用户名: 密码: 验证码:
城市绿地生态系统碳水通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的推进,城市公园绿地的面积也在不断地增加。在碳循环与气候变化研究中,以人工植被为主要存在形态的城市绿地生态系统,其潜在的碳汇功能亦不容忽视。城市绿地生态系统内各组分之间存在极其复杂的物理过程和生理生态过程,它们的交互、综合作用使得碳通量在不同时间尺度产生动态变化,成为陆地生态系统碳收支机制分析的重要研究内容。本研究以北京奥林匹克森林公园城市绿地生态系统为研究对象,运用基于微气象理论的涡度相关技术,对北京奥林匹克森林公园城市绿地生态系统碳通量进行了长期连续观测,分析了城市绿地生态系统碳水通量各组分在不同时间尺度上的动态变化特征,确定出城市绿地生态系统碳源/汇属性及强度,定量分析了城市绿地生态系统土壤表面呼吸对整个生态系统呼吸的贡献,并探讨了城市绿地生态系统碳、水通量对环境控制因子的响应关系。本文主要研究结果如下:
     (1)生态系统2011-2012年总光合生产(GEP)分别为1053.5和1150.4gC·m-2·y-1,呼吸释放(ER)分别为897.1和1040.3gC·m-2·y-1,生态系统净生产力(NEP)分别为156.4和110.1gC·m-2·y-1,总体表现为中等强度的碳汇。
     (2)生态系统碳通量主要受光合有效辐射(PAR)、饱和水汽压差(VPD)和温度(Ta)的控制。在生长季各月,日总GEP随PAR的升高而增加,生态系统光合作用表观光量子效率α和平均最大光合速率(Amax)也表现出明显的季节变化,均在7月达到最大。VPD通过直接影响植物的光合作用进而影响生态系统净碳交换(NEE),NEE随PAR的增强而明显增强,但当PAR大于一定阈值(PAR>1200μmol·m-2·s-1)后,NEE则受到一定的抑制;GEP、ER和NEP均与温度(Ta)显著相关,但存在响应差异。2011-2012年ER随温度的升高而增加,温度敏感系数(Q1o)分别为2.1和2.5;GEP也随Ta的升高而增加;GEP与ER对Ta的响应差异决定着NEP与Ta的关系:当Ta<10℃时,NEP随Ta升高而下降;当Ta>10℃时,NEP随Ta升高而增加。
     (3)2012年全年蒸散(ET)为627.4mm·y-1,略小于降水的716.0mm·y-1,各月日平均水汽通量变化趋势几乎均呈倒“U”形,水汽通量在白天大都为正值,即城市绿地向大气中释放水汽,而夜间水汽通量较小且较为平缓。水汽通量与波文比λ(显热通量H与潜热通量LE之比,即λ=H/LE)之间的关系是:当λ<1时,即LE>H,下垫面植物生长较旺盛,蒸腾作用较强,生态系统与大气交换能量的形式主要表现为潜热;当λ>1时,暨H>LE,此时植株还没有完全复苏,植物生命活动不旺盛,蒸腾不强烈,还不能完全依靠自身活动向大气扩散能量,水汽通量较小,潜热通量必然也较小,生态系统与大气交换能量的方式主要表现形式为显热。
     (4)奥林匹克森林公园城市绿地生态系统在半小时尺度上的能量平衡闭合度为0.72,在日尺度上的能量平衡闭合度为0.76,存在明显的能量平衡不闭合。在半小时和日尺度上生态系统湍流能量通(LE+H)分别被低估了28%和24%。
     (5)奥林匹克森林公园绿地生态系统2011-2012年土壤呼吸速率的变化主要受温度和水分共同影响。土壤温度随季节变化,其变化范围为0.17-3.75μmol CO2·m-2·s-1,夏季6-8月日平均气温校高,土壤呼吸与土壤温度的变化趋势相似,并可用指数Q10模型来表达土壤呼吸对温度的响应,2011-2012土壤呼吸分别为475gC·m-2和432g C·m-2,分别占生态系统呼吸的53.0%和42.0%。6-8月的土壤呼吸和土壤含水量呈双曲线关系,土壤呼吸的土壤含水量阈值为0.17m3·m-3,小于该阈值时为正相关。
Abstract:The area of urban forests and green-land is expanding dramatically across China in order to face rapid urbanization. Urban green-land ecosystems, with plantations as their main vegetation type have the great potential to sequestrate atmospheric carbon. The different parts of the urban green-land ecosystem compositions have complicated physical processes and physiological and ecological processes, which precipitated the carbon flux in different time scale and had become an important content on carbon balance research in terrestrial ecosystem. Continuous measurements of CO2flux were made from2011to2012in a mixed forest in Beijing Olympic Forest Park to quantify controlling mechanisms in urban green ecosystem and its responses to environmental factors. We analyzed the dynamics the carbon and water flux components in different time scales and calculated the carbon source/sink properties and strength of urban green-land ecosystems. Meanwhile, we also analyzed the soil respiration in relation to its environment factors and its contribution to the whole ecosystem respiration. The major conclusions are summarized as follows:
     (1) The predicted annual totals of gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP=-NEE) were1053.5,897.1, and156.4g C·m-2in2011, respectively, and1150.4,1040.3, and110.1g C·m-2in2012. Both years were moderate carbon sink.
     (2) The carbon flux was influenced by photosynthetically active radiation (PAR), water vapor pressure deficit (VPD) and air temperature (Ta). In growing season, daytime NEE increased with increasing PAR. The ecosystem quantum yield (a) and maximum photosynthesis (Amax) showed an apparent seasonal pattern, both peaking in July. VPD also affects the net ecosystem carbon exchange (NEE) through its direct effect on photosynthesis, NEE increased with the increasing PAR up to a threshold of1200μmol·m-2·s-1,but decreasing with increasing PAR above the threshold, which indicated that NEE was inhibited. The gross ecosystem productivity (GEP), ecosystem respiration (ER) and net ecosystem productivity (NEP) were all influenced by air temperature (Ta), but responded differently. ER increased exponentially with the increasing Ta, with the temperature sensitivity (Q10) of ER being2.1and2.5in2011and2012, respectively. GEP also increased with Ta. The differential response of GEP and ER determined the relationship between NEP and Ta. NEP decreased with increasing Ta when Ta<10℃, but increased when Ta>10"C.
     (3) In2012, the annual total evapotranspiration was627.4mm which was slightly smaller than precipitation of716.0mm. Monthly average daily water vapor flux changed almost as an inverted 'U' pattern. The water-vapor flux was small and flat at night, but positive during daytime, indicating that the urban green-land release water vapor into the atmosphere. When Bowen ratio (the ratio between sensible heat (H) and latent heat (LE), that is X=H/LE) X<1, the underlying plants was relatively vigorous, the transpiration was stronger and the energy exchange form between ecosystems and the atmosphere was mainly latent heat. In contrast, when X>1, transpiration is small, the energy exchange form between ecosystems and the atmosphere was mainly sensible heat, indicating that the plants can't diffuse energy to atmosphere physilogically.
     (4) The energy balance closure in Olympic forest park at half-hourly scale was0.72compared to daily sacle of0.76. An obvious energy balance misclosure was discovered in this urban green-land ecosystem. The ecosystem turbulence energy flux (LE+H) was underestimated by28%and26%in half-hourly and daily scale, respectively..
     (5) Daily mean soil respiration (SR) varied from0.17to3.75μmol CO2·m-2·s-1during2011-2012. Over the period of measurements, SR increased exponentially with rising temperature; A Q10model with5-cm soil temperature as the independent variable explained76%and62%of the variation in half-hourly SR in2011and2012, respectively. The annual total SR estimated from the Q10model was475g C·m-2and432g C·m-2in2011and2012, respectively, accounting for53.0%and42.0%of ecosystem respiration for two years. SR was hyperbolically related to VWC, increasing with increasing VWC up to a VWC threshold of0.17m3·m-3and decreasing with increasing VWC above the threshold. A bivariate Q10-hyperbolical model, which incorporated both Ts and VWC effects, improved the performance of SR simulation in summer, but not annually. These results indicated that SR was dominantly controlled by soil temperature over the annual cycle. However, VWC served as the dominant control in summer. The temperature sensitivity of respiration (Q10) varied seasonally, being greater in fall than in spring, suggesting seasonal hysteresis in the SR-Ts relationship.
引文
[1]陈全胜,李凌浩,韩兴国,阎志丹.水分对土壤呼吸的影响及机理[J].生态学报,2003,23(5):972-978.
    [2]慈龙骏,杨晓晖,陈仲新.未来气候变化对中国荒漠化的潜在影响[J].地学前缘,2002,9(2):287-294.
    [3]董刚.中国东北松嫩草甸草原碳水通量及水分利用效率研究[J].东北师范大学,2011.
    [4]樊登星,余新晓,岳永杰,牛丽丽,高志亮,马莉娅.北京市森林碳储量及其动态变化[J].北京林业大学学报,2008,30(2):117-120.
    [5]方精云,郭兆迪,朴世龙,陈安平.1981-2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学,2001,37(1-2):804-812.
    [6]耿绍波,鲁绍伟,饶良懿,杨晓菲,高东.基于涡度相关技术测算地表碳通量研究进展[J].世界林业研究,2010,23(3):24-28.
    [7]关德新,吴家兵,金昌杰等.长白山红松针阔混交林CO2通量的日变化与季节变化[J].林业科学,2006,42(10):123-128.
    [8]郭家选,梅旭荣,卢志光,赵全胜.测定农田蒸散的涡度相关技术[J].中国农业科学,2004,8(37):117.
    [9]国家林业局.第四次中国荒漠化和沙化状况公报.中国绿色时报,2011-1-5).http://www.greentimes.com/green/econo/hzgg/ggqs/content72011-01/05/content_114232.htm
    [10]贾庆宇,周广胜.城市复杂下垫面供暖前后CO2通量特征分析[J].环境科学,2010,31(4):843-849.
    [11]李春,何洪林,刘敏等.ChinaFLux CO2通量数据处理系统与应用[J].地球信息科学,2008,10(5):557-565.
    [12]李菊,刘允芬,杨晓光,李俊.千烟洲人工林水汽通量特征及其与环境因子的关系[J].生态学报,2006,26(8):2449-2456.
    [13]李琪,王云龙,胡正华.基于涡度相关法的中国草地生态系统碳通量研究进展[J].草业科学,2010,27(12):38-44.
    [14]李祎君,玉米农田水热碳通量动态及其环境控制机理研究[J].中国科学院植物研究所,北京.2008.
    [15]李霞,孙睿,李远等.北京海淀公园绿地二氧化碳通量[J].生态学,2010,30(24):6715-6725.
    [16]李正才,傅懋毅,杨校生等.经营干扰对森林土壤有机碳的影响研究概述[J].浙江林学院学报,2005,22(4):469-474.
    [17]李正泉,于贵瑞,温学发,张雷明,任传友,伏玉玲.中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学D辑,2005,(34):46-56.
    [18]刘晨峰,北京地区杨树人工林能量和水量平衡研究.北京林业大学,2007,北京.
    [19]刘辉志,涂钢,董文杰,符淙斌,石立庆.半干旱地区地气界而水汽和二氧化碳通量的日变化及季节变化[J].大气科学,2006,(1):108-118.
    [20]刘敏,何洪林,于贵瑞,骆亦其,孙晓敏,王辉民.中亚热带人工针叶林CO2通量组分统计不确定性分析[J].中国科学D辑:地球科学,2008,38(8):1016-1027.
    [21]刘冉,王勤学,唐立松,李彦.盐生荒漠地表水热与二氧化碳通量的季节变化及驱动因素[J].生态学报,2009,(1):67-75.
    [22]刘允芬,宋霞,孙晓敏等.千烟洲人工针叶林CO2通量季节变化及其环境因子的影响[J].中国科学D辑,2004,34(增刊Ⅱ):109-117.
    [23]米娜,于贵瑞,温学发,孙晓敏.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J].中国利·学.D辑:地球科学,2006,36(增刊Ⅰ):22-33.
    [24]米娜,中亚热带人工针叶林生态系统碳水通量的观测和模拟研究[J].南京信息工程大学,2007,南京.
    [25]宋清海,张一平,于贵瑞等.热带季节雨林优势树种叶片和冠层尺度二氧化碳交换特征[J].应用生态学报,2008,19(4):723-728.
    [26]宋涛.三江平原生态系统CO2通量的长期观测研究[J].南京信息工程大学,2007.南京.
    [27]宋霞,刘允芬,徐小锋等.红壤丘陵区人工林冬春时段碳、水、热通量的观测与分析.资源科学,2004,26(3):96-104.
    [28]同小娟,张劲松,孟平等.华北低丘山地人工混交林净生态系统碳交换的变化特征[J].林业利·学,2010,46(3):37-43.
    [29]王春林,周国逸,王旭等.鼎湖山针阔叶混交林冠层下方CO2通量及其环境响应[J].生态学报,2007,27(3):846-854.
    [30]王凤文,杨书运,徐小牛,张庆国.北亚热带两种森林类型的土壤呼吸研究[J].亚热带植物利·学,2010,39(3):4-7.
    [31]王涛,吴薇,赵哈林,董治宝,薛娴.沙漠化过程中生物量损失的初步评估——以内蒙古科尔沁地区为例[J].中国沙漠,2005,25(4):453-456.
    [32]王娓,汪涛,彭书时,方精云.冬季土壤呼吸:不可忽视的地气CO2交换过程[J].植物生态学报,2007,31(3):394-402.
    [33]王修信,朱启疆.城市公园绿地水、热与CO2通量观测与分析[J].生态学报,2007,27(8): 3232-3239.
    [34]王云龙.克氏针茅草原的碳通量与碳收支[J].中国科学院植物研究所,,2008北京.
    [35]卫云燕,尹华军,刘庆,黎云祥.气候变暖背景下森林土壤碳循环研究进展[J].应用与环境生物学,2009,15(6):888-894.
    [36]吴家兵,关德新,孙晓敏等.长白山阔叶林红松林C02交换的涡动通量修订[J].中国科学D辑,2004,34(增刊11):95-102.
    [37]吴家兵,关德新,孙晓敏等.长白山阔叶红松林二氧化碳湍流交换特征[J].应用生态学报,2007,18(5):951-956.
    [38]肖举国,张强,王静.全球气候变化对农业生态系统的影响研究进展[J].应用生态学报,2007,18(8):1877-1885.
    [39]严俊霞,汤亿,李洪建.城市绿地土壤呼吸与土壤温度土壤水分的关系研究[J].干旱区地理,2009,32(4):604-609.
    [40]于贵瑞,温学发,李庆康等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J].中国科学D辑,2004,34(增刊11):84-94.
    [41]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法[M].2006.北京:高等教育出版社.
    [42]于贵瑞,伏玉玲,孙晓敏等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J].中国科学D辑,2006,36(增刊1):1-21.
    [43]于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].2008.北京:科学出版社.
    [44]查同刚.北京大兴杨树人工林生态系统碳平衡的研究[J].2007.北京林业大学,北京.
    [45]张鸽香,徐娇,王国兵,武珊珊,阮宏华.南京城市公园绿地不同植被类型土壤呼吸的变化[J].生态学杂志,2010,29(2):274-280.
    [46]张强,韩永翔,宋连春.全球气候变化及其影响因素研究进展综述[J].地球科学进展,2005,20(9):990-998.
    [47]张一平,窦军霞,孙晓敏等.热带季节雨林林冠碳通量不同校正方法的比较分析[J].应用生态学报,2005,16(12):2253-2258.
    [48]张增信,施政,何容,王国兵,唐燕飞,阮宏华.北亚热带次生栎林和人工松林土壤呼吸日变化[J].南京林业大学学报,2010,34(1):19-23.
    [49]赵晓松,关德新,吴家兵等.长白山阔叶红松林通量观测的分布[J].北京林业大学学报,2005,27(3):17-23.
    [50]赵晓松,关德新,吴家兵等.长白山阔叶林红松林C02通量与温度的关系[J].生态学报,2006,26(4):1088-1095.
    [51]周广胜,王玉辉,蒋延玲,杨利民.陆地生态系统类型转变与碳循环[J].植物生态学报, 2002,26(2):250-254.
    [52]周广胜.全球碳循环[M].北京:气象出版社,2003,17-20.
    [53]周广胜,王玉辉,白莉萍,许振柱,石瑞香,周莉,袁文平.陆地生态系统与全球变化相互作用的研究进展[J].气象学报,2004,64(5):692-708.
    [54]周萍,刘国彬,薛萐.草地生态系统土壤呼吸及其影响因素研究进展[J].草业学报,2009,18(2):184-193.
    [55]周文嘉,石兆勇,王妮.中国东部亚热带森林土壤呼吸的时空格局[J].植物生态学,2011,35(7):731-740.
    [56]郑泽梅,张弥,温学发,孙晓敏,于贵瑞,张雷明,韩士杰,吴家兵.长白山温带混交林林冠下层CO2通量对生态系统碳收支的贡献[J].生态学报,2009,29(1):1-8.
    [57]Aires L M., Pio C A., Pereira J S. The effect of drought on energy and water vapour exchange above a Mediterranean C3/C4 grassland in Southern Portugal. Agricultural and Forest Meteorology,2008,148(4):565-579.
    [58]Aubinet M., Grelle A., Ibrom A., Rannik U., Moncrieff J., Foken T., Kowalski A S., Martin P H., Berbigier P., Bernhofer C., Clement R., Elbers J., Granier A., Grunwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., Vesala T. Estimates of the annual net carbon and water exchange of forests:The EUROFLUX methodology. Advances in Ecological Research,2000,30:113-175.
    [59]Aubinet M, Chermanne B,Vandenhaute M, et al., Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology,2001,108(4): 293-315.
    [60]Aubinet M, Heinesch B, Yernaux M., Horizontal and vertical CO2 advection in a sloping forest. Bound. Layer Meteorol,2003,108:397-417.
    [61]Ayanaba A., Jenkinson D S., Decomposition of carbon-14 labeled ryegrass and maize under tropical conditions. Soil Science Society of America Journal,1990,54:112-115
    [62]Baldoehhi D D., Wilson K B., Modeling CO2 and water vapor exehange of a temperate broad leaved forest across hourly to decadal timesacales. Ecological Modelling,2001,142:155-184.
    [63]Baldocchi D D., Falge E., Gu L H., et al., FLUXNET:A new to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bulletin of the American Meteorological Society,2001,82:2415-2434.
    [64]Baldocchi D D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biology,2003,9(4): 479-492.
    [65]Barr A G., Black T A., Hogg E H., Griffis T J., Morgenstern K., Kljun N., Theede A., Nesic Z., Climatic controls on the carbon and water balances of a boreal aspen forest,1994-2003. Global Change Biology,2007,13:561-576.
    [66]Belinda E M., Andrew P R., Robert C., On the validation of models of forest CO2 exchange using eddy covatiance data:some perils and pitfalls. Tree Physiology,2005,25:839-857.
    [67]Bemier P Y., Bartlett P., Black T A., Barr A., Kljun N., McCaughey J H., Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agricultural and Forest Meteorology,2006,140(1-4):64-78.
    [68]Betts A.K., Ball J H., FIFE surface climate and site-average dataset 1987-1989, Journal of the Atmospheric Sciences,1998,55,1091-1108.
    [69]Bonan G B., Davis K J., Baldoeehi D D., et al., Comparison of the NCAR LSMI land surface model with BOREAS aspen and jack pine tower fluxes. Journal of Geophisieal Research, 1997,102:29065-29076.
    [70]Bonan G B., Forests and climate change:forcings, feedbacks, and the climate benefits of forests. Science,2008,320(5882):1444-1449.
    [71]Bouwmann A F., Germon J C., Special issue:Soils and elimate change:introduction. Biology and Fertility of soils,1998,27:219.
    [72]Braeh E J, Desjardins R L, St Amour G T. Open Path CO2 analyser. Journal of Physics and Earth Seience Instrumentation,1981,14:1415-1419.
    [73]Canadell J G, Raupach M R., Managing forests for climate change mitigation. Science,2008, 320:1456-1457.
    [74]Chang S C., Tseng K H., Hsia Y J., Wang C P., Wu J T., Soil respiration in a subtropical montane cloud forest in Taiwan. Agricultural and Forest meteorology,2008,148:788-798.
    [75]Chimner R A. Soil respiration rates of tropical peatlands in Mieronesia and Hawaii. Wetlands, 2004,24:51-56.
    [76]Ciais P., Reichstein M., Viovy N., Granier A., Ogee J., Aubinet M., Buchmann N., Bernhofer Chr., Carrara A., Chevallier F., Noblet N D., Friend A.D., Friedlingstein P., GrtInwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J F., Sanz M J., Schulze E D., Vesala T., Valentini R., Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature,2005,437:529-533.
    [77]Cramer W., Bondeau A., Woodward F I., et al., Global response of terrestrial ecosystem strueture and function to CO2 and climate change:results from six dynamic global vegetation models. Global Change Biology,2001a,7:357-373.
    [78]Cramer W., Bondeau A., Woodward I., Prentiee I C., Betts R A., Brovkin V., Cox P M., Fisher V., Foley J., Friend A D., Kucharik C., Lomas M R., Ramankutty N., Sitch S., Smith B., White A., Young-Molling C., Global response of terrestrial ecosystem structure and function to CO2 and climate change:results from six dynamic global vegetation models. Global Change Biology,2001b,7:357-373.
    [79]Daniel D. Richter, Daniel Markewitz, Susan E., Trumbore, Carol G., Wells. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature,1999,400: 56-58.
    [80]Davidson E A., Savage K., Verchot L V., Navarro R I., Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agriculture and Forest Meteorology,2002, 113:21-37.
    [81]Desjardins R L. A technique to measure CO2 exchange under field conditions. International Journal of Biometeorology,1974,18:76-83.
    [82]Dise N B., Peatland response to global change. Science,2009,326(5954):810-811.
    [83]Dixon R K., Brown S., Houghton R A., et al., Carbon pools and flux of global forest ecosystems. Science,1994,263:185-190.
    [84]Dunne J A, Harte J, Taylor K. J. Subalpine meadow flowering phenology response to climate change:Integrating experimental and gradient methods. Ecological Monographs,2003,73: 69-86.
    [85]Emanuel W R., Shugart H H., Stevenson M P. Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change,1985,7(1):29-43.
    [86]Escobedo F, Varela F, Zhao M et al., Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environmental Science and Policy,2010,13: 362-372.
    [87]Fan S M, Wofsy S C, Bakwin P S, et al., Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest. Journal of Geophysical Research,1990,95(16):851-864.
    [88]Fang C, Monerieff J B. The dependence of soil CO2 efflux on temperature. Soil Biology Biochemistry,2001,3:155-165.
    [89]Fang J Y., Chen A P., Peng C., et al., Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292:2320-2322.
    [90]Fange E, Baladocchi D, Olson R. et al., Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and forest meteorology,2001,107(1):43-69.
    [91]Frank A B., Dugas W A., Carbon dioxide fluxes over a northern, semiarid, mixed grass prairie. Agricultural and Forest Meteorology,2001,108:317-326.
    [92]Field C B., Behrenfeld M J., Randerson J T., Falkowski P., Primary production of the biosphere:integrating terrestrial and oceanic components. Science,1998,281(5374): 237-240.
    [93]Fisher R A., Williams L M., Costa A L., Malhi Y., Costa R F., Almeida S., Meir P W., The response of an Eastern Amazonian rainforest to drought stress:Results and modelling analyses from a through-fall exclusion experiment. Global Change Biology,2007,13: 2361-2378.
    [94]Frank A B., Dugas W A., Carbon dioxide fluxes over a northern, semiarid, mixed grass prairie. Agricultural and Forest Meteorology,2001,108:317-326.
    [95]Friedlingstein P, Dufresne J L, Cox P M, et al., How positive is the feedback between climate change and the carbon cycle? Tellus,2003,55B:692-700.
    [96]Fuhrer J., Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment,2003,97:1-20.
    [97]Galang J S., Zipper C E., Prisley S P., Galbraith J M., Donovan P F.,2007. Evaluating terrestrial carbon sequestration options for Virginia. Environmental Management,2007,39: 139-150.
    [98]Garratt J R., Limitations of the eddy-correlation technique for the determination of turbulent fluxes near the surface. Boundary-Layer Meteorology,1975,8:255-259.
    [99]Gaumont-Guay D., Black T A., Griffis T J., Barr A G., Jassal R S., Nesic Z., Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology,2006,140:220-235.
    [100]Goulden M L., Munger J W., Fan S M., Daube B C., Wofsy S C., Measurements of carbon sequestration by long-term eddy covariance:Methods and a critical evaluation of accuracy. Global Change Biology,1996,2:169-182.
    [101]Goulden M L., Daube B C., Fan S M., et al. Gross CO2 uptake by a black spruce forest. Journal of Geophysical Research,1997,102:28987-28996.
    [102]Granier A., Reichstein M., Breda N., Janssens I A., Falge E., Ciais P., Grunwald T., Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G., Heinesch B., Ilvesniemi H., Keronen P., Knohl A., Kostner B., Lagergren F., Lindroth A., Longdoz B., Loustau D., Mateus J., Montagnani L., Nys C., Moors E., Papale D., Peiffer M., Pilegaard K., Pita G., Pumpanen J., Rambal S., Rebmann C., Rodrigues A., Seufert G., Tenhunen J., Vesala T., Wang Q., Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003. Agricultural and Forest Meteorology,2007,143, 123-145.
    [103]Grant R F., Axain A., Arora V., Barr A., Black T A., Chen J., Wang S., Yuan F., Zhang Y., Intereomparison of technique to model high temperature effeets on CO2 and energy exchange in temperate and boreal coniferous forests. Ecological modeling,2005,188: 217-252.
    [104]Grant R F., Black T A., Gaumont-Guay D., et al., Net ecosystem productivity of boreal aspen forests under drought and climate change:Mathematical modeling with Eeosys. Agricultural and forest meteorology,2006,140:152-170
    [105]Gratani L, Varone L., Carbon sequestration by Quercus ilex L. and Quercus pubescens Willd and their contribution to decreasing air temperature in Rome. Urban Ecosystems,2006,9: 27-37.
    [106]Griffis T J., Black T A., Gaumont-Guay D., Drewitt G B., Nesic Z., Barr A G., Morgenstern K., Kljun N., Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agricultural and Forest Meteorology,2004,125:207-223.
    [107]Gu L H., Falge E M., Boden T., Baldocchi D D., Black T A., Saleska S R., Suni T., Verma, S B., Vesala, T., Wofsy S C., Xu L K., Objective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology,2005,128:179-197.
    [108]Heimann M., Reichstein M., Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature,2008,451:289-292.
    [109]Hodges T., Temperature and water stress effects on phenology in Hodges T(Ed) Predicting Crop Phenology. CRC Press, Boston:1991,7-13.
    [110]Horst T W., Weil J C., Footprint estimation for scalar flux measurements in the atmospheric surface-layer. Boundary-Layer Meteorology,1992,59:279-296.
    [111]Horst T W., Weil J C., How far is far enough the fetch requirements for micrometeorological measurement of surface fluxes. Journal of Atmospheric Oceanic Technology,1994,11: 1018-1025.
    [112]Houghton J T., Ding Y., Griggs D J., Noguer M., van der Linden P J., Dai X., Maskell K., Johnson C A., IPCC 2001. Climate Change 2001:The Scientic Basis.
    [113]Houghton R.A., Hackler J L., Lawrence K T. The U.S. Carbon Budget:Contributions from Land-Use Change. Science,1999,285:574-578.
    [114]Houghton R A., Balancing the global carbon budget. Annual Review of Earth Planet Science, 2007,35:313-347.
    [115]IPCC. Climate change.2007:The Scientific Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press.
    [116]Janssens I A., Lankreijer H., Matteueei G., et al., Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001,7:269-278.
    [117]Jasoni R.L., Smith S.D., Arnone J.A., Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology,2005, 11:749-756.
    [118]Jo H K, Mcpherson E G., Carbon storage and flux in urban residential green space. Journal of Environmental Management,1995,45:109-133.
    [119]Jo H K., Impacts of urban green space on offsetting carbon emissions for middle Korea. Journal of Environmental Management,2002,64:115-126.
    [120]Joanne C H., Kevin R T., Ross E M., et al., Mechanisms for changes in soil carbon storage with pasture to Pinus radiate land use change. Global Change Biology,2003,4:1294-1308.
    [121]Jones E P., Ward T V., Zwick H H., A fast response atmospherie CO2 sensor for eddy correlation flux measurements. Atmospheric Environment,1978,12(4):845-851.
    [122]Kaimal J C., Finnigan J J., Atmospheric boundary layer flows:their structure and measurement. Oxford press, New York,1994.
    [123]Kang S., Doh S., Lee D S., et al., Topographie and climatic controls on soil respiration in six temperate mixed-hard wood forest slopes, Korea. Global Change Biology,2003.9: 1427-1437.
    [124]Kattenberg A., Giorgi F., Grassl H., Meehl G A., Mitehell J F B., Stouffer R J., Tokioka T., Weaver A J., Mitehell T M L., Climate Models. Projections of future climate, boofdstuk 6 in IPCC WGI Assessment RePort 1995, Climate Change, eds. Houghton J F., Meira G., Callander B A., Harris N., Kattenberg A., Maskell K,1996.
    [125]Keith H., Mackey B G., Lindenmayer D B., Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proceedings of the National Academy of Sciences,2009,106(28):11635.
    [126]Kellman L., Beltrami H., Risk D., Changes in seasonal soil respiration with pasture conversion to forest in Atlantic Canada. Biogeochemistry,2007,82:101-109.
    [127]Kirschbaum M U., The temperature dependence of soil organic matter decomposition and the effete of global warming on soil organic C storage. Soil Biology & Biochemistry,1995,27: 753-760.
    [128]Kirschbaum M U., Fischlin A.,'Climate Change Impacts on Forests', in Watson, R. T., Zinyowera, M. C., and Moss, R. H.(eds.), Climate Change 1995:Impacts, Adaptations and Mitigation of Climate Change, Cambridge University Press:1996,95-130.
    [129]Kirschbauma M U F., To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass and Bioenergy,2003,24:297-310.
    [130]Kljun N., Rotaeh M W., Schnlld H P., A 3-D backward Lagrangian footprint model for a wide range of boundary layer stratifications. Boundary-Layer Meteorology,2002,103:205-226.
    [131]Kljun N., Kastner-Klein P., Fedorovieh E., et al., Evaluation of a Lagrangian footprint model for a wide range of boundary layer stratification. Agriculture and Forest Meteorology,2004, 127:189-201.
    [132]Kormann R., Meixner F X., An analytic footprint model for neutral stratification. Boundary-Layer Meteorology,2001,99:207-224.
    [133]Kraemer J F., Hermann R K., Broadcast burning:25-year effects on forest soil in the western flanks of the Cascade mountains. Forest Science,1979,25:427-439.
    [134]Krishnan P., Black T A., Grant N J., Barr A G., Hogg E T H., Jassal R S., Morgenstern K., Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought. Agricultural and Forest Meteorology,2006,139: 208-223.
    [135]Lavigne M B, Ryan M G, Anderson D E, et al., Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. Journal of Geophysical Research,1997,102(D24): 28977-28985.
    [136]Law B E, Falge E, Gu L, et al., Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology,2002,113:97-120.
    [137]Law B E., Sun O J., Campbell J., Van T S., Thornton P E., Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology,2003,9:510-524.
    [138]Leclerc M Y., Thurtell G W.,.Footprint prediction of scalar fluxes using a Markovia analysis. Boundary-Layer Meteorology,1990,52:247-258.
    [139]Leclerc M Y., Shen S H., Lamb B., Observation and large-eddy simulation modeling of footprints in the lower convective boundary layer. Journal of Geo Physical Research-Atmosphere,1997,102:9323-9334.
    [140]Lei H., Yang D., Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agricultural and Forest Meteorology,2010,150:581-589.
    [141]Lindroth A., Seasonal and diurnal variation of energy budget components in coniferous forest. Journal of Hydrology,1985,82:1-15.
    [142]Liu C., Li X., Carbon storage and sequestration by urban forests in Shenyang, China. Urban Forestry and Urban Greening,2011,11(2):121-128.
    [143]Liu R F., Yu G R., Wen X F., Wang Y H., Song X., Li J., Sun X M., Yang F T., Chen Y R., Liu Q J., Seasonal dynalnies of CO2 fluxes from sub-tropical plantation coniferous ecosystem. Science in China Series D,2006,49(Sup.Ⅱ):99-109.
    [144]Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Functional Ecology, 1994,8:315-323.
    [145]Luo Y Q, Wan S Q, Hui D F, Wallace L L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature,2001,413(6856):622-625
    [146]Luo Y Q, Field C B, Jackson R B. Does nitrogen constrain carbon cycling or does carbon input stimulate nitrogen cycling? Ecology,2006,87(1):3-4.
    [147]Luyssaert S., Inglima I., Jung M., Richardson A.D., Reichstein M., Papale D., Piao S.L. Shulze E.D., Wingate L., Matteucci G., Aragao L., Aubinet M., Beer C., Bemhofer C., Black K. G., Bonal D., Bonnefond J.M., Chambers J., Ciais P., Cook B., Davis K. J., Dolman A. J., Gielen B., Goulden M., Grace J., Granier A., Grelle A., Griffis T., Grunwald T., Guidolotti G., Hanson P. J., Harding R., Hollinger D. Y., Hutyra L. R., Kolari P., Kruijt B., Kutsch W., Lagergren F., Laurila T., Law B. E., Le Maire G., Lindroth A., Loustau D., Malhi Y., Mateus J., Migliavacca M., Misson L., Montagnani L., Moncrieff J., Moors E., Munger J. W., Nikinmaa E., Ollinger S. V., Pita G., Rebmann C., Roupsard O., Saigusa N., Sanz M. J., Seufert G., Sierra C., Smith M.-L., Tang J., Valentini R., Vesala T., Janssens I. A., CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology,2007,13:2509-2537.
    [148]Massman W J., Lee X E., Eddy covariance flux correlations and uncertainties in long term studies of carbon and energy exchanges. Agricultural and Forest Meteorology,2002.113: 121-144.
    [149]Mcpherson E G, Simpsomn J R, Potential energy savings in buildings by an urban tree planting programme in California. Urban Forestry and Urban Greening,2003,2:73-86.
    [150]Mchale M R, Burke I C, Lefsky M A, et al., Urban forest biomass estimates:is it important to use allometric relationships developed specifically for urban trees? Urban Ecosystems,2009, 12:95-113.
    [151]MedlynB E., Andrew P R., Robert C., On the validation of models of forest CO2 exchange using eddy covariance data:some perils and pitfalls.Tree Physiology,2005,25:839-857.
    [152]Melillo J M, Callaghan TV, Woodward F I, et al., Effects on ecosystems. In Houghton J T, Jenkins G J, Epraums J J(Eds) Climate Change. The IPCC scientific assessment, Cambridge University Press:1990,282-310.
    [153]Miguel D, Mahecha, Miguel D., Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level. Science,2010,329:838.
    [154]Monson R K., Lipson D L., Burns S P., Turnipseed A A., Delany A C., Williams M W., Schmidt S K., Winter forest soil respiration controlled by climate and microbial community composition. Nature,2009,439:711-714.
    [155]Moren A S., Lindroth A, CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology,2000,101:1-14.
    [156]Muller-Landau H C., Carbon cycle:Sink in the African jungle. Nature,2009,457:969-970.
    [157]Niu S L, Luo Y Q, Fei S F, et al., Seasonal hysteresis of net ecosystem exchange in response to temperature change:patterns and causes. Global Change Biology,2011,17:3102-3114.
    [158]Novick K A., Stoy P C., Katul G G., Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia,2004,138:259-274.
    [159]Nowak D J., Atmospheric carbon reduction by urban trees. Journal of Environmental Management,1993,37:207.
    [160]Nowak D J, Crane D E., Carbon storage and sequestration by urban trees in the USA. Environmental Pollution,2002,116:381-389.
    [161]Ohtaki, E., On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields. Boundary-Layer Meteorology,1985,32:341-348.
    [162]Opsteegh J D., Haarsma R J., Selten F M., Kattenberg A., De Bilt Knmi., ECBILT:a dynamic alternative to mixed boundary conditions in ocean models. Tellus, 1998,(50A):348-367.
    [163]Paeaja S W., Hurtt G C., Baker D., et al., Consistent Land-and atmosphere-based U.S. carbon sink estimates. Science,2001,292:2316-2320.
    [164]Pan X L., Lin B., Liu Q., Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in Western Sichuan Province, China. Chinese Journal of Applied Ecology,2008,19(8):1637-1643.
    [165]Papale D., Reichstein M., Aubinet M., Canforal E., Bernhofer C., Kutsch W., Longdoz B., Rambal S., Valentini R., Vesala T., Yakir D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique:algorithms and uncertainty estimation. Biogeosciences,2006,3:571-583.
    [166]Permesan C., Yohe G., A globally coherent fingerprint of climate change impacts across natural systems. Nature,2003,421:37-42.
    [167]Permesan C., Galbraith H., Observed impacts of global climate change in the U.S. Pew Center on Global Climate Change, Arlington,2004.
    [168]Pete S., Fang C M., A warm response by soils. Nature,2010,464:499-500.
    [169]Piao S., Ciais P., Friedlingstein P., Peylin P., Reichstein M., Luyssaert S., Margolis H., Fang J., Barr A., Chen A., Grelle A., Hollinger A Y., Laurila T., Lindroth A., Richardson A D., Vesala T., Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature,2008,451:49-53.
    [170]Piao S., Fang J., Ciais P., Peylin P., Huang Y., Sitch S., Wang T., The carbon balance of terrestrial ecosystems in China. Nature,2009,458(7241):1009-1013.
    [171]Pielke R.A., Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics,2001,39:151-177.
    [172]Pilegaard K., Hummelshoj J., Jensen N O., et al., Two years of continuous CO2 eddy-flux measurements over a Danish beech forest. Agricultural and Forest Meteorology,2001,107: 29-41.
    [173]Piovesan G S., Adams J M., Carbon balance gradientin European forests:interpreting Euroflux. Journal of Vegetation Science,2010,11:923-926.
    [174]Quere C L., Eacute R., Raupach M R., Canadell J G., Marland G., et al., Trends in the sources and sinks of carbon dioxide. Nature Geoscience,2009,2:831-836.
    [175]Raich J W., Schlesinger W H., The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44(B):81-99.
    [176]Raich J W., Potter C S., Global Patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles,1995,9:23-36.
    [177]Raich J W., Potter C S., Bhagawati D., Interannual variability in global soil respiration 1980-94. Global Change Biology,2002,8:800-812.
    [178]Rannik u, Aubinet M., Kurbanmuradov O., et al., Footprint analysis for measurements over a heterogeneous forest. Boundary-Layer Meteorology,2000,97:137-166.
    [179]Raupach M R., Marland G., Ciais P., Quere C L., Canadell J G., Klepper G., Field C B., Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences,2007,104(24):10288.
    [180]Ray D K., Nair U S., Welch R M., Han Q., Zeng J., Su W., Kikuchi T., Lyons T J., Effects of land use in southwest Australia:Observations of cumulus cloudiness and energy fluxes. Reviews of Geophysics,2003,108(D14):4414. doi:10.1029/2002JD002654.
    [181]Reichstein M., Falge E., Baldocchis D., Papale D., On the separation of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm. Global Change Biology,2005,11:1424-1439.
    [182]Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transaetions of the Royal Society of London,1985,186: 123-164.
    [183]Rind D., Goldberg R., Hansen J., Rosenzweig C., Ruedy R., Potential evapotranspiration and the likelihood of future drought. Journal of Geophysical Research,1990,95(D7): 9983-10004.
    [184]Ross E M., Belinda E M., Roderiek C D., Inereased understanding of nutrient immobilization in soil organic matter is critical for predieting the carbon sink strength of forest ecosystems over the next 100 years. Tree Physiology,2001,21:831-839.
    [185]Rot enberg E., Yakir D., Contribution of semi-arid forests to the climate system. Science, 2010,327(5964):451-454.
    [186]Rowntree R A., Nowak D J., Quantifying the role of urban forests in removing atmospheric carbon dioxide. Journal of Arboriculture,1991,17(10):269-275.
    [187]Ruim A., Jarvis P G., Baldocchi D., et al., CO2 fluxes over plant canopies and solar radiation. A review. Advances in Ecological Research,1996,26:1-68.
    [188]Runing S W., Gower S T., FOREST-BGC, a general model of forest ecosystem processes for regional applieations, Ⅱ. Dynamic carbon allocation and nitrogen budgets.Tree Physiology, 1991,9:147-160.
    [189]Running S W., Ecosystem disturbance, carbon, and climate. Science,2008,321:652-653.
    [190]Rustad L E., Huntington T G., Boone R D., Controls on soil respiration:implications for climate change. Biogeochemistry,2000,48:1-6.
    [191]Savage K., Davidson E A., Richardson A. D., A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements. Functional Ecology,2008,22:1000-1007.
    [192]Schimel D S., Drylands in the earth system. Science,2009,327:418-419.
    [193]Schlesinger W H, Reynolds J F., Cunningham G L., Huenneke L F., Jarrell W M., Virginia R A., Whitford W G., Biological feedbacks in global desertification. Science,1990,247(4946): 1043-1048.
    [194]Schmid H P., Oke T R., A model to estimate the source area contributing to turbulent exchange in the surface-layer over patehy terrain. Quartery Journal of Royal Meteorology Society,1990,116:965-998.
    [195]Schmid H R., Experimental design for flux measurements:matching the scales of observations and fluxes. Agriculture and Forest Meteorology,1997,87:179-200.
    [196]Schmid H R., Footprint modeling for vegetation atmosphere exchange studies:a review and perspective. Agriculture and Forest Meteorology,2002,113:159-283.
    [197]Schuepp P H., Leclere M Y., Macpherson J I., et al., Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorology,1990,50: 353-373.
    [198]Segal M., Davis J., The impact of deep cumulus reflection on the ground-level global irradiance. Journal of Applied Meteorology,1992,31:217-222.
    [199]Sellers P J., Dickinson R E., Randall D A., Betts A K., Hall F G., Berry J A., Collatz G J., Denning A S., Mooney H A., Nobre C A., Sato N., Field C B., Henderson-Sellers A., Modeling the exchangesof energy, water and carbon between continents and the Atmosphere. Science,1997,275:502-509.
    [200]Serrano-Ortiz P., Roland M., Sanchez-Moral S., Janssens I A., Domingo F., Goddris Y., Kowalski A S., Hidden, abiotic CO2 flows and gaseous reservoirs in the terrestrial carbon cycle:Review and perspectives. Agricultural and Forest Meteorology,2010,150:321-329.
    [201]Shaw M R., Zavaleta E S., Chiariello N R., Cleland E E., Mooney H A., Field C B., Grassland responses to global environmental changes suppressed by elevated CO2. Science, 2002,298(5600):1987-1990.
    [202]Stoffberg G H, Van Rooyen M W., Carbon sequestration estimates of indigenous street trees in the city of Tshwane South Africa. Urban Forestry and Urban Greening,2010,9:9-14.
    [203]Stone R., Ecosystems:Have Desert Researchers Discovered a Hidden Loop in the Carbon Cycle? Science,2008,320(5882):1409-1010.
    [204]Swinbank W C, Measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology,1951,8:135-145.
    [205]Tans P P., Fungly, Takahaski T., Observational constraints on the global atmospheric CO2 budget. Science,1990,247:1431-1438.
    [206]Torbert H A., Prior S A., Rogers H H., et al., Review of elevated atmospheric CO2 effects on agro-ecosystems:residue decomposition processes and soil C storage. Plant and soil,2000, 224:59-73.
    [207]Trumbore S., Age of soil organic matter and soil respiration:radiocarbon constraints on belowground C dynamics. Journal of Applied Ecology,2000,10:399-411.
    [208]Valentini R., DeAngells P., Matteueei Q., et al., Seasonal net carbon dioxide exchange of a beech forest with the atmosphere. Global Change Biology,1996,2:199-207.
    [209]Valentini R., Matteucci G., Dolman A J., et, al., Respiration as the main determinant of carbon balance in European forests. Nature,2000,404.
    [210]Verhoef A., Allen S J., A SVAT scheme describing energy and CO2 fluxes for multi-component vegetation:calibration and test for a Sahelian savannah. Ecological Modelling,2001,127:245-267.
    [211]Vesala T., Rannik U., Leclerc M., Flux and concentration footprints. Agriculture and Forest Meteorology,2004,127:111-116.
    [212]Vickers D., Mahrt L., Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and ocean technology,1997,14:512-526.
    [213]Wang J., Chameides B., Global warming's increasingly visible impacts. Environmental Defense Fund, New York,2005.
    [214]Wang K., Kellomaki S., Zha T., Peltola H., Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. Journal of experimental botany,2005,56(409):155.
    [215]Wang Z., Wang Y., Carbon flux dynamics and its environmental controlling factors in a desert steppe. Acta Ecological Sinica,2011,31:49-54.
    [216]Whlte A., Cannell M G R., Friend A D., The high-latitude terrestrial carbon sink:a model analysis. Global Change Biology,2000a,6:227-245.
    [217]Wilczark J M., Oncley S P., Stage S A., Sonic anemometertilt correction algorithms. Boundary Layer Meteorology,2001,99:127-150.
    [218]Williams M, Malhi Y., Nobre A D., et al., Seasonal variation in net carbon exehange and evapotranspiration in a Brazilian rain forest:a modeling analysis. Plant Cell and Environment, 1998,21:953-968.
    [219]Wilson J D., Swaters G E., The source area influencing a measurement in the Plantary boundary-layer:the footprint and the distribution of contact distance. Boundary-layer Meteorology,1991,55:25-46.
    [220]Wilson K B., Baldocchi D D., Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology,2000,100:1-18.
    [221]Wilson K. B., Hanson P J., Deciduous hardwood photosynthesis:species differences, temporal patterns and response to soil water deficits in north American temperate deciduous forest responses to changing precipitation regimes. Ecological Studies Series,2003,166: 35-37.
    [222]Wofsy S C, Goulden M L, Munger J W, et al., Net exchange of CO2 in a mid-latitude forest. Science,1993,260:1314-1317.
    [223]Wohlfahrt G., Fenstermaker L F., Arnone J A., Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology,2008,14:1475-1487.
    [224]Wullschleger S D., Hanson P J., Sensitivity of canopy transpiration to altered precipitation in an upland oak forest:evidence from a long-term field manipulation study. Global Change Biology,2006,12(1):97-109.
    [225]Yan J H., Zhang D Q., Zhou G Y., Liu J X., Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve. Soil Biology & Biochemistry,2009, 41:991-999.
    [226]Yang J, Mcbride J, Zhou J, et al., The urban forest in Beijing and its role in air pollution reduction. Urban Forestry and Urban Greening,2005,3:65-78.
    [227]Yu G R., Wen X F., Sun X M., Bertrand D., Tanner, Lee X H., Chen J Y., Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology,2006,137:125-137.
    [228]Yu X X., Zha T., Pang Z., Wu B., Wang X., Chen G., Li C., Cao J., Jia G., Li X., Wu H., Response of soil respiration to soil temperature and moisture in a 50-year-old oriental arborvitae plantation in China. PLoS ONE,2011,6:e28397.
    [229]Zha T., Kellomaki S., Wang K., Rouvinen I., Carbon sequestration and ecosystem respiration for 4 years in a Scots pine forest. Global Change Biology,2004,10(9):1492-1503.
    [230]Zha T., Xing Z.,Wang K., Kellomaki S., Barr A.G., Total and Component Carbon Fluxes of a Scots Pine Ecosystem from Chamber Measurements and Eddy Covariance. Annals of Botany, 2007,99:345-353.
    [231]Zha T., Barr A.G., Black T.A., McCaughey J.H., Bhatti J., Hawthorne I., Praveena Krishnan, Kidston J., Saigusa N., Shashkov A., Nesic Z., Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology,2009.15(6):1475-1487.
    [232]Zha T., Barr A.G., Kamp G., Black T.A., McCaughey J.H., Flanagan L.B., Interannual variation of evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought. Agricultural and Forest Meteorology,2010,150(11):1476-1484.
    [233]Zhang G., Kang Y., Han G., Sakurai K., Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology, 2011,17(1):377-389.
    [234]Zhang L., Chen Y., Li W., Zhao R., Seasonal variation of soil respiration under different land use/land cover in arid region. Science in China Series D:Earth Sciences 2007,76-85.
    [235]Zhao M, Kong Z, Escobedo F J, et al., Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. Journal of Environmental Management,2010,91:807-813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700