用户名: 密码: 验证码:
有机溶剂体系中铝的电解精炼研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,铝的电解精炼方法有着诸多缺点如高温、高能耗、高污染等,制约了二次铝资源的有效利用和铝工业的可持续发展。现代绿色工业需要在室温及一般工作条件下电解沉积出纯铝。基于此,本文利用有机溶剂体系,对多种铝基合金进行电解精炼,在阴极获得了光滑致密、结合力良好和纯度较高的铝沉积层,并系统地研究了铝沉积层的结构和形貌以及电解过程的阴极电流效率、沉积效率和能耗问题。
     测定了THF(四氢呋喃)有机溶剂体系的电导率。实验结果表明,本有机溶剂体系电导率随电解时间地延长而增长并且增幅逐渐减小,随[AlCl3]/[LiAlH4]的摩尔比增大而减小。还研究了电导率和溶液静置时间的关系,发现溶液的时效性为5天。
     观察电解精炼铝沉积层的生长,符合3D晶体生长机制。不同的溶液配比、电流密度及电解时间会改变这一过程的进行速度。利用分析仪器得出,阴极表面电沉积出来的是纯度很高的单相铝沉积层。而阳极铝合金材料在经过电解精炼后,铝合金表面被溶解,铝合金中的单相Al溶解进入电解液中,而其中的杂质元素如Si等则还是残留在铝合金表面。
     论文全面系统地研究了铸造铝合金,防锈铝合金和硬铝合金通过有机溶剂体系电解精炼的过程。通过研究本电解实验的阴极电流效率、沉积效率和能耗这三个电解性能评价参数和溶液配比、电流密度和电解时间的关系,得出了它们电解精炼实验的最佳工艺参数。铸造铝合金ZL101的为:[AlCl3]/[LiAlH4]摩尔比为3,电流密度3A/dm2,电解60min,这时能耗为8.89kW·h/kg;防锈铝合金LF2的为:[AlCl3]/[LiAlH4]摩尔比为4,电流密度2A/dm2,电解60min,这时能耗为8.82kW·h/kg;硬铝合金ZL101为:[AlCl3]/[LiAlH4]摩尔比为3,电流密度3A/dm2,电解40min,此时能耗为9.71kW·h/kg。
     还研究了电解精炼多种铝基合金时,影响精炼效果的各种因素。其中包括铝基合金中的杂质元素种类、铝基合金中的组织结构和铝基合金的含铝量。铝基合金中对精炼效果影响较大的是Cu、Zn和Mg等杂质元素;均匀分布的第二相可以促进阳极材料溶解导致沉积效率的下降;而电解精炼的沉积效率大体上是随着铝基合金的含铝量的增加而提高的。
At present, methods of aluminum electrorefining have many shortcomings such as high temperature, high energy consumption, and heavy pollution; restrict the reutilization of aluminum resource and the sutainable development of aluminum industry. Modern green industry need to electrolyze and deposit purity aluminum at room temperature and general conditions. So in this paper, through the electrorefining of variety of aluminum alloy, a dense adhesive and high purity aluminum coating was successfully deposited on cathode by using THF (tetrahydrofuran) organic solvent electrolyte. The structure and morphology of aluminum coating, as well as the issues current efficiency, deposition efficiency and energy consumption after the electrolysis were systematically study.
     The conductivity of THF organic solvent system was measured. It was demonstrated that the conductivity of the organic solvent system increased along with the extension of electrolytic time, and the decrease of concentration ratio of solution. Also the relationship between the conductivity and the setting time of electrolyte was study. It’s found that the validity of the solution was 5 days.
     Through observation the aluminum coating after electrorefining, its growth accords with the 3D crystal growth mechanism. Different concentration ratio, current density and electrolytic time will change the speed of this process. Using the analytical apparatus, the cathode surface by electrodeposition is a high purity single-phase aluminum coationg. The aluminum alloy anode after electrorefining, its surface has been dissolved. The single-phase aluminum in the aluminum alloy dissolved into the electrolyte, of which the impurity elements such as silicon, were still left in the aluminum alloy surface.
     The electrorefining process of the cast aluminum alloy, rust-proof aluminum alloy and duralumin through organic solvent were study in detail. The optimal process parameters of the aluminum alloy electrorefining experiment were get through the relationship between concentration ratio, current density and electrolytic time with parameters of electrolytic performance evaluation, including current efficiency, deposition efficiency and energy consumption. The best aluminum coating of the cast aluminum alloy ZL101 appeared when molar ration of AlCl3 and LiAlH4 was 3:1 and current density and electrolytic time was in range of 3A/dm2 and 60min respectively. And its energy consumption was 8.89kW?h/kg; The best aluminum coating of the rust-proof aluminum alloy LF2 appeared when molar ration of AlCl3 and LiAlH4 was 4:1 and current density and electrolytic time was in range of 2A/dm2 and 60min respectively. And its energy consumption was 8.82kW?h/kg; The best aluminum coating of the duralumin LY12 appeared when molar ration of AlCl3 and LiAlH4 was 3:1 and current density and electrolytic time was in range of 3A/dm2 and 40min respectively. And its energy consumption was 9.71kW?h/kg.
     Various factors impacted the refining effect when electrorefining variety of aluminum alloy were study too, including the type of impurity elements in aluminum alloy, metallurgical structure of aluminum alloy and the mass fraction of Al in aluminum alloy. The impurity elements such as Cu, Zn, Mg, have a great impact on the refining effect; Second phase with homogeneous distribution can promote the anodic dissolution of aluminum, which led to the decline of deposition efficiency; And the deposition efficiency of electrorefining largely increased along with the increase of the mass fraction of Al in the Aluminum alloy.
引文
[1]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,1991.6 (2002重印),200-204
    [2] Zhao Y G,VanderNoot T J.Electrodepositon of aluminum from room temperature AlCl3-TMPAC molten salts [J].Electrochimica Acta, 1997, 11: 1639-1643
    [3] Ramana G. Reddy. Emerging technologies in extraction and processing of metals [J].Metallurgical and Materials Transactions B, 2003, 34B(2): 137-152
    [4] Wu Banqiu, Ramana G. Reddy, Robin D. Rodgers.Aluminum recycling via near room temperature electrolysis in ionic liquids [J].Fourth International Symposium on Recycling of Metals and Engineered Materials, ed. D.L. Stewart, Jr., J.C. Daley, and R.L. Stephens(Warrendale, PA: TMS, 2000): 845-856
    [5] Zhang Mingming, Venkat Kamavarum and Ramana G. Reddy.New electrolytes for aluminum production: Ionic liquids [J].JOM Journal of the Minerals, Metals and Materials Society, 2003, 55: 54-57
    [6] M Galova.Electrodeposition of aluminum from orgnic aprotic solbents [J].Surface and coating ethnology, 1988, 34: 358-359
    [7]成旦红,徐伟一.非水溶液电镀铝[J].Electroplating & Finishing,1991,10(4):58-61
    [8]陈祝平.特种电镀技术[M].北京:化学工业出版社,2004,78-102
    [9]郭粤湘.有机溶液镀铝[J].新技术新工艺,1990,1:40-41
    [10] Couch D E, Brenner A.A hydride bath for the electro-deposition of aluminum [J].J. Electrochem. Soc., 1952, 99(6): 234-244
    [11] Connor J H, Brenner A.Electro-deposition of metals from organic solutions [J].J. Electrochem. Soc, 1956, 103(12): 657-662
    [12] Ishibashi N, Yoshio M.Electrodeposition of aluminum from the NBS type bath using tetrahydrofuran-benzene mixed solvent [J].Electrochim. Acta, 1972, 17: 1343-1352
    [13] Yoshio M, Ishibashi N.High-rate plating of aluminum from the bath containing aluminium chloride and lithium aluminum hydride in tetrahydrofuran [J].J. Appl. Electrochem., 1973, 3:321-325
    [14]李小凡,王玲玲.电镀铝的研究进展[J].材料导报,2001,15(12):14-16
    [15]曾华梁,吴仲达,陈钧武等.电镀工艺手册[M].北京:机械工业出版社,2002,第二版,689-690
    [16]张守民,周永洽.钕铁硼磁体的AlC13+LiAlH4有机溶液镀铝研究[J].南开大学学报(自然科学版),1999,32(2):14-17
    [17]张守民,周永洽.钕铁硼磁体在有机电解质中的电镀铝研究[J].南开大学学报(自然科学版),1999,32(4):63-65
    [18]张爱平.有机溶剂体系中铝及铝合金镀层的制备与性能研究[D].天津:天津大学硕士学位论文,2005
    [19] Capuano G A, Davenport W G.Electrodeposition of aluminum from alkyl benzene electrolytes [J].J. Electrochem. Soc., 1971, 118(10):1688-1695
    [20] Capuano G A, Davenport W G.Plating aluminum onto steel or copper from alkyl benzene electrolytes [J].Plating, 1973, 60: 251-255
    [21] Capuano G A, Lafortune R, Gobeil C.Plating aluminum onto steel or copper from alkyl benzene electrolytes [J].Plat. Surf. Finish., 1977, 64(11): 49-52
    [22] Peled E, Gileadi E.Electroplating of aluminum from aromatic hydrocarbons [J].Plat. Surf. Finish., 1975, 62: 342-346
    [23] Peled E, Gileadi E . The electrodeposition aluminum from aromatic hydrocarbon [J].J. Electrochem. Soc., 1976, 123(1):15-19
    [24] Kazakov V A, Titova V N, Petrova N V.Aluminum electrodeposition from triethylaluminum-based solutions[J].(Translation) .Soviet Electrochemistry. 1989,25(7): 909-911
    [25] Zieler K, Lehmkuhl H.Die elektrolytische abscheidung von aluminium aus organischen komplexverbindungen [J].Z. Anorg. Allg. Chem, 1956, 283: 414-424
    [26] Dotzer Dr. R.Hochreine metalle durch elektroraffination in metallorganischen komplezschmelzen [J].Chemie-Ing. Techn., 1964, 36: 616-637
    [27] Dotzer Dr. R.Galvano-aluminum from organoaluminum electrolyte systems and properties of galvano-aluminum-anodized layers [J]. American Electroplater’s Society 68th annual Technical Conference, J-2. 1-16
    [28]杜吕.电镀铝[J].航空制造工程,1996,9:16-17
    [29]岱如.电镀铝[J].腐蚀与防护,1998,2(14):147-149
    [30] Legand L, Tranchant A, Messina R.Electrodeposition studies of aluminum on tungsten electrode from DMSO2 electrolyte[J].Journal of the ElectrochemicalSociety, 1994, 141(2):378-382
    [31] Legand L,Heintz M, Tranchant A, et al.Sulfone-based electrolytes for aluminum electrodeposition[J],Electrochimica Acta, 1995, 40(11): 1711-1716
    [32] Legand L , Tranchant A, Messina R . Raman study of aluminum choride-dimethysulfone solutions[J].Inorg. Chem., 1996, 35(5):1310-1312
    [33] Jiang T, Chollier Brym M J.Studies on the AlCl3/dimethylsulfone (DMSO2) electrolytes for the aluminum deposition processes[J].Surface & Coatings Technology, 2007, 201:6309-6317
    [34] Petrova N V, Titova V N, Kazakov V A, et al.Cathodic progresses in aluminum electrodeposition from ethylbenzene electrolytes [J].Elektrokhimiya, 1987, 22(3):56-61
    [35] Shavkunov S P, Shchurov Yu A, Strugova T L.GL-MS spectroscopy of a xylene electrolyte for aluminum plating[J].Protection of Metals, 2001, 37(4): 317-322
    [36] Shavkunov S P, Strugova T L . Electrode processes during aluminum electrodeposition in aromatic solvents[J].Russian Journal of Electrochemistry, 2003, 39(6):642–649
    [37] Sagawa M, Fujimura S, Togawa N, et al.New materials for permanent magnets on a base of Nd and Fe[J].J. Appl. Phys,1984,55(6):2083-2087
    [38] Li Q F, Qiu Z X.Applied Electrochemisty of aluminum-production and application[M].沈阳:东北大学出版社,2003,117-131
    [39] Fransaer J, Leunis E.Aluminium composite coatings containing micrometre and nanometre-sized particles electroplated from a non-aqueous electrolyte[J].Journal of Applied Electrochemistry,2002,32:123-128
    [40] Van de Berg JFM ,Van Dijk G A R,Van de leest R E.Room temperature electroplating of aluminium[J].Metal Finishing,1985,83 (5):15- 18
    [41] Graef M W M..The mechanism of aluminum electrodeposition from solutions of AlCl3 and LiAlH4 in THF[J].J. Electrochem. Soc.,1985,132(5):1038-1046
    [42] Lefebvre M C, Conway B E.27Al NMR spectroscopy studies on speciation of Al complex ions in AlCl3+LiAlH4 solutions in tetrahydrofuran for electroplating of Al[J].Journal of Electroanalytical Chemistry,1998,448(2):217-227
    [43] Lefebvre M C, Conway B E . Elementary steps and mechanism of electrodeposition of Al from complex hydride ions in tetrahydrofuran baths [J].J. Electrochem. Soc.,2000,480 (1-2): 34-45
    [44] Lefebvre M C, Conway B E .Nucleation and morphologies in the process of electrocrystallization of aluminium on smooth gold and glassy-carbon substrates [J].Journal of Electroanalytical Chemistry, 2000, 480(1): 46-58(13)
    [45] Galova M, Eckert J.Electrode kinetics of the aluminum deposition from tetrahydrofuran electrolytes [J].Electrochimica Acta., 1981, 26(8):1169-1175
    [46] Badawy W A, Sabrah B A.A new bath for the electrodeposition of aluminum III:the electrochemical behaviour of the rotating aluminium disc electrode in pure AlCl3/THF-toluene solutions [J].Journal of Applied Electrochemistry,1988,18:220- 224
    [47]刘光华.稀土固体材料学[M].北京:机械工业出版社,1997, 35-50
    [48]周寿增.稀土永磁材料及其应用[M].北京:冶金工业出版社,1999,1-103
    [49]鄢博,谭月华,高歌,等.电化学镀铝基体局域应力对镀层形貌影响研究[J].武汉理工大学学报,2006,28(10):42-44
    [50] Bard J, L.R. Faulkner.Electrochemical Methods [M].New York: John Wiley, 2000, 87-230
    [51] Badawy W A, Sabrah B A.A new bath for the electrodeposition of aluminum I: Conductivity measurements [J]. Journal of Applied Electrochemistry,1986,16:707- 711
    [52]张祖训,汪尔康.电化学原理及方法[M].北京:科学出版社,2000,1-36
    [53]吴浩青,李永舫.电化学动力学[M].北京:高等教育出版社,1998,30-51
    [54]查全性.电极过程动力学导论[M].北京:科学出版社,2005,288-320
    [55]张守民.周永治.有机溶液中铝的电镀[J].腐蚀与防护,2000, 21(2):57-59
    [56] Biullozor S, Muzin V, Lieder M.The electrodeposition of aluminium from xylene and ether-hydride electrolytes [J].Appl. Electrochem,1993,23:253-256
    [57]施莱辛格,庞诺威奇.现代电镀[M].北京:化学工业出版社,2006,1-49
    [58]别略耶夫АH,热姆邱仁娜ЕА,费尔散诺娃ЛА.熔盐物理化学[M].北京:中国工业出版社,1963,1-133
    [59]覃奇贤,郭鹤桐,刘淑兰等.电镀原理与工艺[M].天津:天津科学技术出版社,1985,252-255
    [60]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004,1-183
    [61] Kamavaram V.Novel electrochemical refining of aluminum based materials in low temperature ionic liquid electrolytes [D].USA:Dissertation of PhD in University of Alabama, 2004
    [62]孙淑萍,邱竹贤.无水电解液中铝的电沉积[J].轻合金加工技术,2003,31(9):39-41
    [63] Sharan R, Narain S.An Introduction to Electrometallurgy[M].New Delhi: Standard Publishers, 1969, 47-82
    [64]李润东.铝电解生产能耗计算及分析[J].轻金属,1995,8:26-30
    [65]李章存.铝的能耗分析[J].轻金属,1998,5:3-5
    [66]谢诗芳,李似聪,刘军.非水溶液电镀铝的结构研究[J].广东有色金属报,1992,2(1):35-39
    [67]谭奇贤,郭鹤桐,刘淑兰,等.电镀原理与工艺[M].天津:天津科学技术出版社,1985,25-35
    [68]马正青,黎文献,肖丁德,等.新型铝合金阳极电化学性能与组织研究[J].材料保护,2002,35(5):10-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700