. Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion. Energy & Fuels.2009,23(2):593-598.
    [52]Anderson M W, Sulikowski B, Barrie P J, et al. In situ solid-state NMR studies of the catalytic conversion of methanol on the molecular sieve SAPO-34. The Journal of Physical Chemistry.1990,94(7):2730-2734.
    [53]Hirota Y, Murata K, Tanaka S, et al. Dry gel conversion synthesis of SAPO-34 nanocrystals. Materials Chemistry and Physics.2010,123(2):507-509.
    [54]Venna S R, Carreon M A. Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors. The Journal of Physical Chemistry B.2008,112(51): 16261-16265.
    [55]Jhung S H, Chang J, Hwang J S, et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials.2003,64(1):33-39.
    [56]Zhang L, Yao J, Zeng C, et al. Combinatorial synthesis of SAPO-34 via vapor-phase transport. Chemical Communications.2003,17:2232-2233.
    [57]Xu L, Du A, Wei Y, et al. Synthesis of SAPO-34 with only Si (4A1) species: Effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Microporous and Mesoporous Materials.2008,115(3):332-337.
    [58]Askari S, Halladj R, Sohrabi M. Methanol conversion to light olefins over sonochemically prepared SAPO-34 nanocatalyst. Microporous and Mesoporous Materials.2012,163:334-342.
    [59]Poshusta J C, Tuan V A, Falconer J L, et al. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & Engineering Chemistry Research.1998,37(10):3924-3929.
    [60]Liu G, Tian P, Li J, et al. Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microporous and Mesoporous Materials.2008,111(1):143-149.
    [61]Carreon M A, Li S, Falconer J L, et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents. Advanced Materials.2008,20(4): 729-732.
    [62]Lee Y, Baek S, Jun K. Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Applied Catalysis A:General.2007,329:130-136.
    [63]刘红星,谢在库,张成芳,等.用氟化氢-三乙胺复合模板剂合成SAPO-34分子筛的晶化历程[J].催化学报.2003,24(11):849-855.
    [64]Dumitriu E, Azzouz A, Hulea V, et al. Synthesis, characterization and catalytic activity of SAPO-34 obtained with piperidine as templating agent. Microporous Materials.1997,10(1):1-12.
    [65]Cai G, Liu Z, Shi R, et al. Light alkenes from syngas via dimethyl ether. Applied Catalysis A:General.1995,125(1):29-38.
    [66]Wang C, Wang Y, Xie Z, et al. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations:A complete cycle of side chain hydrocarbon pool mechanism. The Journal of Physical Chemistry C.2009, 113(11):4584-4591.
    [67]Wilson S, Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials. 1999,29(1):117-126.
    [68]Chen D, Moljord K, Fuglerud T, et al. The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous and Mesoporous Materials.1999,29(1):191-203.
    [69]Vora B V, Marker T L, Barger P T, et al. Economic route for natural gas conversion to ethylene and propylene.1997,3:87-98.
    [70]Tan J, Liu Z, Bao X, et al. Crystallization and Si incorporation mechanisms of SAPO-34. Microporous and Mesoporous Materials.2002,53(1):97-108.
    [71]Liu Z, Sun C, Wang G, et al. New progress in R&D of lower olefin synthesis. Fuel Processing Technology.2000,62(2):161-172.
    [72]Liu Z M, Cai G Y, Sun C L, et al. Research progress and pilot plant test on SDTO process. Studies in Surface Science and Catalysis.1998,119:895-900.
    [73]Cai G, Liu Z, Shi R, et al. Light alkenes from syngas via dimethyl ether. Applied Catalysis A:General.1995,125(1):29-38.
    [74]谭涓,何长青,刘中民SAPO-34分子筛研究进展[J].天然气化工.1999,24(2):47-53.
    [75]Yuan C, Wei Y, et al. Temperature-programmed methanol conversion and coke deposition on fluidized-bed catalyst of SAPO-34. Chinese Journal of Catalysis.2012, 33(2):367-374.
    [76]Wei Y, Li J, Yuan C, et al. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications.2012,48(25):3082-3084.
    [77]Dai W, Wang X, Wu G, et al. Methanol-to-Olefin conversion on silicoaluminophosphate catalysts:Effect of bransted acid sites and framework structures. ACS Catalysis.2011,1(4):292-299.
    [78]Qi G, Xie Z, Yang W, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Processing Technology.2007,88(5): 437-441.
    [79]Liang J, Li H, Zhao S, et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Applied Catalysis.1990,64:31-40.
    [80]Hirota Y, Murata K, Miyamoto M, et al. Light olefins synthesis from methanol and dimethylether over SAPO-34 nanocrystals.2010,140(1-2):22-26.
    [81]Chen J Q, Bozzano A, Glover B, et al. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today.2005, 106(1-4):103-107.
    [82]Van Der Laan G P, Beenackers A. Kinetics and selectivity of the Fischer-Tropsch synthesis:a literature review. Catalysis Reviews.1999,41(3-4): 255-318.
    [83]Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas. Journal of Catalysis.2002,206(2):230-241.
    [84]Iglesia E, Soled S L, Fiato R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. Journal of Catalysis.1992,137(1):212-224.
    [85]Ni X, Tan Y, Han Y, et al. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications. 2007,8(11):1711-1714.
    [86]Zhang Q, Li X, Asami K, et al. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite. Catalysis Today.2005, 104(1):30-36.
    [87]Rongxian B, Yisheng T, Yizhuo H. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts. Fuel Processing Technology.2004,86(3):293-301.
    [88]Park Y, Park K, Ihm S. Hydrocarbon synthesis through CO2 hydrogenation over CuZnOZrO2/zeolite hybrid catalysts. Catalysis Today.1998,44(1-4):165-173.
    [89]Huang X, Hou B, Wang 1 et al. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas. Applied Catalysis A:General.2011, 408(1):38-46.
    [90]Ma X, Ge Q, Fang C, et al. Direct synthesis of LPG from syngas derived from air-POM. Fuel.2011,90(5):2051-2054.
    [91]Ma X, Ge Q, Fang C, et al. Effect of Ca promoter on LPG synthesis from syngas over hybrid catalyst. Journal of Natural Gas Chemistry.2012,21(6):615-619.
    [92]Ge Q, Lian Y, Yuan X, et al. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG. Catalysis Communications.2008,9(2):256-261.
    [93]Ge Q, Tomonobu T, Fujimoto K, et al. Influence of Pd ion-exchange temperature on the catalytic performance of Cu-ZnO/Pd-β zeolite hybrid catalyst for CO hydrogenation to light hydrocarbons. Catalysis Communications.2008,9(8): 1775-1778.
    [94]Asami K, Zhang Q, Li X, et al. Semi-indirect synthesis of LPG from syngas: Conversion of DME into LPG. Catalysis Today.2005,106(1):247-251.
    [95]Fujiwara M, Kieffer R, Ando H, et al. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide. Applied Catalysis A:General.1995,121(1):113-124.
    [96]Fujiwara M, Ando H, Tanaka M, et al. Hydrogenation of carbon dioxide over Cu-Zn-chromate/zeolite composite catalyst:The effects of reaction behavior of alkenes on hydrocarbon synthesis. Applied Catalysis A:General.1995,130(1): 105-116.
    [97]Caro J, Noack M. Zeolite membranes-recent developments and progress. Microporous and Mesoporous Materials.2008,115(3):215-233.
    [98]Mcleary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors:Progress and prospects. Microporous and Mesoporous Materials. 2006,90(1):198-220.
    [99]Bernardo P, Drioli E, Golemme G. Membrane gas separation:a review/state of the art. Industrial & Engineering Chemistry Research.2009,48(10):4638-4663.
    [100]Julbe A, Farrusseng D, Jalibert J C, et al. Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes. Catalysis Today.2000,56(1):199-209.
    [101]Ciavarella P, Moueddeb H, Miachon S, et al. Experimental study and numerical simulation of hydrogen/isobutane permeation and separation using MFI-zeolite membrane reactor. Catalysis Today.2000,56(1):253-264.
    [102]Chen F, Jin W, Cheng D, et al. Fabrication of AC@ZSM-5 core-shell particles and their performance in Fischer-Tropsch synthesis. Journal of Chemical Technology & Biotechnology.2013,88(12):2133-2140.
    [103]Khan E A, Rajendran A, Lai Z. Synthesis of Ni-SiO2/Silicalite-1 Core-Shell Micromembrane Reactors and Their Reaction/Diffusion Performance. Industrial & Engineering Chemistry Research.2010,49(24):12423-12428.
    [104]Khan E A, Hu E, Lai Z. Preparation of metal oxide/zeolite core-shell nanostructures. Microporous and Mesoporous Materials.2009,118(1):210-217.
    [105]Xingang Li, Yi Zhang, et al. Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde. Journal of Membrane Science.2010,347(1):220-227.
    [106]Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angewandte Chemie.2008, 120(2):359-362.
    [107]Hong M, Li S, Falconer J L, et al. Hydrogen purification using a SAPO-34 membrane. Journal of Membrane Science.2008,307(2):277-283.
    [108]Li S, Falconer J L, Noble R D. Improved SAPO-34 membranes for CO2/CH4 separations. Advanced Materials.2006,18(19):2601-2603.
    [109]Poshusta J C, Tuan V A, Pape E A, et al. Separation of light gas mixtures using SAPO-34 membranes. AICHE Journal.2000,46(4):779-789.
    [110]Lixiong Z, Mengdong J, Enze M. Synthesis of SAPO-34/ceramic composite membranes.1997,105:2211-2216.
    [111]Jin Y, Yang R, Mori Y, et al. Preparation and performance of Co based capsule catalyst with the zeolite shell sputtered by Pd for direct isoparaffin synthesis from syngas. Applied Catalysis A:General.2013,456:75-81.
    [112]Zhao T, Chang J, Yoneyama Y, et al. Selective synthesis of middle isoparaffins via a two-stage Fischer-Tropsch reaction:activity investigation for a hybrid catalyst. Industrial & Engineering Chemistry Research.2005,44(4):769-775.
    [113]Wang S, Mao D, Guo X, et al. Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts. Catalysis Communications. 2009,10(10):1367-1370.
    [114]An X, Zuo Y, Zhang Q, et al. Dimethyl ether synthesis from CO2 hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional catalyst. Industrial & Engineering Chemistry Research.2008,47(17):6547-6554.
    [115]Yang G, Tsubaki N, Shamoto J, et al. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society.2010,132(23):8129-8136.
    [116]Hedlund J, Jareman F. Texture of MFI films grown from seeds. Current Opinion in Colloid & Interface Science.2005,10(5):226-232.
    [117]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出 版社.2004.
    [118]M A S, A C K, K D P. Handbook of zeolite science and technology [M].2003.
    [119]Jeong H, Krohn J, Sujaoti K, et al. Oriented molecular sieve membranes by heteroepitaxial growth. Journal of the American Chemical Society.2002,124(44): 12966-12968.
    [120]Li S, Carreon M A, Zhang Y, et al. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science.2010,352(1):7-13.
    [121]Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio. Microporous and Mesoporous Materials.2008,110(2):310-317.
    [122]Carreon M A, Li S, Falconer J L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation. Journal of the American Chemical Society.2008, 130(16):5412-5413.
    [123]Li S, Martinek J G, Falconer J L, et al. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research.2005,44(9): 3220-3228.
    [124]Hong M, Li S, Falconer J L, et al. Hydrogen purification using a SAPO-34 membrane. Journal of Membrane Science.2008,307(2):277-283.
    [125]Carreon M A, Li S, Falconer J L, et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents. Advanced Materials.2008,20(4): 729-732.
    [126]Wakihara T, Yamakita S, Iezumi K, et al. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of the American Chemical Society.2003, 125(41):12388-12389.
    [127]Jeong H, Krohn J, Sujaoti K, et al. Oriented molecular sieve membranes by heteroepitaxial growth. Journal of the American Chemical Society.2002,124(44): 12966-12968.
    [128]Tian Y, Fan L, Wang Z, et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture. Journal of Materials Chemistry.2009,19(41):7698-7703.
    [129]Krishna R, Li S, van Baten J M, et al. Investigation of slowing-down and speeding-up effects in binary mixture permeation across SAPO-34 and MFI membranes. Separation and Purification Technology.2008,60(3):230-236.
    [130]Hong M, Li S, Funke H F, et al. Ion-exchanged SAPO-34 membranes for light gas separations. Microporous and Mesoporous Materials.2007,106(1):140-146.
    [131]Li S G, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science.2004,241(1):121-135.
    [132]Yan Y, Davis M E, Gavalas G R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment. Journal of Membrane Science.1997, 123(1):95-103.
    [133]Khan E A, Hu E, Lai Z. Preparation of metal oxide/zeolite core-shell nanostructures. Microporous and Mesoporous Materials.2009,118(1):210-217.
    [134]Berenguer-Murcia A, Morallon E, Cazorla-Amoros D, et al. Preparation of silicalite-1 layers on Pt-coated carbon materials:a possible electrochemical approach towards membrane reactors. Microporous and Mesoporous Materials.2005,78(2): 159-167.
    [135]Bouizi Y, Rouleau L, Valtchev V P. Factors controlling the formation of core-shell zeolite-zeolite composites. Chemistry of Materials.2006,18(20): 4959-4966.
    [136]Pan M, Lin Y S. Template-free secondary growth synthesis of MFI type zeolite membranes. Microporous and Mesoporous Materials.2001,43(3):319-327.
    [137]Collier P, Golunski S, Malde C, et al. Active-site coating for molecular discrimination in heterogeneous catalysis. Journal of the American Chemical Society. 2003,125(41):12414-12415.
    [138]Wee L H, Tosheva L, Itani L, et al. Steam-assisted synthesis of zeolite films from spin-coated zeolite precursor coatings. Journal of Materials Chemistry.2008, 18(30):3563-3567.
    [139]Chen B, Huang Y. Examining the self-assembly of microporous material AlPO4-11 by dry-gel conversion. The Journal of Physical Chemistry C.2007, 111(42):15236-15243.
    [140]Dong A, Wang Y, Tang Y, et al. Hydrothermal conversion of solid silica beads to hollow silicalite-1 sphere. Chemistry Letters.2003,32(9):790-791.
    [141]Alfaro S, Arruebo M, Coronas J, et al. Preparation of MFI type tubular membranes by steam-assisted crystallization. Microporous and Mesoporous Materials. 2001,50(2):195-200.
    [142]Deng Y, Cai Y, Sun Z, et al. Multifunctional mesoporous composite microspheres with well-designed nanostrucrure:a highly integrated catalyst system. Journal of the American Chemical Society.2010,132(24):8466-8473.
    [143]Wang L, Xu Y, Wei Y, et al. Structure-directing role of amines in the ionothermal synthesis. Journal of the American Chemical Society.2006,128(23): 7432-7433.
    [144]Li Y, Yang W. Microwave synthesis of zeolite membranes:a review. Journal of Membrane Science.2008,316(1):3-17.
    [1]Ning W, Shen H, Liu H. Study of the effect of preparation method on CuO-ZnO-Al2O3 catalyst. Applied Catalysis A:General 2001,211(2):153-157.
    [2]Weedon G G. Process for the production of methanol from synthesis gas:Fuel and Energy Abstracts [Z]. Elsevier,1997,38:80.
    [3]Moser W R. Preparation and structural properties of Cu-Zn-Al-oxides:a comparative study between the hydrodynamic-cavitational and classical route. Journal of Materials Science.2003,38(9):1917-1924.
    [4]Zhai X, Shamoto J, Xie H, et al. Study on the deactivation phenomena of Cu-based catalyst for methanol synthesis in slurry phase. Fuel.2008,87(4):430-434.
    [5]Fujimoto K, Saima H, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:IV. Selective synthesis of C2, C3, and C4 paraffins from synthesis gas. Journal of Catalysis.1985,94(1):16-23.
    [6]Fujimoto K, Kudo Y, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:II. Direct synthesis of aromatic hydrocarbons from synthesis gas. Journal of Catalysis.1984,87(1): 136-143.
    [7]Ma X, Ge Q, Fang C, et al. Effect of Ca promoter on LPG synthesis from syngas over hybrid catalyst. Journal of Natural Gas Chemistry.2012,21(6):615-619.
    [8]Ma X, Ge Q, Fang C, et al. Direct synthesis of LPG from syngas derived from air-POM. Fuel.2011,90(5):2051-2054.
    [9]Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science.2012,336(6083):893-897.
    [10]Lazo N D, Murray D K, Kieke M L, et al. In situ carbon-13 solid-state NMR study of the Cu/ZnO/Al2O3 methanol synthesis catalyst. Journal of the American Chemical Society.1992,114(22):8552-8559.
    [11]Chen D, Moljord K, Fuglerud T, et al. The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous and Mesoporous Materials.1999,29(1):191-203.
    [12]谭涓,何长青,刘中民SAPO-34分子筛研究进展[J].天然气化工.1999,24(2):47-53.
    [13]Liang J, Li H, Zhao S, et al. Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Applied Catalysis.1990,64:31-40.
    [14]Baek S, Lee Y, Jun K, et al. Influence of catalytic functionalities of zeolites on product selectivities in methanol conversion. Energy & Fuels.2009,23(2):593-598.
    [15]Park Y, Park K, Ihm S. Hydrocarbon synthesis through CO2 hydrogenation over CuZnOZrO2/zeolite hybrid catalysts. Catalysis Today.1998,44(1-4):165-173.
    [16]Xiao J, Frauenheim T. Activity and synergy effects on a Cu/ZnO (0001) surface studied using first-principle thermodynamics. The Journal of Physical Chemistry Letters.2012,3(18):2638-2642.
    [17]Kiss J, Frenzel J, Nair N N, et al. Methanol synthesis on ZnO (0001). Ⅲ. Free energy landscapes, reaction pathways, and mechanistic insights. The Journal of Chemical Physics.2011,134(6):64710-64714.
    [18]Sun J T, Metcalfe I S, Sahibzada M. Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering. Industrial & Engineering Chemistry Research.1999, 38(10):3868-3872.
    [19]Chen H Y, Chen L, Lin J, et al. Comparative surface studies of high-Zn-level and commercial Cu/ZnO/Al2O3 catalysts. The Journal of Physical Chemistry B.1998, 102(11):1994-2000.
    [20]Andreasen J W, Rasmussen F B, Helveg S, et al. Activation of a Cu/ZnO catalyst for methanol synthesis.2006,39(2):209-221.
    [21]Tang X, Fei J, Hou Z, et al. Characterization of Cu-Mn/Zeolite-Y catalyst for one-step synthesis of dimethyl ether from CO-H2. Energy & Fuels.2008,22(5): 2877-2884.
    [22]Qi G, Zheng X, Fei J, et al. A novel catalyst for DME synthesis from CO hydrogenation:1. Activity, structure and surface properties. Journal of Molecular Catalysis A:Chemical.2001,176(1):195-203.
    [23]Qi G, Xie Z, Yang W, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Processing Technology.2007,88(5): 437-441.
    [24]Hu H, Cao F, Ying W, et al. Study of coke behaviour of catalyst during methanol-to-olefins process based on a special TGA reactor. Chemical Engineering Journal.2010,160(2):770-778.
    [25]Pop G, Bozga G, Ganea R, et al. Methanol conversion to dimethyl ether over H-SAPO-34 catalyst. Industrial & Engineering Chemistry Research.2009,48(15): 7065-7071.
    [26]Lee K Y, Chae H, Jeong S, et al. Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Applied Catalysis A:General.2009,369(1-2):60-66.
    [27]Yuan C, Wei Y, et al. Temperature-programmed methanol conversion and coke deposition on fluidized-bed catalyst of SAPO-34. Chinese Journal of Catalysis.2012, 33(2):367-374.
    [28]Wei Y, Li J, Yuan C, et al. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications.2012,48(25):3082-3084.
    [29]Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:2. Isotopic labeling studies of the co-reaction of propene and methanol. Journal of Catalysis.1996,161(1):304-309.
    [30]Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:1. Isotopic labeling studies of the co-reaction of ethene and methanol. Journal of Catalysis.1994,149(2):458-464.
    [31]Wang C, Wang Y, Liu H, et al. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst. Microporous and Mesoporous Materials.2012,158(0):264-271.
    [32]Tan Y, Fujiwara M, Ando H, et al. Syntheses of isobutane and branched higher hydrocarbons from carbon dioxide and hydrogen over composite catalysts. Industrial & Engineering Chemistry Research.1999,38(9):3225-3229.
    [33]Ni X, Tan Y, Han Y, et al. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications.2007, 8(11):1711-1714.
    [34]Fujiwara M, Ando H, Tanaka M, et al. Hydrogenation of carbon dioxide over Cu-Zn-chromate/zeolite composite catalyst:The effects of reaction behavior of alkenes on hydrocarbon synthesis. Applied Catalysis A:General.1995,130(1): 105-116.
    [35]Fujiwara M, Kieffer R, Ando H, et al. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide. Applied Catalysis A:General.1995,121(1):113-124.
    [1]Huang X, Hou B, Wang J, et al. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas. Applied Catalysis A:General.2011,408(1): 38-46.
    [2]Ma X, Ge Q, Fang C, et al. Direct synthesis of LPG from syngas derived from air-POM. Fuel.2011,90(5):2051-2054.
    [3]Ge Q, Lian Y, Yuan X, et al. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG. Catalysis Communications.2008,9(2):256-261.
    [4]Zhang Q, Li X, Asami K, et al. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite. Catalysis Today.2005, 104(1):30-36.
    [5]Fujiwara M, Ando H, Tanaka M, et al. Hydrogenation of carbon dioxide over Cu-Zn-chromate/zeolite composite catalyst:The effects of reaction behavior of alkenes on hydrocarbon synthesis. Applied Catalysis A:General.1995,130(1): 105-116.
    [6]Fujiwara M, Kieffer R, Ando H, et al. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide. Applied Catalysis A:General.1995,121(1):113-124.
    [7]Jin Y, Yang R, Mori Y, et al. Preparation and performance of Co based capsule catalyst with the zeolite shell sputtered by Pd for direct isoparaffin synthesis from syngas. Applied Catalysis A:General.2013(456):75-81.
    [8]Jin W, Cheng D, Chen F, et al. Synthesis of MFI-type zeolite membrane encapsulated activated carbon particles using a modified seeded method. Acta Physico-Chimica Sinica.2013,29(1):139-143.
    [9]Chen F, Jin W, Cheng D, et al. Fabrication of AC@ZSM-5 core-shell particles and their performance in Fischer-Tropsch synthesis. Journal of Chemical Technology & Biotechnology.2013,88(12):2133-2140.
    [10]Yang G, Tsubaki N, Shamoto J, et al. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society.2010,132(23):8129-8136.
    [11]Khan E A, Rajendran A, Lai Z. Synthesis of Ni-SiO2/Silicalite-1 core-shell micromembrane reactors and their reaction/diffusion performance. Industrial& Engineering Chemistry Research.2010,49(24):12423-12428.
    [12]Khan E A, Hu E, Lai Z. Preparation of metal oxide/zeolite core-shell nanostructures. Microporous and Mesoporous Materials.2009,118(1):210-217.
    [13]Hedlund J, Jareman F. Texture of MFI films grown from seeds. Current Opinion in Colloid & Interface Science.2005,10(5):226-232.
    [14]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出 版社.2004.
    [15]M A S, A C K, K D P. Handbook of zeolite science and technology [M].2003.
    [16]Jeong H, Krohn J, Sujaoti K, et al. Oriented molecular sieve membranes by heteroepitaxial growth. Journal of the American Chemical Society.2002,124(44): 12966-12968.
    [17]Julbe A, Farrusseng D, Jalibert J C, et al. Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes. Catalysis Today.2000,56(1):199-209.
    [18]Hong M, Li S, Falconer J L, et al. Hydrogen purification using a SAPO-34 membrane. Journal of Membrane Science.2008,307(2):277-283.
    [19]Li S, Falconer J L, Noble R D. Improved SAPO-34 membranes for CO2/CH4 separations. Advanced Materials.2006,18(19):2601-2603.
    [20]Poshusta J C, Tuan V A, Pape E A, et al. Separation of light gas mixtures using SAPO-34 membranes. AICHE Journal.2000,46(4):779-789.
    [21]Poshusta J C, Tuan V A, Falconer J L, et al. Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial& Engineering Chemistry Research.1998, 37(10):3924-3929.
    [22]Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science.2012,336(6083):893-897.
    [23]Kang S, Bae J W, Kim H, et al. Enhanced catalytic performance for dimethyl ether synthesis from syngas with the addition of Zr or Ga on a Cu-ZnO-Al2O3/γ-Al2O3 bifunctional catalyst. Energy & Fuels.2010,24(2):804-810.
    [24]Anderson M W, Sulikowski B, Barrie P J, et al. In situ solid-state NMR studies of the catalytic conversion of methanol on the molecular sieve SAPO-34. Journal of Physical Chemistry.1990,94(7):2730-2734.
    [25]Carreon M A, Li S, Falconer J L, et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents. Advanced Materials.2008,20(4): 729-732.
    [26]Titiloye J O, Hussain I. Synthesis and characterization of silicalite-1/carbon-graphite membranes. Journal of Colloid and Interface Science. 2008,318(1):50-58.
    [27]Berenguer-Murcia A, Garcia-Martinez J, Cazorla-Amoros D, et al. Silicalite-1 membranes supported on porous carbon discs. Microporous and Mesoporous Materials.2003,59(2):147-159.
    [28]Garcia-Martinez J, Cazorla-Amoros D, Linares-Solano A, et al. Synthesis and characterisation of MFI-type zeolites supported on carbon materials. Microporous and Mesoporous Materials.2001,42(2-3):255-268.
    [29]Ma J, Shao J, Wang Z, et al. Preparation of zeolite NaA membranes on macroporous alumina supports by secondary growth of gel layers. Industrial & Engineering Chemistry Research.2014,53(14):6121-6130.
    [30]Ge Q, Shao J, Wang Z, et al. Effects of the synthesis hydrogel on the formation of zeolite LTA membranes. Microporous and Mesoporous Materials.2012,151: 303-310.
    [31]Dong Y, Peng Y, Wang G, et al. Corrosion-resistant zeolite silicalite-1 coatings synthesized by seeded growth. Industrial & Engineering Chemistry Research.2012, 51(9):3646-3652.
    [32]Shao J, Ge Q, Shan L, et al. Influences of seeds on the properties of zeolite NaA membranes on alumina hollow fibers. Industrial & Engineering Chemistry Research. 2011,50(16):9718-9726.
    [33]Moreno-Castilla C, Ferro-Garcia M A, Joly J P, et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir.1995,11(11):4386-4392.
    [34]Krokidis X, Raybaud P, Gobichon A, et al. Theoretical study of the dehydration process of boehmite to γ-Alumina. The Journal of Physical Chemistry B.2001, 105(22):5121-5130.
    [35]Bouizi Y, Rouleau L, Valtchev V P. Factors controlling the formation of core-shell zeolite-zeolite composites. Chemistry of Materials.2006,18(20): 4959-4966.
    [36]Qi G, Xie Z, Yang W, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins. Fuel Processing Technology.2007,88(5): 437-441.
    [37]Yuan C, Wei Y. Temperature-programmed methanol conversion and coke deposition on fluidized-bed catalyst of SAPO-34. Chinese Journal of Catalysis.2012, 33(2):367-374.
    [38]Dai W, Wang X, Wu G, et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts:Effect of bransted acid sites and framework structures. ACS Catalysis.2011,1(4):292-299.
    [39]Chen D, Moljord K, Fuglerud T, et al. The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous and Mesoporous Materials.1999,29(1):191-203.
    [40]Bourgeat-Lami E, Di Renzo F, Fajula F, et al. Mechanism of the thermal decomposition of tetraethylammonium in zeolite beta. The Journal of Physical Chemistry.1992,96(9):3807-3811.
    [41]Vu D V, Miyamoto M, Nishiyama N, et al. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous and Mesoporous Materials. 2008,115(1-2):106-112.
    [42]Van Vu D, Miyamoto M, Nishiyama N, et al. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. Journal of Catalysis. 2006,243(2):389-394.
    [43]Digne M, Sautet P, Raybaud P, et al. Use of DFT to achieve a rational understanding of acid-basic properties of y-alumina surfaces. Journal of Catalysis. 2004,226(1):54-68.
    [44]Wakihara T, Yamakita S, Iezumi K, et al. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of the American Chemical Society.2003, 125(41):12388-12389.
    [45]Digne M, Sautet P, Raybaud P, et al. Hydroxyl groups on y-Alumina surfaces:A DFT Study. Journal of Catalysis.2002,211(1):1-5.
    [46]Raybaud P, Digne M, Iftimie R, et al. Morphology and surface properties of boehmite (y-AlOOH):A density functional theory study. Journal of Catalysis.2001, 201(2):236-246.
    [47]de Vos Burchart E, Jansen J C, van Bekkum H. Ordered overgrowth of zeolite X onto crystals of zeolite A. Zeolites.1989,9(5):432-435.
    [1]Jin W, Cheng D, Chen F, et al. Synthesis of MFI-Type zeolite membrane encapsulated activated carbon particles using a modified seeded method. Acta Physico-Chimica Sinica.2013,29(1):139-143.
    [2]Chen F, Jin W, Cheng D, et al. Fabrication of AC@ZSM-5 core-shell particles and their performance in Fischer-Tropsch synthesis. Journal of Chemical Technology & Biotechnology.2013,88(12):2133-2140.
    [3]Khan E A, Rajendran A, Lai Z. Synthesis of Ni-SiO2/Silicalite-1 core-shell micromembrane reactors and their reaction/diffusion performance. Industrial & Engineering Chemistry Research.2010,49(24):12423-12428.
    [4]Khan E A, Hu E, Lai Z. Preparation of metal oxide/zeolite core-shell nanostructures. Microporous and Mesoporous Materials.2009,118(1):210-217.
    [5]Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angewandte Chemie.2008, 120(2):359-362.
    [6]Yang G, Tsubaki N, Shamoto J, et al. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society.2010,132(23):8129-8136.
    [7]Ma X, Ge Q, Fang C, et al. Direct synthesis of LPG from syngas derived from air-POM. Fuel.2011,90(5):2051-2054.
    [8]Zhang Q, Liu P, Fujiyama Y, et al. Synthesis of light hydrocarbons from syngas in near-critical phase. Applied Catalysis A:General.2011,401(1-2):147-152.
    [9]Zhang Q, Li X, Asami K, et al. Synthesis of LPG from synthesis gas. Fuel Processing Technology.2004,85(8-10):1139-1150.
    [10]Jeon J, Jeong K, Park Y, et al. Selective synthesis of C3-C4 hydrocarbons through carbon dioxide hydrogenation on hybrid catalysts composed of a methanol synthesis catalyst and SAPO. Applied Catalysis A:General.1995,124(1):91-106.
    [11]Fujimoto K, Saima H, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:Ⅳ. Selective synthesis of C2, C3, and C4 paraffins from synthesis gas. Journal of Catalysis.1985,94(1):16-23.
    [12]Fujimoto K, Kudo Y, Tominaga H. Synthesis gas conversion utilizing mixed catalyst composed of CO reducing catalyst and solid acid:Ⅱ. Direct synthesis of aromatic hydrocarbons from synthesis gas. Journal of Catalysis.1984,87(1): 136-143.
    [13]Ge Q, Lian Y, Yuan X, et al. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG. Catalysis Communications.2008,9(2):256-261.
    [14]Tang X, Fei J, Hou Z, et al. Characterization of Cu-Mn/Zeolite-Y Catalyst for One-Step Synthesis of Dimethyl Ether from CO-H2. Energy & Fuels.2008,22(5): 2877-2884.
    [15]Ni X, Tan Y, Han Y, et al. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications.2007, 8(11):1711-1714.
    [16]Asami K, Zhang Q, Li X, et al. Semi-indirect synthesis of LPG from syngas: Conversion of DME into LPG. Catalysis Today.2005,106(1):247-251.
    [17]Zhang Q, Li X, Asami K, et al. Direct synthesis of LPG fuel from syngas with the hybrid catalyst based on modified Pd/SiO2 and zeolite. Catalysis Today.2005, 104(1):30-36.
    [18]Rongxian B, Yisheng T, Yizhuo H. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts. Fuel Processing Technology.2004,86(3):293-301.
    [19]Fujiwara M, Kieffer R, Ando H, et al. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide. Applied Catalysis A:General.1995,121(1):113-124.
    [20]Ma X, Ge Q, Fang C, et al. Effect of Ca promoter on LPG synthesis from syngas over hybrid catalyst. Journal of Natural Gas Chemistry.2012,21(6):615-619.
    [21]Huang X, Hou B, Wang J, et al. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas. Applied Catalysis A:General.2011,408(1): 38-46.
    [22]Ge Q, Tomonobu T, Fujimoto K, et al. Influence of Pd ion-exchange temperature on the catalytic performance of Cu-ZnO/Pd-β zeolite hybrid catalyst for CO hydrogenation to light hydrocarbons. Catalysis Communications.2008,9(8): 1775-1778.
    [23]Park Y, Park K, Ihm S. Hydrocarbon synthesis through CO2 hydrogenation over CuZnOZr02/zeolite hybrid catalysts. Catalysis Today.1998,44(1-4):165-173.
    [24]Fujiwara M, Ando H, Tanaka M, et al. Hydrogenation of carbon dioxide over Cu-Zn-chromate/zeolite composite catalyst:The effects of reaction behavior of alkenes on hydrocarbon synthesis. Applied Catalysis A:General.1995,130(1): 105-116.
    [25]Yang R, Yu X, Zhang Y, et al. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2. Fuel.2008,87(4):443-450.
    [26]Yang R, Fu Y, Zhang Y, et al. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter. Journal of Catalysis.2004,228(1):23-35.
    [27]Batyrev E D, Shiju N R, Rothenberg G. Exploring the activated state of Cu/ZnO (0001)-Zn, a model catalyst for methanol synthesis. The Journal of Physical Chemistry C.2012,116(36):19335-19341.
    [28]Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science.2012,336(6083):893-897.
    [29]Xiao J, Frauenheim T. Activity and synergy effects on a Cu/ZnO (0001) surface studied using first-principle thermodynamics. The Journal of Physical Chemistry Letters.2012,3(18):2638-2642.
    [30]Andreasen J W, Rasmussen F B, Helveg S, et al. Activation of a Cu/ZnO catalyst for methanol synthesis. Journal of Applied Crystallography.2006,39(2):209-221.
    [31]Castricum H L, Bakker H, van der Linden B, et al. Mechanochemical reactions in Cu/ZnO catalysts induced by mechanical milling. The Journal of Physical Chemistry B.2001,105(33):7928-7937.
    [32]Sun J T, Metcalfe I S, Sahibzada M. Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering. Industrial & Engineering Chemistry Research.1999, 38(10):3868-3872.
    [33]Chen H Y, Chen L, Lin J, et al. Comparative surface studies of high-Zn-level and commercial Cu/ZnO/Al2O3 catalysts. The Journal of Physical Chemistry B.1998, 102(11):1994-2000.
    [34]Klier K, Chatikavanij V, Herman R G, et al. Catalytic synthesis of methanol from CO-H2:IV. The effects of carbon dioxide. Journal of Catalysis.1982,74(2):343-360.
    [35]Mehta S, Simmons G W, Klier K, et al. Catalytic synthesis of methanol from CO-H2:II. Electron microscopy (TEM, STEM, microdiffraction, and energy dispersive analysis) of the CuZnO and Cu/ZnO/Cr2O3 catalysts. Journal of Catalysis. 1979,57(3):339-360.
    [36]Bulko J B, Herman R G, Klier K, et al. Optical properties and electronic interactions of microcrystalline copper/zinc oxide (Cu/ZnO) catalysts. Journal of Physical Chemistry.1979,83(24):3118-3122.
    [37]Herman R G, Klier K, Simmons G W, et al. Catalytic synthesis of methanol from CO-H2:I. Phase composition, electronic properties, and activities of the Cu/Zn0/M2O3 catalysts. Journal of Catalysis.1979,56(3):407-429.
    [38]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社.2004.
    [39]M A S, A C K, K D P. Handbook of zeolite science and technology [M].2003.
    [1]Digne M, Sautet P, Raybaud P, et al. Hydroxyl groups on y-Alumina surfaces:A DFT study. Journal of Catalysis.2002,211(1):1-5.
    [2]Krokidis X, Raybaud P, Gobichon A, et al. Theoretical study of the dehydration process of boehmite to y-Alumina. The Journal of Physical Chemistry B.2001, 105(22):5121-5130.
    [3]Raybaud P, Digne M, Iftimie R, et al. Morphology and surface properties of boehmite (y-AlOOH):A density functional theory study. Journal of Catalysis.2001, 201(2):236-246.
    [4]Batyrev E D, Shiju N R, Rothenberg G. Exploring the activated state of Cu/ZnO (0001)-Zn, a model catalyst for methanol synthesis. The Journal of Physical Chemistry C.2012,116(36):19335-19341.
    [5]Behrens M, Studt F, Kasatkin I, et al. The active site of methanol synthesis over Cu/ZnO/Al203 industrial catalysts. Science.2012,336(6083):893-897.
    [6]Xiao J, Frauenheim T. Activity and synergy effects on a Cu/ZnO(0001) surface studied using first-principle thermodynamics. The Journal of Physical Chemistry Letters.2012,3(18):2638-2642.
    [7]Yang R, Fu Y, Zhang Y, et al. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter. Journal of Catalysis.2004,228(1):23-35.
    [8]Andreasen J W, Rasmussen F B, Helveg S, et al. Activation of a Cu/ZnO catalyst for methanol synthesis.2006,39(2):209-221.
    [9]Chen H Y, Chen L, Lin J, et al. Comparative surface studies of high-Zn-level and commercial Cu/ZnO/Al2O3 catalysts. The Journal of Physical Chemistry B.1998, 102(11):1994-2000.
    [10]Lazo N D, Murray D K, Kieke M L, et al. In situ carbon-13 solid-state NMR study of the Cu/ZnO/Al2O3 methanol synthesis catalyst. Journal of the American Chemical Society.1992,114(22):8552-8559.
    [11]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社.2004.
    [12]M A S, A C K, K D P. Handbook of zeolite science and technology [M].2003.
    [13]Askari S, Halladj R, Sohrabi M. Methanol conversion to light olefins over sonochemically prepared SAPO-34 nanocatalyst. Microporous and Mesoporous Materials.2012,163:334-342.
    [14]Li S, Falconer J L, Noble R D. Improved SAPO-34 membranes for CO2/CH4 separations. Advanced Materials.2006,18(19):2601-2603.
    [15]Jhung S H, Chang J, Hwang J S, et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating. Microporous and Mesoporous Materials.2003,64(1):33-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700