用户名: 密码: 验证码:
内蒙古荒漠草原的地表反照率动态及其对陆—气通量的影响分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荒漠草原是典型草原向荒漠过渡的一类草原,研究荒漠草原地表-大气之间的相互作用对认识稀疏植被下垫面对大气的反馈作用,进而了解其在气候变化中的作用至关重要。地表反照率影响着地表对太阳辐射的吸收,直接控制了太阳辐射能在地表和大气之间的分配,是大气和陆面模式的重要参数。地表反照率取值的合理程度决定了数值模式计算中地面加热作用的准确程度。
     本论文针对当前中尺度模式中陆面参数化方案对稀疏植被考虑的不足,以荒漠草原为研究对象,以地表反照率为切入口,利用2008年内蒙古荒漠草原的涡相关数据以及气象观测数据,分析研究了荒漠草原地表反照率动态及其参数化方案,探讨了荒漠草原地表反照率参数化方案对地表-大气之间的感热和潜热等通量模拟的影响。主要结论如下:
     (1)荒漠草原水、热通量的日动态呈单峰型曲线,与净辐射的日变化趋势基本一致,但其峰值出现时间滞后净辐射峰值出现时间约1 h。感热通量和潜热通量的季节动态与净辐射基本一致,均受降水影响。感热通量受净辐射的影响明显,而潜热通量对降水的反应较敏感,且土壤含水量在潜热通量变化中起主要作用。发生较强降水时,感热通量和潜热通量均较小,在强降水之后如遇晴朗天气,则潜热通量较大。
     (2)内蒙古荒漠草原的地表反照率在晴天呈早晚高、正午前后低的U形变化特征,降水引起的土壤含水量变化将导致地表反照率减小,云对地表反照率的影响比较复杂。晴天地表反照率随太阳高度角的增大而减小,当太阳高度角大于40°时,地表反照率趋于稳定。晴天地表反照率与太阳高度角呈指数关系,与土壤含水量呈指数或线性关系,两者共同解释了地表反照率变化的68%左右。据此,建立了内蒙古荒漠草原晴天地表反照率随太阳高度角与土壤含水量变化的双因子参数化方案。
     (3)基于荒漠草原地表反照率双因子参数化方案的NOAH-LSM模式由于考虑了地表反照率的动态变化,提高了NOAH-LSM模式对反射太阳辐射和感热通量的模拟精度,但对潜热通量的模拟效果还有待进一步的改进,研究结果对区域气候及天气模式的开发研究有一定的参考意义。
Desert steppe is located in the transitional zone from typical steppe to desert region, it is very important in land-atmosphere interaction due to its rapid changes in land surface parameters. Especially, its surface albedo determines the absorption of solar radiation, and controls directly the distribution of absorbed solar radiation among latent heat flux, sensible heat flux and soil heat storage, etc. Thus, the surface albedo is very important for the accurate simulation of land– atmosphere fluxes.
     At present, land surface parameterization scheme of sparse vegetation in meso-scale models has not drawn more attention yet. In this thesis, the dynamic characteristics of surface albedo over desert steppe and its parameterization would be studied, in terms of the whole year’s data of 2008 from eddy covariance tower and meteorological tower. Also, the effects of this parameterization scheme on land– atmosphere fluxes, including sensible and latent heat fluxes, would be discussed based on NOAH land surface model. The main results were listed as follows:
     (1)Diurnal patterns of sensible and latent heat fluxes over the desert steppe were single kurtosis, which were similar to the diurnal pattern of net solar radiation, but their maximum values lagged about one hour. The patterns of sensible and latent heat fluxes and net solar radiation were affected by precipitation. Also, sensible heat fluxes were obviously affected by net solar radiation, but latent heat fluxes were more sensitive to precipitation. In addition, soil water content played a major role in the change of latent heat fluxes. When heavy rain occurred, both of sensible and latent heat fluxes were smaller. If sunny day took place after the heavy rain, latent heat fluxes were larger.
     (2) Surface albedo over the desert steppe in Inner Mongolia presented U-shape with higher values just after sunrise and before sunset, and relatively lower midday values on sunny days. Changes of soil water content would result in the decrease of surface albedo, and the influence of cloud on surface albedo was complicated. On sunny days, the surface albedo decreased with the increase of solar altitude angle, and it almost became a constant when solar altitude angle was more than 40°. The surface albedo had a typical exponential relationship with solar altitude angle. The linear or exponential relationship existed between surface albedo and soil water content. Considering the effects of solar altitude angle and soil water content, a two-factor parameterization formula of surface albedo was developed preliminarily. This formula could explain about 68 percent of surface albedo variation.
     (3)Based on the parameterization scheme of surface albedo over desert steppe, NOAH land surface model could capture well the diurnal variation of the surface albedo over the desert steppe in Inner Mongolia. By comparison, the application of the desert steppe surface albedo parameterization scheme improved the simulation of upward solar radiation and sensible heat fluxes, although the simulation of latent heat fluxes was not significantly improved. This study might be helpful for the development of the regional climate and weather models.
引文
[1]皇甫雪宫.地表物理过程参数化方案的研究进展.气象科技,1997, 2: 1-11.
    [2] Smirnova T G., Brown J M, Benjamin S G. Parameterization of cold-season processes in MAPS land-surface scheme. Journal of Geophysical Research, 2000, 105(D3): 4077-4086.
    [3] Manabe S. Climate and Ocean circulation. Monthly Weather Review, 1969, 97(11): 739-805.
    [4] Smirnova T G., Brown J M Benjamin S G. Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Monthly Weather Review, 1997, 125: 1870-1884.
    [5] Chen F, Dudhia J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Monthly Weather Review, 2001, 129: 569-585.
    [6] Arakawa A. Design of the UCLA general circulation model, numerical simulation of weather and climate. Technical Report 7, Univ. of California, Dept. of Meteorology, 1972.
    [7] Blackadar A K. Modeling the nocturnal boundary layer. Preprints of Third Symposium on Atmospheric Turbulence and Air Quality, Raleigh, NC, American Meteorological Society, 1976, 46-49.
    [8] Manabe S, Hahn D G, J L Holloway Jr. The seasonal variation of the tropical circulation as simulated by a global model of the atmosphere. Journal of the Atmospheric Sciences, 1974, 31: 43-83.
    [9] Deardorff J W. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research, 1978, 83: 1889-1903.
    [10] Chen F, Mitchell K, Schaake J, et al. Modeling of land-surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research, 1996, 101(D3): 7251-7268.
    [11] McCumber M C, Pielke R A. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model soil layer. Journal of Geophysical Research, 1981, 86: 9929-9938.
    [12] Tremback C J, Kessler R. A surface temperature and moisture parameterization for use in mesoscale numerical models. Preprints of Seventh Conference on Numerical Weather Prediction, Montreal, PQ, Canada, American Meteorological Society, 1985: 355-358.
    [13] Pressman D Y. Postanovka i algoritm chislennogo resheniya zadachi lokalnogo prognoza (An algorithm of numerical solution for local weather forecasting system). Trudy GMTs SSSR, 1988, 298: 11–23.
    [14] Sellers P J, Mintz Y, Sud Y C, et al. A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Sciences, 1986, 43: 505–531.
    [15] Dickinson R E. Modeling evapotranspiration for three-dimensional global climate models, in Climate Processes and Climate Sensitivity. Geophys. Monogr. Ser., vol. 29, edited by J.E. Hansen and T. Takahashi. 1984, 5(29): 58-72.
    [16]赵鸣.一个引入近地层的土壤-植被-大气相互作用模式.大气科学, 1995, 19(4): 405-414.
    [17] Garrett A J. A parameter study of interactions between convective clouds, the convective boundary-layer, and forested surface. Monthly Weather Review, 1982, 110: 1041-1059.
    [18] Wilson M F, A Henderson-Sellers R E, Dickinson P J, et al. Sensitivity of the Biosphere–Atmosphere Transfer Scheme (BATS) to the inclusion of variable soil characteristics. Journal of Climate and Applied Meteorology, 1987, 26: 341-362.
    [19] Pan H L, Mahrt L. Interaction between soil hydrology and boundary-layer development. Boundary-Layer Meteorology, 1987, 38: 185-202.
    [20]李鹏. NOAH陆面模式在GRAPES中的应用.中国气象科学研究院硕士学位论文. 2006.
    [21] Chen F, Dudhia J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 2001, 129: 569-585.
    [22] Hogue T S, Bastidas L, Gupta H, et al. Evaluation and Transferability of the Noah Land Surface Model in Semi-arid Environments. Journal of Hydrometeorology. 2005, 6: 68-84.
    [23] Henderson-Sellers A, Yang Z L, Dickinson R E. The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 1993, 74(7): 1335-1349.
    [24]孙菽芬.陆面过程的物理、生化机理和参数化模型.气象出报社, 2005.
    [25]吕达仁,陈佐忠,王庚辰,等.内蒙古半干旱草原土壤-植被-大气相互作用.气象出报社, 2005.
    [26]秦大河,陈宜瑜,李学勇,等.中国气候与环境演变(上卷).科学出版社, 2005.
    [27] Hao Y B, Wang Y F, Huang X Z, et al. Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia. China. Agricultural and Forest Meteorology, 2007, 146: 57-69.
    [28] Hao Y B, Wang Y F, Mei X R, et al. CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecologica, 2008, 33: 133-143
    [29] Gao Z, Lenschow D H, He Z, et al. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia. Hydrology Earth System Science Discussion, 2009, 6: 1939-1972
    [30]杨娟,周广胜,王云龙,等.内蒙古克氏针茅草原生态系统-大气通量交换特征.应用生态学报, 2008, 19(3): 533-538.
    [31]涂钢,刘辉志,董文杰.半干旱区退化草地地表能量收支.气候与环境研究, 2006, 11(6): 723-732.
    [32] Liu H Z, Tu G, Fu C B, et al. Three-year variations of water, energy and CO2 fluxes of cropland and degraded grassland surfaces in a semi-arid area of northeastern China. Advances in Atmospheric Sciences, 2008, 25: 1009-1020.
    [33] Ketzer B, Liu H Z, Bernhofer C. Surface characteristics of grasslands in Inner Mongolia as detected by micrometeorological measurements. International Journal of Biometeorology, 2008, 52: 563-574.
    [34] Shi W L, Wang H J. The regional climate effects of replacing farmland and re-greening the desertification lands with forest or grass in west China. Advances in Atmospheric Sciences, 2003, 20(1): 45-54.
    [35] Herderson-Sellers A, Wilson M F. Surface albedo data for climatic modeling. Reviews of Geophysics and Space Physics, 1983, 21(8): 1743-1778.
    [36]颜宏,魏丽,陈玉春,等.地表反照率和土壤含水量的综合估算及其在地面加热场计算中的影响.高原气象, 1987, 6(2): 255-266.
    [37] Xue Y, Juang H M H, Li W P, et al. Role of land suface processes in monsoon development: East Asia and West Africa. Journal of Geophysical Research, 2004, vol.109, D03105, doi: 10.1029/2003JD003556.
    [38]丁一汇,吴晓曦,马淑芬. 1991年江淮暴雨期地气通量与混合层结构的研究.气象学报, 1997,55(3): 257-270.
    [39] Otterrman J, Chou M D, Arking A. Effects of nontropical forest cover on climate. Journal of Climate and Applied Meteorology, 1984, 23: 762-767.
    [40] Carson D J, Sangster A B. The influence of land-surface albedo and soil moisture on general circulation model simulations. Numerical Experimentation Programme Report. No.2, 1981, 5.14-5.21.
    [41] Otterrman J. Baring high albedo soils by overgrazing: an hypothesized desertification mechanism. Science, 1974, 186: 531-533.
    [42]郑益群,钱永甫,苗曼倩.植被变化对中国区域气候的影响Ⅰ:初步模拟结果.气象学报, 2002, 60(1): 1-16.
    [43]郑益群,钱永甫,苗曼倩.植被变化对中国区域气候的影响Ⅱ:机理分析.气象学报, 2002, 60(1): 17-30.
    [44]张井勇,董文杰,符淙斌.中国北方和蒙古南部植被退化对区域气候的影响.科学通报, 2005, 50(1): 53-58.
    [45]李巧萍,丁一汇.植被覆盖变化对区域气候影响的研究进展.南京气象学院学报, 2004, 27(1): 131-140.
    [46]罗哲贤.中国地区气溶胶光学厚度特征及其辐射强迫和气候效应的数值模拟[博士学位论文]. 1986.
    [47]罗四维.青藏高原及其邻近地区反照率变化对5月东亚环流影响的数值对比分析.高原气象, 1986, 5(3): 236-244.
    [48]刘晓东,罗四维,钱永甫.青藏高原地表热状况对夏季大气环流影响的数值试验.高原气象, 1989, 8(3): 205-216.
    [49]王胜,张强,卫国安.降水条件下的典型干旱区陆面特征模拟验证.地球物理学报, 2006, 49(2): 383-390.
    [50]鲍艳,吕世华,奥银焕,等.反照率参数化改进对裸土地表能量和热过程模拟的影响.太阳能学报, 2007, 28(7): 775-782.
    [51]张强,王胜,卫国安.西北地区戈壁局地陆面物理参数的研究.地球物理学报, 2003, 46(5): 616-623.
    [52]季国良,马晓燕,邹基玲,等.黑河地区绿洲和沙漠地面辐射收支的若干特征.干旱气象, 2003, 21(3): 29-33.
    [53]刘辉志,涂钢,董文杰.半干旱区不同下垫面地表反照率变化特征.科学通报, 2008, 53(10): 1220-1227.
    [54] Wang Z, Barlage M, Zeng X, et al. The solar zenith angle dependence of desert albedo. Geophysical Research Letters, 2005, 32(L05403): 1-4.
    [55] Wang K C, Wang P C, Liu J M, et al. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau. Bound Layer Meteorology, 2005, 116: 117-129.
    [56] Liu H Z, Wang B M, Fu C B. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, northeastern China. Advance in Atmospheric Sciences, 2008, 25(5): 757-764.
    [57] Idso S B, Jackson R D, Reginato R J, et al. The dependence of bare soil albedo on soil water content. Journal of Applied Meteorology, 1975, 14(1): 109-113.
    [58] Lewis P, Barnsley M J. Influence of the sky radiance distribution on various formulations of the earth surface albedo. Proc. Conf. Phys. Meas. Sign. Remote Sens., Val d’Isere, France, 1994: 707-715.
    [59] Dickinson R E, Henderson-Sellers A, Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, 1993:72.
    [60] Dickinson R E, Jaeger J, Washington W M, et al. Boundary subroutine for the NCAR global climate model. NCAR Tech. Note 0301/78-01, National Center for Atmospheric Research, Boulder, Colorado, 1981: 27-35.
    [61] Chen F, Dudhia J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. PartⅡ: Preliminary Model Validation. Monthly Weather Review, 2001, 129(4): 587-604.
    [62] Bonan, G B. A Land Surface Model (LSM Version1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Technical Note NCAR/TN-417+STR.National Center for Atmospheric Research, Boulder, 1996:150.
    [63] Posey J W, Clapp P F. Global distribution of normal surface albedo. Geofis. Int., 1964, 4: 33-48.
    [64] Hansen J, Russell G, Rind D, et al. Efficient three dimensional global models for climate studies: ModelsⅠandⅡ. Monthly Weather Review, 1983, 111(4): 609-662.
    [65] Holloway J L Jr, Manabe S. Simulation of climate by a global general circulation modelⅠ: Hydrological cycle and heat balance. Monthly Weather Review, 1971, 99(5), 335-370.
    [66] Koren V, Schaake J, Mitchell K, et al. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. Journal of Geophysical Research Atmosphere, 1999, 104 (D16), 19: 19569-19585.
    [67] Robinson D A, Kukla G. Maximum surface albedo of seasonally snow covered lands in the Northern Hemisphere. Journal of Applied Meteorology, 1985, 24 (5): 402-411.
    [68] Chen F, Mitchell K, Schaake J, et al. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research. 1996, 101: 7251-7268.
    [69] Jacquemin B, Noilhan J. Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY dataset. Boundary-Layer Meteorology. 1990, 52: 93-134.
    [70] Mahrt L, Ek K. The influence of atmospheric stability on potential evaporation. Journal of Climate and Applied Meteorology. 1984, 23: 222-234.
    [71] Mahrt L, Pan H L. A two-layer model of soil hydrology. Boundary-Layer Meteorology. 1984, 29: 1-20.
    [72] Noihan J, Planton S. A simple parameterization of land surface processes for meteorological models. Monthly Weather Review, 1989, 117: 536-549.
    [73] Schaake J C, Koren V I, Duan Q Y, et al. A simple water balance model (SWB) for estimating runoff at different spatial and temporal scales. Journal of Geophysical Research, 1996, 101: 7461-7475.
    [74] Sridhar V, Ronald L E, Chen F. Validation of the NOAH-OSU land surface model usingsurface flux measurements in Oklahoma. Journal of Geophysical Research, 2002, 107(D20), 4418, doi: 10.1029/2001JD001306.
    [75] Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resource Research, 1984, 20: 682-690.
    [76] Hanks R J, Ashcroft G L. Applied Soil Physics. Springer Verlag, 1986: 159.
    [77] Mahfouf J F, Noilhan J. Comparative study of various formulations from bare soil using in situ data. Journal of Applied Meteorology, 1991, 30: 1354-1365.
    [78] Li S G, Eugster W, Asanuma J, et al. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agricultural and Forest Meteorology, 2006, 137(1-2): 89-106.
    [79] Zhu Z L, Sun X M, Wen X F, et al. Study on the processing method of nighttime CO2 eddy covariance flux data in ChinaFLUX. Science in China Series D: Earth Sciences, 2006, 49(Supp.Ⅱ): 36-46.
    [80]李春,何洪林,刘敏. ChinaFLUX CO2通量数据处理系统与应用.地球信息科学, 2008, 10(5): 557-565.
    [81] Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of net ecosystem exchange with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 2006, 3: 571-583.
    [82] Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107(1): 43-69.
    [83] Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107(1): 71-77.
    [84]姜纪峰,延晓东,黄耀,等.半干旱区农田和草地与大气间二氧化碳和水热通量的模拟研究.气候与环境研究, 2006, 11(3): 413-424.
    [85]余锦华,刘晶淼,丁裕国.青藏高原西部地表通量的年、日变化特征.高原气象, 2004, 23(3): 353-359.
    [86] Li S G, Eugster W, Asanuma J, et al. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agricultural Forest Meteorology, 2006, 137(1-2): 89-106.
    [87] Aires L M, Pio C A, Pereira J S. The effect of drought on energy and water vapour exchange above a Mediterranean C3/C4 grassland in southern Portugal. Agricultural Forest Meteorology, 2008, 148(4): 565-579.
    [88] Kelliher F M, Leuning R, Schulze E D. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 1993, 95(2): 153-163.
    [89]胡国权,丁一汇. HUBEX试验期间不同地面的能量收支研究.气象与环境研究, 2001, 6(2): 228-233.
    [90]李祎君,许振柱,王云龙.玉米农田水热通量动态与能量闭合分析.植物生态学报, 2007, 31(6): 1132-1144.
    [91]盛裴轩,毛节泰,李建国,等.大气物理学.北京大学出版社, 2003.
    [92]刘辉志,涂钢,董文杰,等.半干旱地区地气界面水汽和二氧化碳通量的日变化及季节变化.大气科学, 2006, 30(1): 108-118.
    [93] Marty C, Philipona R. The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophysical Research Letters, 2000, 27 (17): 2649-2652.
    [94] Briegleb B P, Minnis P, Ramanathan V, Harrison E. Comparison of regional clear sky albedos inferred from satellite observations and model calculations. Journal of Climate and Applied Meteorology, 1986, 25: 214-226.
    [95] Zhang J H, Ding Z H, Han S J, et al. Turbulence regime near the forest floor of a mixed broad leaved Korean pine forest in Changbai Mountain. Journal of Forestry Research, 2002, 13(2): 119-122.
    [96]顾峰雪,曹明奎,于贵瑞,等.典型森林生态系统碳交换的机理模拟及其与观测的比较研究.地球科学进展, 2007, 22(3): 313-123.
    [97] User’s guide (Public Release Version 2.7.1) of the community Noah Land-Surface Model. 2005.
    [98] Sridhar V, Ronald L E, Chen F. Scaling effects on modeled surface energy-balance components using the NOAH-OSU land surface model. Journal of Hydrology, 2003, 280: 105-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700