用户名: 密码: 验证码:
转基因克隆猪的研制与ZFNs介导基因敲除的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因体细胞克隆猪在基础科学研究,人类医学,生物产品生产以及畜牧业生产等领域都具有非常重要的应用价值。目前,得益于新的基因打靶工具—锌指核酸酶(Znic finger nucleases, ZFNs)的出现,基因敲除效率得到大大提高,世界范围内的转基因体细胞克隆猪的研究也迈上了新的台阶。本研究以建立转基因体细胞克隆猪技术平台,研制转绿色荧光蛋白和转纤维素酶转基因猪为主要目的,系统地研究了源于细菌以及低等真核生物的纤维素酶在高等哺乳动物细胞中的密码子优化与表达,提高了纤维素酶在猪细胞中的表达水平。成功制作了转绿色荧光蛋白的转基因猪。最后对ZFNs介导的猪IGF2和Kit基因敲除进行了初步探索和分析。
     本研究首先对源于细菌和低等真核生物的三种糖苷水解酶bgl4,xynB和egxA基因进行了两种方式的密码子优化,并比较了它们在四种不同种属的哺乳动物细胞中的表达水平,发现在PK15细胞系中,使用“一个密码子对应一种氨基酸”方式进行密码子优化后,其表达水平显著高于原始基因以及使用“人源化密码子”优化的基因。根据这一发现,本研究建立了稳定表达“一个密码子对应一种氨基酸”优化后的bgl4和xynB基因的PK15细胞系,并对表达产物的酶活力进行了检测。
     其次建立了蓝塘猪胎儿成纤维细胞系(Pig embryonic fibroblasts, PEF)5个,长白猪胎儿成纤维细胞系10个以及1个出生后30天长白猪耳皮肤成纤维细胞系。对蓝塘猪、长白猪PEF细胞系进行了绿色荧光蛋白GFP、葡糖苷酶bgl4、木聚糖酶xynB的电击转染,成功获得了含有以上基因的转基因PEF细胞系。以获得的转基因细胞系为核供体,进行体细胞核移植,得到重构胚胎后进行胚胎移植实验,最后获得了转绿色荧光蛋白转基因猪两批共7头,健康状况良好。
     为了设计靶向猪IGF2基因和Kit基因的ZFNs,本研究中通过PCR克隆方法,获得了蓝塘猪Kit基因内含子8到内含子11的基因组序列,并发现该序列与已报道的大白猪序列相比,有一段长为10bp的插入序列。同时验证了长白猪和蓝塘猪IGF2基因内含子3上第3072的QTN的类型:长白猪为A,蓝塘猪为G。
     最后,通过T-A克隆测序法以及CEL-I酶切法,验证了由Sigma公司设计的3对靶向IGF2基因和6对靶向Kit基因的ZFNs在PK15细胞以及蓝塘猪PEF细胞中的活性。结果显示在蓝塘猪PEF细胞中,靶向IGF2基因的第3对ZFNs具有最高的活性,为8.91%,靶向Kit基因的第4对ZFNs活性最高,为7.14%。同时通过比较ZFNs在PK15和PEF细胞中的活性,发现两种细胞中ZFNs的活性并不一致,说明细胞类型对ZFNs的活性有一定影响。通过以上的研究,我们对ZFNs的活性有了较深入的了解,为制定合适的富集中靶细胞的策略奠定了基础,同时为制作IGF2和Kit基因敲除猪奠定了基础。
Transgenic somatic cell nuclear transfer in pigs has wide applications in basicresearch areas, human medicine and agricultural production. And the new geneticengineering tools, Znic finger nucleases, have largely improved the efficiency oftransgenic pig production. Compared to traditional gene targeting method, zinc fingernuclease is a very powerful gene targeting tool. The application of zinc fingernuclease technology to produce transgenic animals, especially transgenic farmanimals will be the main direction for future development. In this study, we developeda technical platform for transgenic pig production and produced7green fluorescenceprotein transgenic pigs, and we also primarily explored the application of Zinc fingernuclease in gene knock-out pig production.
     First of all, we optimized three fibrolytic enzyme genes: bgl4, xynB and egxA intwo different codon optimization methods and compared the expression level in fourdifferent mammalian cell lines. We found that “one codon-one amino acid” optimizedsequences had higher expression level than the original ones and the “Humanized”ones. We established two PK15cell lines, which can stable express BGL4and XYNB separately, and the enzyme activity was measured
     Five embryo fibroblast cell lines from Lantang pig, ten embryo fibroblast celllines from Landrace pig and one skin fibroblast cell line from a30days old Landracepiglet were established. Embryo fibroblast cell lines from Lantang and Landrace pigwere transfected with pEGFP-N1and pEGFP-BGL4, pEGFP-XYNB plasmids DNAby NeonTMtransfection system, and six transgenic cell lines were gained. We didnuclear transfer experiments using the transgenic cell lines as donor cells and thereconstructed embryos were transplanted into female pigs. At last, we obtained7liveGFP transgenic piglets.
     In order to design ZFNs which targeting the IGF2and Kit gene of pig, weamplified and sequenced the genomic fragment of Kit gene from intron8to intron11,we also found that this sequence has a10bp insertion differs from the largewhite Kitgene in NCBI. We also sequenced partial fragment of IGF2intron3, verified the QTNtype of IGF2gene intron3of the Landrace and Langtang pig. Landrace is A type andLantang pig is G type. Based on these sequencing results, we custom made zinc fingernucleases (ZFNs) from Sigma Corporation. By T-A cloning sequencing method andCEL-I method, we measured the cleavage activity of ZFNs in PK15cells and PEFcells. Results shows that in Langtang Pig PEF cells, IGF2ZFN set3has the highestactivity,8.91%cells were gene knock-out. And the highest sctivity of Kit ZFNs isfrom set1, which is7.14%. At the same time, by comparing ZFN activity in the PK15and PEF cells, we found that ZFN activities are not consistent in the two types of cells,indicated that cell type has impact on ZFN activity. Through this study, we have amore in-depth understanding of ZFN activity, and most importantly, laid thefoundation for the production of IGF2and the Kit gene knockout pigs.
引文
1Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouseembryos by microinjection of purified DNA. Proceedings of the NationalAcademy of Sciences of the United States of America,1980,77(12):7380-7384.
    2Prather RS, Sutovsky P, Green JA. Nuclear Remodeling and Reprogrammingin Transgenic Pig Production. Experimental Biology and Medicine,2004,229(11):1120-1126.
    3Polejaeva IA, Chen S-H, Vaught TD, et al. Cloned pigs produced by nucleartransfer from adult somatic cells. Nature,2000,407(6800):86-90.
    4Lai L, Park K-W, Cheong H-T, et al. Transgenic pig expressing the enhancedgreen fluorescent protein produced by nuclear transfer using colchicine-treatedfibroblasts as donor cells. Molecular Reproduction and Development,2002,62(3):300-306.
    5Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the[alpha]1,3-galactosyltransferase gene in cloned pigs. Nature Biotechnology,2002,20(3):251-255.
    6Lai LX, Kolber-Simonds D, Park KW, et al. Production ofalpha-1,3-galactosyltransferase knockout pigs by nuclear transfer coning.Science,2002,295(5557):1089-1092.
    7Hao YH, Yong HY, Murphy CN, et al. Production of endothelial nitric oxidesynthase (eNOS) over-expressing piglets. Transgenic Research,2006,15(6):739-750.
    8Lai L, Kang JX, Li R, et al. Generation of cloned transgenic pigs rich inomega-3fatty acids. Nature Biotechnology,2006,24(4):435-436.
    9Li P, Estrada J, Burlak C, et al. Biallelic knockout of the α-1,3galactosyltransferase gene in porcine liver-derived cells using zinc fingernucleases. Journal of Surgical Research,2012,182(1):1-7.
    10Carlson DF, Tan W, Lillico SG, et al. Efficient TALEN-mediated geneknockout in livestock. Proceedings of the National Academy of Sciences,2012.
    11Yang D, Yang H, Li W, et al. Generation of PPARgamma mono-allelicknockout pigs via zinc-finger nucleases and nuclear transfer cloning. CellResearch,2011,21(6):979-982.
    12Whyte JJ, Zhao J, Wells KD, et al. Gene targeting with zinc finger nucleasesto produce cloned eGFP knockout pigs. Molecular Reproduction andDevelopment,2011,78(1):2.
    13Hauschild J, Petersen B, Santiago Y, et al. Efficient generation of a biallelicknockout in pigs using zinc-finger nucleases. Proceedings of the NationalAcademy of Sciences of the United States of America,2011.
    14Watanabe M, Umeyama K, Matsunari H, et al. Knockout of exogenous EGFPgene in porcine somatic cells using zinc-finger nucleases. Biochemical andBiophysical Research Communications,2010,402(1):14-18.
    15Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice thatdevelop from eggs microinjected with metallothionein-growth hormone fusiongenes. Nature,1982,300(5893):611-615.
    16陈永福.转基因动物.北京:科学出版社;2002.
    17Cui X, Ji D, Fisher DA, et al. Targeted integration in rat and mouse embryoswith zinc-finger nucleases. Nature Biotechnology,2011,29(1):64-67.
    18Meyer M, de Angelis MH, Wurst W, et al. Gene targeting by homologousrecombination in mouse zygotes mediated by zinc-finger nucleases.Proceedings of the National Academy of Sciences,2010,107(34):15022-15026.
    19Tesson L, Usal C, Menoret S, et al. Knockout rats generated by embryomicroinjection of TALENs. Nature Biotechnology,2011,29(8):695-696.
    20Jaenisch R. Germ line integration and Mendelian transmission of theexogenous Moloney leukemia virus. Proceedings of the National Academy ofSciences,1976,73(4):1260-1264.
    21Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farmanimals by lentiviral vectors. EMBO Report,2003,4(11):1054-1058.
    22McGrew MJ, Sherman A, Ellard FM, et al. Efficient production of germlinetransgenic chickens using lentiviral vectors. EMBO Report,2004,5(7):728-733.
    23Hofmann A, Zakhartchenko V, Weppert M, et al. Generation of transgeniccattle by lentiviral gene transfer into oocytes. Biology of Reproduction,2004,71(2):405-409.
    24Whitelaw CBA, Radcliffe PA, Ritchie WA, et al. Efficient generation oftransgenic pigs using equine infectious anaemia virus (EIAV) derived vector.FEBS Letters,2004,571(1–3):233-236.
    25陈青,曹文广.动物转基因新技术研究进展.中国农业科学,2011,44(10).
    26McCreath KJ, Howcroft J, Campbell KHS, et al. Production of gene-targetedsheep by nuclear transfer from cultured somatic cells. Nature,2000,405(6790):1066-1069.
    27Clark J, Whitelaw B. A future for transgenic livestock. Nature ReviewsGenetics,2003,4(10):825-833.
    28Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi: results andchallenges. Annual Review of Biochemistry,2010,79(37-64.
    29Plasterk RHA. RNA Silencing: The Genome's Immune System. Science,2002,296(5571):1263-1265.
    30Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs (shRNAs)induce sequence-specific silencing in mammalian cells. Genes Development,2002,16(8):948-958.
    31Brummelkamp TR, Bernards R, Agami R. A System for Stable Expression ofShort Interfering RNAs in Mammalian Cells. Science,2002,296(5567):550-553.
    32Stewart CK, Li J, Golovan SP. Adverse effects induced by short hairpin RNAexpression in porcine fetal fibroblasts. Biochemical and Biophysical ResearchCommunications,2008,370(1):113-117.
    33Iqbal K, Kues WA, Niemann H. Parent-of-origin dependent gene-specificknock down in mouse embryos. Biochemical and Biophysical ResearchCommunications,2007,358(3):727-732.
    34Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and genesilencing in transgenic mice and rats. FEBS Letters,2002,532(1–2):227-230.
    35Dann CT, Alvarado AL, Hammer RE, et al. Heritable and Stable GeneKnockdown in Rats. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103(30):11246-11251.
    36Chen W, Liu M, Jiao Y, et al. Adenovirus-Mediated RNA Interference againstFoot-and-Mouth Disease Virus Infection both In Vitro and In Vivo. Journal ofVirology,2006,80(7):3559-3566.
    37Golding MC, Long CR, Carmell MA, et al. Suppression of Prion Protein inLivestock by RNA Interference. Proceedings of the National Academy ofSciences of the United States of America,2006,103(14):5285-5290.
    38Jabed a, Wagner S, McCracken J, et al. Targeted microRNA expression indairy cattle directs production of beta-lactoglobulin-free, high-casein milk.Proceedings of the National Academy of Sciences,2012.
    39Singer O, Verma IM. Applications of Lentiviral Vectors for shRNA Deliveryand Transgenesis. Current Gene Therapy,2008,8(6):483-488.
    40Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. NatureBiotechnology,2005,23(8):967-973.
    41Wah DA, Bitinaite J, Schildkraut I, et al. Structure of FokI has implicationsfor DNA cleavage. Proceedings of the National Academy of Sciences,1998,95(18):10564-10569.
    42肖安,胡莹莹,林硕.人工锌指核酸酶介导的基因组定点修饰技术.遗传,2011,33(7):1-5.
    43Kim Y-G, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc fingerfusions to Fok I cleavage domain. Proceedings of the National Academy ofSciences,1996,93(3):1156-1160.
    44Doyon Y, McCammon J, Miller J, et al. Heritable targeted gene disruption inzebrafish using designed zinc-finger nucleases. Nat Biotechnol,2008,26(6):702-708.
    45Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human genecorrection using designed zinc-finger nucleases. Nature,2005,435(7042):646-651.
    46Ledford H. Targeted gene editing enters clinic. Nature,2011,471(7336):16.
    47Yu S, Luo J, Song Z, et al. Highly efficient modification of beta-lactoglobulin(BLG) gene via zinc-finger nucleases in cattle. Cell Research,2011,16(1-3.
    48Li P, Estrada J, Burlak C, et al. Biallelic knockout of the α-1,3galactosyltransferase gene in porcine liver-derived cells using zinc fingernucleases. Journal of Surgical Research,2012,181(1):1-7.
    49Carbery ID, Ji D, Harrington A, et al. Targeted genome modification in miceusing zinc-finger nucleases. Genetics,2010,186(2):451-459.
    50Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryomicroinjection of zinc-finger nucleases. Science,2009,325(5939):433-433.
    51Foley JE, Yeh J-RJ, Maeder ML, et al. Rapid mutation of endogenouszebrafish genes using zinc finger nucleases made by Oligomerized PoolENgineering (OPEN). PloS one,2009,4(2):e4348.
    52Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in thecrop species Zea mays using zinc-finger nucleases. Nature,2009,459(7245):437-441.
    53Ochiai H, Fujita K, Suzuki Ki, et al. Targeted mutagenesis in the sea urchinembryo using zinc‐finger nucleases. Genes to Cells,2010,15(8):875-885.
    54Takasu Y, Kobayashi I, Beumer K, et al. Targeted mutagenesis in thesilkworm Bombyx mori using zinc finger nuclease mRNA injection. InsectBiochemistry and Molecular Biology,2010,40(10):759-765.
    55Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid “open-source”engineering of customized zinc-finger nucleases for highly efficient genemodification. Molecular Cell,2008,31(2):294-301.
    56Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafishusing engineered zinc-finger nucleases. Nature Biotechnology,2008,26(6):695-701.
    57Sander JD, Maeder ML, Reyon D, et al. ZiFiT (Zinc Finger Targeter): anupdated zinc finger engineering tool. Nucleic Acids Research,2010,38(suppl2):W462-W468.
    58Wright DA, Thibodeau-Beganny S, Sander JD, et al. Standardized reagentsand protocols for engineering zinc finger nucleases by modular assembly.Nature Protocols,2006,1(3):1637-1652.
    59Cornu TI, Thibodeau-Beganny S, Guhl E, et al. DNA-binding Specificity Is aMajor Determinant of the Activity and Toxicity of Zinc-finger Nucleases.Molecular Therapy,2007,16(2):352-358.
    60Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breakswith TAL effector nucleases. Genetics,2010,186(2):757-761.
    61Joung JK, Sander JD. TALENs: a widely applicable technology for targetedgenome editing. Nature Reviews Molecular Cell Biology,2012November):1-7.
    62Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA bindingspecificity of TAL-type III effectors. Science,2009,326(2009):1509-1512.
    63Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence-specificTAL effectors for modulating mammalian transcription. Nature Biotechnology,2011,29(2):149-153.
    64Valton J, Dupuy A, Daboussi F, et al. Overcoming TALE DNA BindingDomain Sensitivity to Cytosine Methylation. The Journal of BiologicalChemistry,2012.
    65Li T-M, Du B. CRISPR-Cas system and coevolution of bacteria and phages.Hereditas,2011,33(3):213-218.
    66Carroll D. A CRISPR Approach to Gene Targeting. Molecular therapy: thejournal of the American Society of Gene Therapy,2012,20(9):1658-1660.
    67Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guidedDNA endonuclease in adaptive bacterial immunity. Science,2012,337(6096):816-821.
    68Cong L, Ran FA, Cox D, et al. Multiplex genome engineering usingCRISPR/Cas systems. Science,2013,339(6121):819-823.
    69Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineeringvia Cas9. Science,2013,339(6121):823-826.
    70Ding Q, Regan Stephanie N, Xia Y, et al. Enhanced Efficiency of HumanPluripotent Stem Cell Genome Editing through Replacing TALENs withCRISPRs. Cell Stem Cell,2013,12(4):393-394.
    71卫恒习.利用体细胞核移植技术生产转基因猪.中国农业大学;2008.
    72Speman H. Embryonic development and induction. The American Journal ofthe Medical Sciences,1938,196(5):738.
    73Briggs R, King TJ. Transplantation of living nuclei from blastula cells intoenucleated frogs’ eggs. Proceedings of the National Academy of Sciences,1952,38(5):455-463.
    74McGrath J, Solter D. Nuclear transplantation in the mouse embryo bymicrosurgery and cell fusion. Science,1983,220(4603):1300-1302.
    75Willadsen SM. Nuclear transplantation in sheep embryos. Nature,1986,320(6057):63-65.
    76Prather RS, Barnes FL, Sims MM, et al. Nuclear transplantation in the bovineembryo: assessment of donor nuclei and recipient oocyte. Biology ofReproduction,1987,37(4):859-866.
    77Stice SL, Robl JM. Nuclear reprogramming in nuclear transplant rabbitembryos. Biology of Reproduction,1988,39(3):657-664.
    78Prather R, Sims M, First N. Nuclear transplantation in early pig embryos.Biology of Reproduction,1989,41(3):414-418.
    79Yong Z, Jianchen W, Jufen Q, et al. Nuclear transplantation in goats.Theriogenology,1991,35(1):299.
    80Meng L, Ely JJ, Stouffer RL, et al. Rhesus monkeys produced by nucleartransfer. Biology of Reproduction,1997,57(2):454-459.
    81Wilmut I, Schnieke A, McWhir J, et al. Viable offspring derived from fetaland adult mammalian cells. Cloning and Stem Cells,2007,9(1):3-7.
    82Wakayama T, Perry AC, Zuccotti M, et al. Full-term development of micefrom enucleated oocytes injected with cumulus cell nuclei. Nature,1998,394(6691):369-374.
    83Zhou Q, Renard J-P, Le Friec G, et al. Generation of fertile cloned rats byregulating oocyte activation. Science,2003,302(5648):1179-1179.
    84Kato Y, Tani T, Sotomaru Y, et al. Eight calves cloned from somatic cells of asingle adult. Science,1998,282(5396):2095-2098.
    85Baguisi A, Behboodi E, Melican DT, et al. Production of goats by somatic cellnuclear transfer. Nature Biotechnology,1999,17(5):456-461.
    86Polejaeva IA, Chen S-H, Vaught TD, et al. Cloned pigs produced by nucleartransfer from adult somatic cells. Nature,2000,407(6800):86-90.
    87Shin T, Kraemer D, Pryor J, et al. Cell biology: a cat cloned by nucleartransplantation. Nature,2002,415(6874):859-859.
    88ChesnéP, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nucleartransfer from adult somatic cells. Nature Biotechnology,2002,20(4):366-369.
    89Holden C. First cloned mule races to finish line. Science,2003,300(5624):1354-1354.
    90Galli C, Lagutina I, Crotti G, et al. Pregnancy: a cloned horse born to its damtwin. Nature,2003,424(6949):635-635.
    91Fulka J, Moor RM. Noninvasive chemical enucleation of mouse oocytes.Molecular Reproduction and Development,1993,34(4):427-430.
    92Yin XJ, Tani T, Yonemura I, et al. Production of cloned pigs from adultsomatic cells by chemically assisted removal of maternal chromosomes.Biology of Reproduction,2002,67(2):442-446.
    93Wells D, Misica P, McMillan W, et al. Production of cloned bovine fetusesfollowing nuclear transfer using cells from a fetal fibroblast cell line.Theriogenology,1998,49(1):330-330.
    94Hill J, Roussel A, Cibelli J, et al. Clinical and pathologic features of clonedtransgenic calves and fetuses (13case studies). Theriogenology,1999,51(8):1451-1465.
    95Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle andsheep. Reviews of Reproduction,1998,3(3):155-163.
    96Wakayama S, Kohda T, Obokata H, et al. Successful Serial Recloning in theMouse over Multiple Generations. Cell stem cell,2013,12(3):293-297.
    97Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse modelspoorly mimic human inflammatory diseases. Proceedings of the NationalAcademy of Sciences,2013.
    98Forsberg CW, Golovan SP, Ajakaiye A, et al. Genetic opportunities toenhance sustainability of pork production in developing countries: A modelfor food animals. Dordrecht: Springer;2005.
    99Ghosh F, Wong F, Johansson K, et al. Transplantation of Full-ThicknessRetina in the Rhodopsin Transgenic Pig. RETINA,2004,24(1):98-109.
    100Swanson ME, Martin MJ, O'Donnell JK, et al. Production of functional humanhemoglobin in transgenic swine. Nature Biotechnology,1992,10(5):557-559.
    101Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheepproduced by transfer of nuclei from transfected fetal fibroblasts. Science,1997,278(5346):2130-2133.
    102Kerr14DE, Liang F, Bondioli15KR, et al. The bladder as a bioreactor:urothelium production and secretion of growth hormone into urine. NatureBiotochnology,1998,16(75.
    103Hammer RE, Pursel VG, Rexroad CE, et al. Production of transgenic rabbits,sheep and pigs by microinjection.1985.
    104Pursel VG, Pinkert CA, Miller KF, et al. Genetic engineering of livestock.Science,1989,244(4910):1281-1288.
    105Brophy B, Smolenski G, Wheeler T, et al. Cloned transgenic cattle producemilk with higher levels of β-casein and κ-casein. Nature Biotechnology,2003,21(2):157-162.
    106Denning C, Burl S, Ainslie A, et al. Deletion of the α (1,3) galactosyltransferase (GGTA1) gene and the prion protein (PrP) gene in sheep. NatureBiotechnology,2001,19(6):559-562.
    107Kuroiwa Y, Kasinathan P, Matsushita H, et al. Sequential targeting of thegenes encoding immunoglobulin-μ and prion protein in cattle. Nature Genetics,2004,36(7):775-780.
    108Lynd LR, Weimer PJ, Van Zyl WH, et al. Microbial cellulose utilization:fundamentals and biotechnology. Microbiology and Molecular BiologyReviews,2002,66(3):506-577.
    109Kim E, Irwin DC, Walker LP, et al. Factorial optimization of a six-cellulasemixture. Biotechnology and Bioengineering,1998,58(5):494-501.
    110高玉红,臧素敏,刘艳琴, et al.复合酶对断奶仔猪生产性能和消化吸收能力的影响研究.饲料研究,200003):8-10.
    111许梓荣,王振来,王敏奇.饲粮中添加复合酶制剂(GXC)对仔猪消化机能的影响.中国兽医学报,19991).
    112Wang J, Ding M, Li Y-H, et al. Isolation of a Multi-functional EndogenousCellulase Gene from Mollusc, Ampullaria crossean. Acta Biochimica etBiophysica Sinica2003,35(10):941-946.
    113Cheng S, Yang P, Guo L, et al. Expression of multi-functional cellulase genemfc in Coprinus cinereus under control of different basidiomycete promoters.Bioresource Technology,2009,100(19):4475-4480.
    114高如丽.福寿螺多功能纤维素酶EGXA及其结构域在昆虫细胞Tn5中的重组表达与性质分析.2007.
    115高中华,许根俊,赵辅昆.福寿螺多功能纤维素酶EGXA在酿酒酵母中的表达.浙江理工大学学报,2007,24(4):479-482.
    116赵颖,丁明,高如丽, et al.福寿螺多功能纤维素酶(EGXA)的结构功能研究.浙江理工大学学报,2008,25(5):535-558.
    117Takashima S, Nakamura A, Hidaka M, et al. Molecular cloning andexpression of the novel fungal beta-glucosidase genes from Humicola griseaand Trichoderma reesei. Journal of Biochemistry,1999,125(4):728-736.
    118丁强.饲用木聚糖酶的研究进展及应用.中国饲料,2010:3.
    119Zhang H, Yao B, Wang Y, et al. Characterization, gene cloning andexpression of new xylanase XYNB with high specific activity. ChineseScience Bulletin,2003,48(8):761-765.
    120何永志.橄榄绿链霉菌Streptomyces olivaceoviridis A1木聚糖酶基因xynB在毕赤酵母中的高效表达.2003.硕士.
    121张红莲.橄榄绿链霉菌Streptomyces olivaceoviridis A1所产木聚糖酶的纯化、酶基因的克隆及表达.2002.硕士.
    122Andersson L, Georges M. Domestic-animal genomics: deciphering thegenetics of complex traits. Nature Reviews Genetics,2004,5(3):202-212.
    123Amarger V. Comparative sequence analysis of the Insulin-IGF2-H19genecluster in pigs. Mammalian Genome,2002,13(388-398.
    124Holthuizen, P., lee Vd, et al. Identification and initial characterization of afourth leader exon and promoter of the human IGF-II gene. Amsterdam,PAYS-BAS: Elsevier;1990.
    125Van Laere AS, Nguyen M, Braunschweig M, et al. A regulatory mutation inIGF2causes a major QTL effect on muscle growth in the pig. Nature,2003,425(6960):832-836.
    126Markljung E, Jiang L, Jaffe JD, et al. ZBED6, a Novel Transcription FactorDerived from a Domesticated DNA Transposon Regulates IGF2Expressionand Muscle Growth. PLoS Biology,2009,7(12):e1000256.
    127Burgos C, Galve A, Moreno C, et al. The effects of two alleles of IGF2on fatcontent in pig carcasses and pork. Meat science,2012,90(2):309-313.
    128Marklund S, Kijas J, Rodriguez-Martinez H, et al. Molecular basis for thedominant white phenotype in the domestic pig. Genome Research,1998,8(8):826-833.
    129Roskoski R. Structure and regulation of Kit protein-tyrosine kinase--the stemcell factor receptor. Biochemical and Biophysical Research Communications,2005,338(3):1307-1315.
    130Roskoski R. Signaling by Kit protein-tyrosine kinase-The stem cell factorreceptor. Biochemical and Biophysical Research Communications,2005,337(1):1-13.
    131Kimura Y, Jones N, Kluppel M, et al. Targeted mutations of thejuxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affectmultiple cell lineages. Proceedings of the National Academy of Sciences ofthe United States of America,2004,101(16):6015-6020.
    132Ronnstrand L. Signal transduction via the stem cell factor receptor/c-Kit.Cellular and Molecular Life Sciences,2004,61(19-20):2535-2548.
    133Massey SE, Moura G, Beltrao P, et al. Comparative evolutionary genomicsunveils the molecular mechanism of reassignment of the CTG codon inCandida spp. Genome Research,2003,13(4):544-557.
    134Sharp PM, Matassi G. Codon usage and genome evolution. Current Opinion inGenetic Development,1994,4(6):851-860.
    135Kane JF. Effects of rare codon clusters on high-level expression ofheterologous proteins in Escherichia coli. Current Opinion in Biotechnology,1995,6(5):494-500.
    136Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologousprotein expression. Trends in Biotechnology,2004,22(7):346-353.
    137Haas J, Park EC, Seed B. Codon usage limitation in the expression of HIV-1envelope glycoprotein. Current Biology,1996,6(3):315-324.
    138Wright F. The 'effective number of codons' used in a gene. Gene,1990,87(1):23-29.
    139吴宪明,吴松锋,任大明, et al.密码子偏性的分析方法及相关研究进展.遗传,2007,29(4):420-426.
    140Griswold KE, Mahmood NA, Iverson BL, et al. Effects of codon usage versusputative5'-mRNA structure on the expression of Fusarium solani cutinase inthe Escherichia coli cytoplasm. Protein Expression and Purification,2003,27(1):134-142.
    141Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genomehypothesis. Nucleic Acids Research,1980,8(1):197.
    142Moriyama EN, Powell JR. Codon usage bias and tRNA abundance inDrosophila. Journal of Molecular Evolution,1997,45(5):514-523.
    143Bulmer M. The selection-mutation-drift theory of synonymous codon usage.Genetics,1991,129(3):897.
    144Huang Y. Attenuated Secretion of the Thermostable Xylanase xynB fromPichia pastoris Using Synthesized Sequences Optimized from the PreferredCodon Usage in Yeast. Journal of Microbiology and Biotechnology,2012,22(3):316-325.
    145Fluri DA, Kelm JM, Lesage G, et al. InXy and SeXy, compact heterologousreporter proteins for mammalian cells. Biotechnology and Bioengineering,2007,98(3):655-667.
    146杨素芳,石德顺,韩杰, et al.供体核种类对水牛核移植效果的影响.广西农业生物科学,20043):233-237.
    147Uhm SJ, Chung HM, Kim C, et al. In vitro development of porcine enucleatedoocytes reconstructed by the transfer of porcine fetal fibroblasts and cumuluscells. Theriogenology,2000,54(4):559-570.
    148Lee S-L, Ock S-A, Yoo J-G, et al. Efficiency of gene transfection into donorcells for nuclear transfer of bovine embryos. Molecular Reproduction andDevelopment,2005,72(2):191-200.
    149丁生财,陈意生,魏泓, et al.猪皮肤成纤维细胞的培养与鉴定.第三军医大学学报,2004,13(
    150马月辉,周向梅,关伟军, et al.用胶原酶消化法培养德保矮马耳缘组织成纤维细胞初探.中国农业科学,20056):1282-1288.
    151薛庆善.体外培养的原理与技术.北京:科学出版社,;2001:432-444.
    152Ogura A, Inoue K, Ogonuki N, et al. Production of Male Cloned Mice fromFresh, Cultured, and Cryopreserved Immature Sertoli Cells. Biology ofReproduction,2000,62(6):1579-1584.
    153Zakhartchenko V, Mueller S, Alberio R, et al. Nuclear transfer in cattle withnon-transfected and transfected fetal or cloned transgenic fetal and postnatalfibroblasts. Molecular Reproduction and Development,2001,60(3):362-369.
    154Bedford MR, Schulze H. Exogenous enzymes for pigs and poultry. Nutritionresearch reviews,1998,11(1):91-114.
    155Omogbenigun FO, Nyachoti CM, Slominski BA. Dietary supplementationwith multienzyme preparations improves nutrient utilization and growthperformance in weaned pigs. Journal of Animal Science,2004,82(4):1053-1061.
    156Walsh GA, Power RF, Headon DR. Enzymes in the animal-feed industry.Trends in Food Science&Technology,1994,5(3):81-87.
    157Williams PEV. Poultry production and science: Future directions in nutrition.Worlds Poultry Science Journal,1997,53(1):33-48.
    158Officer DI. Effect of multi-enzyme supplements on the growth performance ofpiglets during the pre-and post-weaning periods. Animal Feed Science andTechnology,1995,56(55-65.
    159Oback B, Wells D. Donor cells for nuclear cloning: many are called, but feware chosen. Cloning and Stem Cells,2002,4(2):147-168.
    160Kues WA, Anger M, Carnwath JW, et al. Cell Cycle Synchronization ofPorcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible CellCycle Inhibitors. Biology of Reproduction,2000,62(2):412-419.
    161Ono Y, Shimozawa N, Ito M, et al. Cloned Mice from Fetal Fibroblast CellsArrested at Metaphase by a Serial Nuclear Transfer. Biology of Reproduction,2001,64(1):44-50.
    162Kim H, Um E, Cho S-R, et al. Surrogate reporters for enrichment of cells withnuclease-induced mutations. Nature Methods,2011, advance onlinepublication(

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700