用户名: 密码: 验证码:
含苯氧基/氮杂环配体的过渡金属配合物的合成及催化烯烃聚合反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成、表征了一系列含有苯氧基/氮杂环配体的前过渡金属钛、锆、钒和后过渡金属镍、铜等烯烃聚合催化剂,探讨了催化剂结构、铝金属比、聚合反应温度等对烯烃聚合的影响,较为系统地研究了这些配合物催化乙烯或降冰片烯聚合的反应行为,发现了几个具有高活性催化乙烯或降冰片烯聚合的新型烯烃聚合催化剂。
     利用介孔分子筛SBA-15为载体,对非桥联单茂金属催化剂进行了负载化的研究,比较了均相催化剂与负载化催化剂在催化活性,聚合物分子量和聚合物形态等方面的异同。
     1.以不对称苯氧基-噁唑配体合成出3个新型非桥联单茂钛烯烃聚合催化剂。在助催化剂MAO的作用下,它们具有高活性催化乙烯聚合的能力,最高活性达1.23×10~6gPEmol~(-1)Tih~(-1),同时得到单峰窄分子量分布的高分子量聚乙烯(M_w/M_n=1.3,10~5-10~6)。特别地,在苯氧基邻位上取代基(R_1)的体积大小对催化剂的聚合性质有明显的影响,相同条件下催化乙烯聚合活性按递降顺序为R_1=Me>H>~tBu,而聚合物分子量大小顺序则为H>Me>~tBu。
     2.负载3个非桥联单茂钛和单茂锆均相催化剂于介孔分子筛SBA-15上,将它们应用于催化乙烯聚合,制得了具有很高分子量(10~6数量级)的纳米聚乙烯纤维。通过反应温度的调节,在钛负载催化剂催化聚合产物中成功地观察到聚乙烯纤维形态的变化。在锆催化剂纤维状聚合产物中虽然没有能够观察到类似的现象,但随反应温度的升高其催化活性一直在增大,在测量的温度范围内(20-100℃),没有达到极点,这对工业化应用是很有利的。
     3.以不对称苯氧基-咪唑配体合成出两个具有特别结构的镍(Ⅱ)和铜(Ⅱ)配合物,借助于MAO的活化,它们显示出很高的催化降冰片烯聚合的活性,尤其是镍催化剂展示了超高的催化能力,最高活性达到2.29×10~8gPNBmol~(-1)Nih~(-1)。铜催化剂的催化活性也高达3.16×10~5gPNBmol~(-1)Cuh~(-1)。无论镍催化剂还是铜催化剂,它们都是目前文献报道的同类降冰片烯加成聚合催化剂中活性最高者之一。所得聚合物分子量也很高,达到10~6数量级。
     4.以二-苯并咪唑吡啶和二-苯并噁唑吡啶为配体制备了两个钒基配合物,较为系统地研究了它们催化乙烯聚合的性质。在助催化剂MAO活化下,它们都具有较高的催化乙烯聚合的活性,最高催化活性分别达到1.12×10~6gPEmol~(-1)Vh~(-1)和2.36×10~5gPEmol~(-1)Vh~(-1)。与通常钒基催化剂不同,在整个测量温度范围内(15-75℃),两者都保持较稳定的催化活性,这也说明此类催化剂具有很好的热稳定性。
     5.实验中得到了四个氧桥相联的双核或多核钛基配合物。配合物1-3含有双核钛金属中心,其中配合物1为双核离子型结构,两个钛原子配位环境不同,它们之间通过单氧桥相连;而配合物2中两个钛原子具有相同配位结构,它们之间则通过双氧桥相连;配合物3为C_2对称双核钛配合物,中间以单氧桥相连形成线型结构的分子;Ti_4O_4八元环构成了配合物4的四核单茂钛结构。
In this dissertation, a series of new olefin polymerization catalysts, includingearly transition metal complexes, such as titanium, zirconium, vanadium, and latetransition metal complexes based on nickel or copper, have been synthesized andcharacterized, ten molecular structures of which have been confirmed by singlecrystal X-ray analyses. Mainly, catalytic activities of these complexes for ethyleneand norbornene were investigated. The effects of catalyst structures, polymerizationconditions such as Al/M molar ratio, reaction temperature and ethylene pressure onolefin polymerization behaviour have been discussed in detail. Moreover, thesignificant differences between homogeneous non-bridged half-metallocene catalystsand their corresponding supported catalysts on SBA-15 have also been compared bythe catalytic activities, molecular weights and morphologies of polymers. The fulldissertation was summarized as follows:
     1. Three half-sandwich titanium catalysts bearing non-symmetrical phenoxy-oxazole ligands have been synthesized. After activated by methylaluminoxane (MAO),these catalytic precursors could polymerize ethylene with high catalytic activities upto 1.23×10~6gPEmol~(-1)Tih~(-1) and produce narrow, unimodal molecular weightsdistribution (MWD) and high molecular weight polymers(M_w/M_n=1-3, 10~5-10~6).Herein, it is noteworthy that the steric bulk effect of the ortho substitued group (R_1) ofthe phenoxy-oxygen on catalytic activity and molecular weight of polymers issignificant. At the similar reaction condition, the catalytic activities rink in descendingorder R_1=Me>H>~tBu, however, the molecular weight in the order H>Me>~tBu.Further, immobilizing these kinds of catalysts on SBA-15, the nanofibrouspolyetnylene (diameter for 40-80nm) can be obtained, which possess higher molecularweitght (up to 2.90×10~6) than that of homogeneous counterpart(9.38×10~5).
     2. The supported catalysts have been prepared by immobilizing the non-bridgedhalf-titanocene and zirconocene on mesoporous molecular sieve SBA-15, which cancatalyize the ethylene polymerization and successfully obtain the nano-polyethylenefibers with high molecular weights. The effect of the immobilized titanium orzirconium catalyst with different catalytic activity on polymerization reaction hasbeen exhibited by their polymerization behaviour. For supported titanium catalyst,different morphologic polyethylene fibers can be given via the modulation of reactiontemperature under definite condition. Analogous phenomena cannot be observed for supported zirconium catalyst, However, the catalytic activities have always increasedas the reaction temperature rises till 100℃.
     3. Two special formative nickel(Ⅱ) and copper (Ⅱ) complexes with non-symmetric phenoxy-imidazole ligands have been prepared and characterized. Thevery high catalytic activities for norbomene polymerization have been provided bythem at the activation of MAO. In particular, the superhigh catalytic activity can beacquired by nickel catalyst and the highest value is up to2.29×10~8gPNBmol~(-1)Nih~(-1).The moderate catalytic activity has also been produced by copper catalyst, the highestvalue for 3.16×10~5 gPNBmol~(-1)Cuh~(-1). This is one of catalysts possessing highestactivities for vinyl addition polymerization of norbomene in literatures reported. Inaddition, the molecular weights of all polymers are very high in grade 10~6.
     4. The bis(benzimidazole) pyridine vanadium (Ⅲ) (1) and bis(benzoxazole)pyridine vanadium(Ⅲ) (2) complexes have been prepared and their ethylenepolymerization activities have been investigated in detail. The highest catalyticactivities is up to 1.12×10~6gPEmol~(-1)Vh~(-1) for 1 and 2.36×10~5gPEmol~(-1)Vh~(-1) for 2,respectively. Moreover, within the reach of whole detected temperature (15-75℃),the steady catalytic activities can be maintained for them, indicating that this type ofcatalyst possesses very good thermal stability.
     5. Four binuclear or multinuclear titanium-based complexes withμ-oxygen-bridged linkage have been synthesized and characterized. The rich and colorfulstructural features have been analyzed.
引文
[1] Ziegler K., Gellert H. G., Polymerization of Ethylene [P]. US: 2699457, 1955.
    [2] Natta G., Stereospecific Catalysis of Isotactic Polymer [J]. Angew. Chem., 1956, 68 : 393-403.
    [3] (a) Hlatky G. G., Heterogeneous Single-Site Catalysts for Olefin Polymerization [J]. Chem. Rev., 2000, 100: 1347-1376; (b) Severn J. R., Chadwick J. C., Duchateau R., Friederichs N., "Bound but Not Gagged" Immobilizing Single-Site α-Olefin Polymerization Catalysts [J]. Chem. Rev., 2005, 105: 4073-4147; (c) Zhang J., Wang X., Jin G.-X., Self-immobilized and polymerized miscellaneous metallocene catalysts for ethylene polymerization [J]. Coord. Chem. Rev. 2006, 250: 95-109; (d) Mastrorilli P., Nobile C. F., Supported catalysts from polymerizable transition metal complexes [J]. Coord. Chem. Rev. 2004, 248: 377-395.
    [4] (a) Zheng X., Loos J., Morphology Evolution in the Early Stages of Olefin Polymerization [J]. Macromol. Symp. 2006, 236: 249-258; (b) Cecchin G., Morini G., Pelliconi A., Polypropene product innovation by reactor granule technology [J]. Macromol. Symp. 2001, 173: 195-209; (c) Cecchin G., Marchetti E., Baruzzi G., On the Mechanism of Polypropene Growth over MgCl_2/TiCl_4 Catalyst Systems [J]. Macromol. Chem. Phys. 2001, 202: 1987-1994.
    [5] Tao Y., Kanoh H., Abrams L., Kaneko K., Mesopore-Modified Zeolites: Preparation, Characterization, and Applications [J] Chem. Rev. 2006, 106: 896-910.
    [6] Tajima K., Aida T., Controlled polymerizations with constrained geometries [J]. Chem. Commun. 2000: 2399-2412.
    [7] Natta G., Pion P., Mazzanti G., Giannini U., Mantica E., Peraldo M., Bis-(cyclopentadienyl)- titaniumdichloride-alkylaluminum complexls as catalysts for the polymerization of ethylene [J]. Chim. Ind, 1957,39: 19.
    [8] Breslow D. S., Newburg R. N., Bis(Cyclopentadienyl)Titaniura Dichloride Alkylaluminum Complexes as Catalysts for the Polymerization of Ethylene [J]. J. Am. Chem. Soc. 1957, 79: 5072- 5073.
    [9] Reichart K. H., Meyer K. R. Zur Kinetik der Niederdruckpolymerisation von Athylen mit Losllichen Zigler-Katalysatoren [J]. Makromol. Chem. 1973,169: 163-176.
    [10] Long P. W., Breslow D. S., Effect of Water on the Catalytic Activity of Bis(Cyclopentadienyl)Titanium Dichloride-Dimethylaluminum Chloride for the Polymerization of Ethylene [J]. Justus Liebigs Ann. Chem., 1975, 3: 463-469.
    [11] Sinn H., Kaminsky W., Vollmer H. J., Woldt R., "Living Polymers" on Polymerization with Extremely Productive Ziegler Catalysts [J]. Angew. Chem. Int. Ed. Engl. 1980,19: 390-392.
    [12] Koide Y., Bott S. G., Barron A. R., Alumoxanes as Cocatalysts in the Polladium-Catalyzed Copolymerization of Carbon Monoxide and Ethylene [J]. Organometallics 1996,15: 2213-2226.
    [13] Kaminsky W., New Polymers by Metallocene Catalysis [J] Macromol. Chem. Phys. 1996, 197: 3907-3945.
    [14] Sinn H., Kaminsky W., Ziegler-Natta Catalysis [J] Adv. Organomet. Chem., 1980, 18: 99- 149.
    [15] For review, see: (a) Brintzinger, H. H.; Fischer D.; Mullhaupt, R.; Rieger, B.; Waymouth, R. M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts [J]. Angew.Chem., Int. Ed. Engl. 1995, 34: 1143-1170; (b) Alt, G.; Koppl A. Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization [J]. Chem. Rev. 2000, 100: 1205-1221; (c) Gibson, V. C., Spitzmesser, S. K. Advances in Non-Metallocene Olefin Polymerization Catalysis [J]. Chem. Rev., 2003, 103, 283-315.
    [16] Bochmann M., Kinetic and Mechanistic aspects of Metallocene Polymeisation Catalysts [J]. J. Organomet. Chem., 2004, 689: 3982-3998.
    [17](a) Long W. P., Breslow D. S., Polymerization of Ethylene with Bis-(cyclopentadienyl)-titanium Dichloride and Diethylaluminum Chloride [J] J. Am. Chem. Soc. 1960, 82: 1953-1957; (b) Breslow D. S., Newburg N. R., Bis(cyclopentadienyl)titanium Dichloride-Alkylaluminum Complexes as Soluble Catalysts for the Polymerization of Ethylene [J] J. Am. Chem. Soc. 1959,81: 81-86; (c) Long W.P., Complexes of Aluminum Chloride and Methylaluminum Dichloride with Bis(cyclopentadienyl)titanium Dichloride as Catalysts for the Polymerization of Ethylene [J] J. Am. Chem. Soc. 1959, 81: 5312-5316.
    [18] Kamisky W., Engehausen R., Zounis K., Standardized polymerizations of ethylene and propene with bridged and unbridged metallocene derivatives: A comparison. [J] Macromol. Chem. Phys., 1992, 193: 1643-1651.
    [19] Alt H. G., The heterogenization of homogeneous metallocene catalysts for olefin polymerization [J]. J. Chem. Soc., Dalton Trans., 1999: 1703-10.
    [20] (a)Qian Y. L., Chen S. S., New Substituted Titanocene, Zirconene and Hafnocene Dichlorides [J]. Trans. Met. Chem., 1996, 21: 393-97; (b) Qian Y. L., Huang J. L., Macromol. Symp. 1996, 105: 205.
    [21] (a)金国新,周光远,刘宇,[P]CN-ZL 981 256 511;(b)周光远,金国新,黄葆同,[C]茂金属催化聚合及聚合反应工程研讨会论文集,杭州,1998,7.
    [22] (a) Kaminsky W., Kulper K., Brintzinger H. H., Wild F. R. W. P., Polymerization of Propene and Butene with a Chiral Zirconocene and Methylalumoxane as Cocatalyst [J] Angew. Chem. Int. Ed. Engl., 1985, 24: 507-8; (b) Peifer B., Milius W., Alt H. G., Selbstimmobilisierende Metallicenekatalysatoren. [J] Makromol. Chem. Rapid. Commun., 1993, 14:109-114.
    [23] Campbell R. E., Newman M. T., Malanga M. T., Macromol. Symp, 1995, 97: 152.
    [24] (a) Nomura K., Komatsu T., Syndiospecific Styrene Polymerization and Efficient Ethylene/Styrene Copolymerization Catalyzed by (Cyclopentadienyl) (aryloxy)titanium(Ⅳ) Complexes-MAO System [J] Macromolecules 2000, 33(22): 8122-24; (b) Nomura K., Naga N., Miki M., Yanagi K., Olefin Polymerization by (Cyclopentadienyl)(aryloxy)titanium(Ⅳ) Complexes-Cocatalyst Systems [J] Macromolecules 1998, 31(22): 7588-97; (c) Nomura K., Naga N., Miki M., Yanagi K., Imai A., Structure-Activity Relationship of New Nonlinear Optical Organic Materials Based on Push-Pull Azo Dyes. 3. Guest-Host Systems [J] Organometallics 1998, 17(11): 2152-59; (d) Byun D., Fudo A., Tanaka A., Fujiki M., Nomura K., Effect of Cyclopentadienyl and Anionic Ancillary Ligand in Syndiospecific Styrene Polymerization Catalyzed by Nonbridged Half-Titanocenes Containing Aryloxo, Amide, and Anilide Ligands: Cocatalyst Systems [J]. Macromolecules 2004, 37(15): 5520-30.
    [25] Antifiolo A., Carrillo-Hermosilla F., Corrochano A., Fernandez-Baeza J., Lara-Sanchez A., Ribeiro M. R., Lanfranehi M., Otero A., Pellinghelli M. A., Portela M. F. J., Santos V., Synthesis of Zirconium(Ⅳ) Monocyelopentadienyl-Aryloxy Complexes and Their Use in Catalytic Ethylene Polymerization. X-ray Structure of (η~5-C_5Me_5)Zr{2, 6-OC_6H_3(CH_3)_2}_3 [J]. Organometallics 2000, 19: 2837-43.
    [26] (a) Zhang Y., Sita L. R., Solid-supported stereospecific living Ziegler-Natta polymerization of α-olefins [J]. Chem. Commun. 2003: 2358-59; (b) Keaton R. J., Jayaratne K. C., Henningsen D. A., Koterwas L. A., Sita L. R., Dramatic Enhancement of Activities for Living Ziegler-Natta Polymerizations Mediated by "Exposed" Zirconium Acetamidinate Initiators: The Isospecific Living Polymerization of Vinylcyclohexane [J] J. Am. Chem. Soc. 2001, 123: 6197-98; (c) Jayaratne K. C., Sita L. R., Stereospecific Living Ziegler-Natta Polymerization of 1-Hexene J. Am. Chem. Soc. 2000, 122: 958-59; (d) Jayaratne K. C., Keaton R. J., Henningsen D. A., Sita L. R., Living Ziegler-Natta Cyclopolymerization of Nonconjugated Dienes: New Classes of Microphase-Separated Polyolefin Block Copolymers via a Tandem Polymerization/Cyclopolymerization Strategy [J]. J. Am. Chem. Soc. 2000,122: 10490-91.
    [27] Doherty S., Errington R. J., Jarvis A. P., Collins S., Clegg W., Elsegood M. R. J., Polymerization of Ethylene by the Electrophilic Mixed Cyclopentadienyl-pyridylalkoxide Complexes [CpM{NC_5H_4(CR_2O)-2}Cl_2] (M = Ti, Zr, R = Ph, Pr~i) [J]. Organometallics 1998,17: 3408-10.
    [28] Huang J., Lian B., Qian Y., Zhou W., Syntheses of Titanium(IV) Complexes with Mono-Cp and Schiff Base Ligands and Their Catalytic Activities for Ethylene Polymerization and Ethylene/1 -Hexene Copolymerization [J]. Macromolecules 2002,35: 4871 -74.
    [29] Bott R. K. J., Hughes D. L., Schormann M., Bochmann M., Lancaster S. J., Monocyclopentadienyl phenoxy-imine and phenoxy-amine complexes of titanium and zirconium and their application as catalysts for 1-alkene polymerisation [J]. J. Organomet. Chem. 2003, 665: 135-149.
    [30] (a) Coles S. R., Clarkson G. J., Gott A. L., Munslow I. J., Spitzmesser S. K., Scott P., Half-Sandwich Group 4 Salicyloxazoline Catalysts [J]. Organometallics 2006, 25: 6019-29; (b) Park S., Do Y., Synthesis, characterization, and ethylene polymerizations of various N-O chelated mono Cp* titanium complexes [J]. J. Organmet. Chem., 2007,692: 1633-40.
    [31] Yi J. J., Xu X. X., Jing Z. H., Synthesis ([O,N]CpTiCl_2) Containing 8-Hydroxy-Quinoline Ligands Polymerization Acta Polym. Sinica 2001, 5: 678.
    [32] Chen J., Li Y. -S., Wu J. -Q., Hu N. -H., Synthesis and styrene polymerization behavior of new titanium complexes Cp*TiCl(OCHRCH_2NAr) [J] J. Mol. Catal. A: Chem. 2005,232: 1-7. [33] Okuda J., Chem. Ber. 1990,123: 1949-1651.
    [34] (a) Wang J. H., Mu Y., Pu W. M., Zhang Y. T., Yang G. D., Liu . Z., Synthesis, Characterization and Catalysis of [η~5,η~1-C_5H_4-CHPh-PhO]TiCl_2 [J] Chemical Research Chinese Universities 2001, 17: 115-6; (b) Zhang Y., Wang J., Mu Y., Shi Z., Lu C., Zhang Y., Qiao L., Feng S., Syntehsis, Structure and Catalytic Properties of Constrained Geometry Cyclopentadienyl- Phenoxytitanium Dichlorides [J] Organometallics 2003, 22: 3877-83; (C) Zhang Y., Mu Y., Lu C., Li G., Xu J., Zhang Y., Zhu D., Feng S., Constrained Geometry Tetramethylcyclopentadienyl-phenoxytitanium Dichlorides: Templzte Synthesis, Structures and Catalytic Properties for Ethylene Polymerization [J]. Organpmetallics 2004, 23: 540-6.
    [35] Fischer D., Jungling S., Mulhaupt R., Donor-Modified and Accepter-Modified Metallocene-Based Homogeneous Ziegler-Natta Catalysts [J] Makromol Chem., Macromol. Symp., 1993, 66: 192-202.
    [36] (a) Haltky G. G., Upton D. J., Supported Ionic Metallocene Polymerization Catalysts [J]. Macromolecules, 1996, 29: 8019-20; (b) Jin J., Uozumi T. , Soga K., Ethylene Polymerization Initiated by SiO_2-Supported Neodymocend Catalysts [J]. Macromol. Rapid Commun., 1995, 16: 317-322.
    [37] Kaminsky W., Rabe O., SchauwienoldA—M., Schupfner G. U., Hanss J., Kopf J., Crystal Structure and Propene Polymerization Characterististics of Bridged Zirconocene Catalysts [J] J. Organomet Chem., 1995, 497: 181-193.
    [38] Kaminsky W., Renner F., High Melting Polypropenes by Silica-Supported Zirconocene Catalysts [J]. Macromol. Rapid Commun., 1993, 14: 239-43.
    [39] Chen Y. X., Rausch M. D., Chien J. C. W., Heptane-Soluble Homogeneous Zirconocene Catalysts: Synthesis of a Single Diastereomer, Polymerization Catalysis, and Effect of Silica Supports [J]. J Polym. Sci., 1995, 33: 2093-2108.
    [40] 葛从辛,王立,封麟先,负载型烯烃聚合催化剂载体修饰新方法[J]分子催化,1998,12(3):231-33.
    [41] 史泰尔斯,李大东等译 负载型催化剂与催化剂载体[M]北京:中国石化出版社,1992:63-74.
    [42] Soga K., Kaminaka M., Copolymerization of Olefins with SiO_2-, Al_2O_3-, and MgCl_2-Supported Metallocene Catalysts Activated by Yrialkylaluminums [J] Macromol. Chem. Phys., 1994, 195: 1369-79; (B) Soga K., Kim H. J., Shiono T. Highly Isospecific Si02-Supported Zirconocene Catalyst Activated by Ordinary Alkylaluminiums [J]. Macromol. Rapid Commun., 1994, 15: 139-43; (c) Soga K., Aria T., Nozawa H., Uozumi T., Recent Development in Heterogeneous Metallocene Catalysts [J ]. Macromol. Syrup., 1995, 97:53-62.
    [43] Ihm S. K., Chu K. J., Yim J. H., Molecular-Weight Distribution Control with Supported Metallocene Catalysts [J] Stud. Surf. Sci. Catal., 1994, 89: 299-306.
    [44] Soga K., Kim H. J., Shiono T. Polymerization of Propene with Highly Isospecific SiO_2-Supported Zirconocene Catalysts Activated with Common Alkylaluminums [J] Macromol. Chem. Phys., 1994, 195: 3347-60.
    [45](a) Satyanarayana G., Sivaram S., An Unusually Stable Supported Bis(Cyclopentadienyl)Titanium Dichlor-trialkylaluminum Catalyst System for Ethylene Polymerization [J]. Macromolecules 1993, 26: 4712-14; (b) Micheloti M, Arribas G., Bronco S, Altomare A., Effect of the Zeolite HY Support on the Monoalkene Polymerization by Group IV Metallocenes [J] J. Mol. Catal. A: Chem., 2000, 152: 167-177.
    
    [46] (a) Rahiala H., Beurroies I., Eklund T., Hakala K., Gougeon R., Trens P., Rosenholm J. B. Preparation and Characterization of MCM-41 Supported Metallocene Catalysts for Olefin Polymerization [J] J. Catal. 1999, 188: 14-23; (b) Kaminsky W., Strubel C., Lechert H., Genske D, Woo S. I., Syndiotactic Polypropene with MCM-41 Supported Metallocene [Me_2C(Cp)(Flu)]ZrCl_2 [J] Macromol. Rapid Commun., 2000, 21: 909-12.
    
    [47] Kageyama K., Aida T., Extrusion Polymerization: Catalyzed Synthesis of Crystalline Linear Polyethylene Nanofibers Within a Mesoporous Silica [J] Science, 1999,285: 2113-15.
    
    [48] Dong X., Wang L., Wang W., Jiang G., Chen Y., Zhao Z., Wang J., Preparation of Nano- Polyethylene Fibers and Floccules by Extrusion Polymerization Under Atomspheric Pressure Using the SBA-15-Supported Cp_2ZrCl_2 Catalytic System [J] Macromol. Mater. Eng., 2005, 290: 31-37.
    
    [49](a) Guo C., Zhang D., Wang F. -S., Jin G.-X., Nanofibers of polyethylene produced by SBA- 15 supported zirconium catalyst [N-(3-tert-butylsalicylidene)-4'-allyloxylanilinato](2)Zr(IV)Cl_2 J. Catal. 2005, 234 (2): 356-363; (b) Guo C. Jin G. -X., Wang F. -S., Preparation and characterization of SBA-15 supported iron(II)-bisimine pyridine catalyst for ethylene polymerization J. Polym. Sci. A: Polym. Chem., 2004, 42 (19): 4830-4837;
    
    [50] Zhu H., Jin G-X., Hu N., Polymer Immobilized Silane Bridged Metallocne Catalysts for Ethylene Polymerization [J]. J. Organomet.Chem.,20 02, 655: 167-171.
    
    [51]Tang G., Jin G.-X., Weng L., Self-Immobilized Metallocene Catalysts Bearing an Allyl Group for Ethylene Polymerization, X-ray Crystal Structure of [(CH_2=CHCH_2)CH_3Si(Cl_3H_8)_2]_2TiCl_2 [J] J. Organomet. Chem., 2004, 689: 678-684.
    
    [52](a) Zhang J.,Tang G., Jin G.-X., Half-sandwich β-diketonato complexes of zirconium and their application as catalysts to ethylene polymerization [J] Chin. Sci. Bull. 2006, 51(24): 2964-72; (b) Zhang J., Jin G.-X., Self-immobilized and polymerized miscellaneous metallocene catalysts for ethylene polymerization Inorg. Chem. Commun., 2006, 9: 683-686.
    
    [53] (a) Ittel, S. D., Johnson L. K.,Brookhart M., Late-Metal Catalysts for Ethylene. Homo- and Copolymerization [J]. Chem, Rev., 2000,100: 1169-1203; (b) Mecking, S., Olefin Polymerization by Late Transition Metal Complexes-A Root of Ziegler Gains New Ground [J]. Angew. Chem. Int. Ed, 2001, 40: 534-540; (c) Gibson V. C, Stefan K. Spitzmesser. Advances in Non-Metalllocene Olefin Polymerization Catalysis [J]. Chem. Rev. 2003,103: 283-315.
    [54] (a) Johnson L. K., Killian C. Brookhart M., New Pd(II)and Ni(II)-Based Catalysts for Polymerization of Ethylene and α-Olefins [J]. J. Am. Chem.Soc. 1995,117: 6414-6415; (b) Killiam C. M, Brookhart M.. Living polymerization of a -olefins using Ni( II )-diimine catalysts synthesis of block polymers based on a-olefins [J]. J Am. Chem. Soc 1996,118: 11664-11665; (c) Johnson L. K., Mecking, S.; Brookhart M.. Copolymerization of Ethylene and Propylene with Functionalized Vinyl Monomers by Palladium (II) Catalysts [J]. J. Am. Chem. Soc, 1996, 118: 267-268.
    [55] Mecking S. L., Johnson K., Wang L., Brookhart M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and a -olefins with methyl acrylate [J]. J Am Chem. Soc. 1998,120: 888.
    [56] (a) Svejda S. A., Johnson L. K., Brookhart M.. Low-Temperature Spectroscopic Observation of Chain Growth and Migratory Insertion Barriers in (α-Diimine)Ni(II) Olefin Polymerization Catalysts. [J]. J. Am. Chem. Soc. 1999,121: 10634; (b) Shultz L.H; Brookhart M. Measurement of the Barrier to β-Hydride Elimination in a β-Agostic Palladium-Ethyl Complex: A Model for the Energetics of Chain-Walking in (β-Diimine)Pd Olefin Polymerization Catalysts [J]. Organometallics. 2001, 20: 3975-3982; (c) Tempel D. J., Ohnson L. K., White P. S., et al. Mechanistic Studies of Pd(II)-α-Diimine-Catalyzed Olefin Polymerizations. [J]. J. Am. Chem. Soc. 2000,122: 6686.(d) Shultz L.H, Tempel D. J.Brookhart M. Palladium(II)β-Agostic Alkyl Cations and Alkyl Ethylene Complexes: Investigation of Polymer Chain Isomerization Mechanisms. [J]. J. Am.Chem.Soc.2001, 123: 11539-11555.(e) Simon L.C., Williams C. P., Soares J. B. P., et al. Kinetic investigation of ethylene polymerization catalyzed by nickel-diimine catalysts. [J]. J.Mol. Catal. A: Chem. 2001,165: 55-66.
    [57] Small B. L., Brookhart M., Bennett A. M. A.Highly Activity Iron and Cobalt Catalysts for the Polymerization of Ethylene [J]. J. Am. Chem. Soc. 1998,120: 4049-4050.
    [58] Britovsek G. J. P., Gibson V. C., Kimberley B. S., Maddox P.J., McTavish S. J., Solan G. A., White A. J. P., Williams D. J. Novel olefin polymerization catalysts based on iron and cobalt [J]. Chem. Commun. 1998: 849-850.
    [59] Small. B. L, Brookhart. M, Polymerization of Propylene by a New Generation of Iron Catalysts:Mechanisms of Chain Initiation, Propagation, and Termination [J]. Macromolecules 1999,32:2120-2130.
    [60] Small. B. L, Tridentate Cobalt Catalysts for Linear Dimerization and Isomerization of α-Olefins. [J]. Organometallics, 2003, 22: 3178-3183.
    [61] Takeuchi D., Anada K., Osakada K., Cobalt-Complex-Catalyzed Copolymerization of Ethylene with 2-Aryl-1-methylenecyclopropanes. [J]. Angew.Chem.Int.Ed. 2004, 43: 1233-1235.
    [62] (a) Wang C., Friedrich S., Younkin T. R., Li R.-T., Grubbs R. H., Bansleben D. A., Day M. W., Neutral Nickel(II)-Based Catalysts for Ethylene Polymerization [J]. Organometallics 1998,17: 3149-3151; (b) T. R. Younkin, E. F. Connor, J. I. Henderson, S. K. Friedrich, R. H. Grubbs, D. A. Bansleben, Neutral, single-component nickel(II) polyolefin catalysts that tolerate heteroatoms [J]. Science 2000, 287: 460-462;
    [63] Zhang D., Jin G. -X., Hu N. -H., Self-immobilized catalysts for ethylene polymerization: Neutral, single-component salicylaldiminato phenyl nickel(II) complexes bearing allyl substituents [J]. Chem. Commun., 2002: 574-575.
    [64] (a) Marques M. M., Fernandes S., Correia S. G., Ascenso J. R., Caroco S., Gomes P. T., Mano J., Pereira S. G., Nunes T., Dias A. R., Rausch M. D., Chien J. C. W., Synthesis of acrylamide/olefin copolymers by a diimine nickel catalyst. [J] Macromol. Chem. Phys. 2000, 201: 2464; (b) Mary S. W. C., Deng L. Q., Ziegler T., Density functional study of neutral salicylaldiminatonickel (II ) complexes as olefin polymerization catalysts, [J] Organometallics. 2000,19:2741.
    [65] Keim W., Kowaldt F. H., Goddard R., Krueger C., Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst [J]. Angew. Chem., 1978, 90, 493-493; Angew. Chem. Int. Ed, 1978,17: 466-467.
    [66] (a) Klabunde U., Ittel S. D., Nickel catalysis for ethylene homo- and copolymerization [J]. J. Mol. Catal., 1987, 41: 123-134; (b) Keim W., Schulz R. P., Chelate control in the nickel-complex catalyzed homogeneous oligomerization of ethylene [J] J. Mol. Catal., 1994, 92: 21-33; (c) Brassat I., Keim W., Killat S., Mothrath M., Mastrorilli P., Nobile C. F., Suranna G. P., Synthesis and catalytic activity of allyl, methallyl and methyl complexes of nickel(II) and palladium(II) with biphosphine monoxide ligands: oligomerization of ethylene and copolymerization of ethylene and carbon monoxide [J]. J. Mol. Catal. A: Chem., 2000, 157: 41-58; (d) Keim W., Vogt M., Wasserscheid P., Driessen-Holscher B., Perfluorinated polyethers for the immobilization of homogeneous nickel catalysts [J]. J. Mol. Catal. A: Chem., 1999,139: 171-175.
    [67] Hirose K., Keim W., Olefin oligomerization with nickel phosphorus-oxygen chelate complexes [J]. J. Mol. Catal., 1992, 73: 271-276.
    [68] (a) Ostoja Starzewski K. A., Bayer G. M., Electronic structure and reactivity of ylide systems. 17. Polyacetylene in polyacrylonitride matrix. New soluble matrix-polyacetylene through ylide- nickel catalysis [J]. Angew. Chem. Int. Ed., 1991, 30: 961-962; (b) Ostoja Starzewski K. A., Born L., Electronic structure and reactivity of ylide systems. 18. X-ray structure analysis of a bis(ylide)nickel catalyst [J]. Organometallics, 1992, 11: 2701-2704; (c) Ostoja Starzewski K. A., Scope of olefin polymerization catalysts [J]. Science, 2000, 288: 1749-1750.
    [69] Heinicke J., Koesling M., Brull R., Keim W., Pritzkow H., Nickel chelate complexes of 2- alkylphenylphosphinylphenolates. Synthesis, structural investigation, and use in ethylene polymerization [J]. Eur. J. Inorg. Chem., 2000: 229-305.
    [70] (a) Ittel S. D., Johnson L. K., Brookhart M., Late-Metal Catalysts for Ethylene Homo- and Copolymerization [J]. Chem. Rev., 2000, 100: 1169-1203; (b) Keim W., Appel R., Gruppe S., Knoch F., A new 1,3-diphosphaallylnickel complex for ethene polymerization [J]. Angew. Chem.,1987, 99: 1042-1045
    [71] Braunstein P., Naud F., Hemilability of Hybrid Ligands and the Coordination Chemistry of Oxazoline-Based Systems [J]. Angew. Chem. Int. Ed. 2001, 40: 680-699.
    [72] Speiser F., Braunstein P., and Saussine L., Catalytic Ethylene Dimerization and Oligomerization: Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands [J]. Acc. Chem. Res., 2005,38: 784-793.
    [73] Ivin K. J., Mol J. C., Olefin Metathesis and Metathesis Polymerization [M]. San Diego: Academic Press 1997: 407-410.
    [74] Andersen A. W., Merkling N. G., Polymeric Bicyclo[2,2,1]hept-2-ene [P] US 2 721 189, 1954.
    [75] Janiak C., Lassahn P. G., Metal catalysts for the vinyl polymerization of norbornene [J]. J. Mol. Catal. A: Chem., 2001, 166: 193-209.
    [76] Kennedy J. P., Makowski H. S., Carbonium Ion Polymerization of Norbornene and Its Derivatives [J]. J. Macromol. Sci. Chem., 1967, A1: 345-370.
    [77] (a) Rush S., Reinmuth A., Risse W., Palladium(II)-Catalyzed Olefin Addition Polymerizations of 3,3-Dialkyl-Substituted Cyclopropenes [J]. Macromolecules, 1997, 30, 7375-7385; (b) Seehof N., Mehler C., Breunig S., Risse W., Palladium(2+) catalyzed addition polymerizations of norbornene and norbornene derivatives [J]. J. Mol. Catal, 1992, 76: 219-228.
    [78] Henschke O., Koller F., Arnold M., Polyolefins with high glass transition temperatures [J]. Macromol. Rapid Commun., 1997,18: 617-623.
    [79] Ruchatz D., Fink G., Ethene-Norbornene Copolymerization Using Homogenous Metallocene and Half-Sandwich Catalysts: Kinetics and Relationships between Catalyst Structure and Polymer Structure, (a) 1. Kinetics of the Ethene-Norbornene Copolymerization Using the [(Isopropylidene)(η~5-inden-l-ylidene-η~5-cyclopentadi -enyl)]zirconium Dichloride/Methylaluminoxane Catalyst [J]. Macromolecules, 1998; 31: 4669-4673; (b) 2. Comparative Study of Different Metallocene- and Half-Sandwich /Methylaluminoxane Catalysts and Analysis of the Copolymers by ~(13)C Nuclear Magnetic Resonance Spectroscopy [J]. Macromolecules, 1998; 31: 4674-4680.
    [80] (a) Deming T. J., Novak B. M., Preparation and Reactivity Studies of Highly Versatile, Nickel-Based Polymerization Catalyst Systems [J]. Macromolecules, 1993, 26: 7089-7091; (b) Coevoet D., Cramail H., Deffieux A., U. V. /Visible Spectroscopic Study of the Rac-Et(Ind)_2ZrCl_2/MAO Olefin Polymerization Catalytic System, 1. Investigation in Toluene [J]. Macromol. Chem. Phys., 1998, 199: 1451-1457; (c) Luo X., Zhang J. -K., Cai T., et al. Norbornene Polymerization in the Presence of Ni(acac)_2 Activated by MAO [J]. Polym. Mater. Sci. Eng., 2001, 85: 367-368; (d) Arndt M., Gosmann M., Transition Metal Catalyzed Polymerisation of Norbornene, Polym. Bull., 1998, 41: 433-440; (e) Janiak C., Lassahn P. G., Concentration Effects of Methylalumoxane, Palladium and Nickel Pre-Catalyst and Monomer in the Vinyl Polymerization ofNorbornene [J] Polym. Bull., 2002, 47: 539-546.
    [81] Luo X., Zhang J., Wu Q.. Norbornene polymerization catalyzed by bis(4-tert-butylaminopent-3-ene-2-ono)nickel(Ⅱ) activated with methyl laluminoxane. Polymer Preprints 2002, 43(2): 1161.
    [82] Arndt M., Gosmann M., Transition metal catalyzed polymerisation of norbornene. Polym. Bull. 1998, 41: 433-440.
    [83] Zhao C. -T., Ribeiro M. R., Portela M. F.. Addition polymerization of 5-vinyl-2-norbornene with nickel bis(acetyl acetonate)/methylaluminoxane system. J. Mol. Catal. A: Chem. 2002, 185: 81-85.
    [84] Mast C., Krieger M., Dehnicke K., Greiner A., Vinyl-Type Polymerization of Norbornene by a Nickel-Based Catalyst with Phosphoraneiminato Ligands [J]. Macromol. Rapid Commun., 1999, 20: 232-235.
    [85] Lee B. Y., Kim Y. H., Shin H. J., Lee C. H., Synthesis, Molecular Structures, and Norbomene Polymerization of Methallyl Nickel(Ⅱ) Complexes of 2-(Diphenyl -amino)benzoate [J]. Organometallics, 2002, 21:3481-3484.
    [86] Li X. -F., Li Y. -S., Vinylic Polymerization of Norbornene by Neutral Nickel(Ⅱ)-Based Catalysts [J]. J Polym. Sci., Part A: Polym. Chem., 2002, 40: 2680-2685.
    [87] Sun W. -H., Yang H. -J., Li Z. -L., Li Y., Vinyl Polymerization of Norbornene with Neutral Salicylaldiminato Nickel(Ⅱ) Complexes [J]. Organometallics, 2003, 22: 3678-3683.
    [88] Yang H. -J., Li Z. -L., Sun W. -H., Highly Active Vinyl-Polymerization of Norbornene Catalyzed by [2-Methyl-8-(Diphenylphosphino)Quinoline] Nickel(Ⅱ) Dichloride/Methylaluminoxane [J]. J. Mol. Catal. A: Chem., 2003, 206: 23-28.
    [89] (a) Guo W.-J., Bao F., Gui G.-Q., Zhu F.-M., Wu Q., Synthesis, Molecular Structure, and Solution-Dependent Behavior of Nickel Complexes Chelating Anilido-Imine Donors and Their Catalytic Activity toward Olefin Polymerization [J]. Organometallics, 2004, 23: 6273-6280; (b) Gao H. -Y., Zhang J. -K., Chen Y., Zhu F. -M., Wu Q., Vinyl-polymerization of norbomene with novel anilido-imino nickel complexes / ethylaluminoxane: Abnormal influence of polymerization tempera -ture on molecular weight of polynorbornenes [J]. J. Mol. Catal. A: Chem., 2005, 240: 178-185; (c) Li Y., Jiang L., Wang L., Gao H., Zhu F., Wu Q., Nickel(Ⅱ) complexes supported by a fluorinated-diketiminate backbone ligand: synthesis, catalytic activity toward norbornene polymerization and the oxygenated species [J]. Appl. Organomet. Chem., 2006, 20(3): 181-186; (d) Bao F., Lu X., Kang B., Wu Q., Vinyl polymerization of norbornene catalyzed by a seriesof bis(b-ketoiminato)nickel (Ⅱ) complexes in the presence of methylaluminoxane [J]. Europ. Polym. J., 2006, 42: 928-934.
    [90] Myagmarsuren G., Jeong O. Y., Ihm S. K.. Novel boron trifluoride cocatalyst for norbornene polymerization Tetrakis(triphenylphosphine) nickel/borontri- fluoride etherate system. Appl. Catal. A: General 2003, 255: 203-209.
    [91] Casares J. A., Espinet P., Martin-Alvarez J. M., Salas G., Stable Nickel Catalysts for Fast Norbornene Polymerization: Tuning Reactivity, Eur. J. lnorg. Chem., 2005:3825-3831.
    [92] (a) Zhang D., Jin G.-X., Weng L. -H. and Wang F. -S., Synthesis, Molecular Structures, and Norbomene Addition Polymerization Activity of the Neutral Nickel Catalysts Supported by β- Diketiminato [N, N], Ketiminato [N, O], and Schiff-Base [N, O] Ligands [J]. Organometallics, 2004, 23: 3270-3275; (b) Wang H.-Y., Meng X., Jin G.-X., Synthesis, molecular structure and norbornene polymerization behavior of three-coordinate nickel(Ⅰ) complexes with chelating anilido-imine ligands [J]. Dalton Trans., 2006: 2579-2585.
    [93] (a) Lassahn P. G., Janiak C., Oh J.-S., Borane Activators for Late-Transition Metal Catalysts in Norbomene Polymerization [J]. Macromol. Rapid Commun., 2002, 23: 16-20; (b) Lassahn P.- G., Lozan V., Wu B., A. Weller S., Janiak C., Dihalogeno(diphosphane) -metal(Ⅱ) complexes (metal=Co, Ni, Pd) as pre-catalysts for the vinyl/addition polymerization of norbornene-elucidation of the activation process with B(C_6F_5)_3/AlEt_3 or Ag[closo-l-CB_(11)H_(12)] and evidence for the in situ formation of "naked" Pd~(2+) as a highly active species [J]. Dalton. Trans., 2003: 4437-4450.
    [1] Chandra K., Sharma R. K, Kumar N., Garg B. S, Preparation of Cyclopentadienyltitanium Yrichloride and Methylcyclpentadienyltitanium Trichloride [J] Chemistry and Industry, 1980, 5: 288-288.
    [2] Casiraghi G., Casnati G., Puglia G., Terenghi G., Selective Reactions between Phenols and Formaldehyde. A Novel Route to Salicylaldehydes [J] J. C. S. Perkin I, 1980: 1862-1865.
    [3] Ouyang J., Ouyang C., Fujii Y., Nakano Y., Shoda Y., Nagano Y., Synthesis and Fluorescent Properties of 2-(1H-Benzimidazol-2-yl)-phenol Derivatives [J] J. Heterocyclic Chem., 2004, 41: 359-64.
    [4] (a) Varma R. S., Saini R. K., Prakasht O., Hypervalent Iodine Oxidation of Phenolic Schiffs Bases: Synthesis of 2-Arylbenzoxazoles, Tetrahedron Lett. 1997, 38, 2621-22; (b) Asada H., Ozeki M., Fujiwara M., MatsushitaT., Structures of four types of novel high-valent manganese complexes obtained by the reactions of KMnO4 with tridentate Schiff base ligands, [J] Polyhedron, 2002, 21(12-13): 1139-48; (c) Ouyang J., Ouyang C., Fujii Y., Nakano Y., Shoda T., Nagano T., Synthesis and Fluorescent Properties of 2-(1H-Benzimidazol-2-yl)-phenol Derivatives [J] J. Heterocyclic Chem., 2004, 41: 359-64.
    [5] Pausacker K. H., The Oxidation of Glycols by Aryl Iodosoacetates. A Kinetic Study [J] J. Chem. Soc., 1953: 107-109.
    [6] Benisvy L., Blake A. J., Collison D., Davies E. S., Garner C. D., McInnes E. J. L., McMaster J., Whittaker G., Wilson C., A Phenol-imidazole Pro-ligand That can Exist as A Phenoxyl Radical, Alone and When Complexed to Copper(Ⅱ) and Zinc(Ⅱ) [J] Dalton Trans., 2003: 1975-1985.
    [7] Park S., Kwon O- H., Kim S., Park S., Choi M. -G., Cha M., Park S. Y., and Jang D. -J., Imidazole-Based Exicited-State Intramolecular Proton-Transfer Materials: Sythesis and Amplified Spontaneous Emission from a Latge Single Crystal [J] J. Am. Chem. Soc. 2005,127: 10070-10074.
    [8] Addison A. W, Burke P. J, Synthesis od Some Imidazole- and Pyrazole-Derived Chelating Agents [J] J. Heterocylic Chem., 1981,18: 803-805.
    [9] (a) Zhao D., Feng J., Hou Q., Melosh N., Fridrickson G. H., Chmelka B. F., Stucky G. O., Triblock Copolymer Syntheses of Mesoporous Silics with Periodic 50 to 300Angstrom Pores [J] Science, 1998, 279: 548-552; (b) Jun S., Joo S. H., Kruk M., Jaroniec M., Liu Z., Ohsuna T., Terasaki O., Synthesis of New Nanoporous Carbon with Hexagonally Ordered Mesostructure [J] J. Am .Chem. Soc, 2000, 122: 10712-13.
    [10] (a) Chien J. C. W., Wang B. P., Metallocene-Methylaluminoxane Catalysts for Olefin Polymerization. V. Comparison of Cp_2ZrCl_2 and CpZrCl_3 [J] J. Polym. Sci. Pol. Chem., 1990, 28, 15-38; (b) Chiang R., Intrinsic Vascosity-Weight Average Molecular Weight Relations for Polymerization [J] J. Polym. Sci., 1959,36: 91-103.
    [11] Haselwander T. F. A., Heitz W., Vinylic Polymerization of Norbornene by Pd(II)-Catalysis in the Presence of Ethylene [J] Macromol. Rapid Commun.,1991,18: 689-697.
    [1] For review, see: (α) Brintzinger H. H., Fischer D., Mullhaupt R., Rieger B., Waymouth R. M., Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts [J] Angew. Chem., Int. Ed. Engl. 1995, 34: 1143-1170; (b) Alt G., Koppl A., Effect of the Nature of Metallocene Complexes of Group Ⅳ Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization [J] Chem. Rev. 2000, 100: 1205-1221; (c) Gibson V. C., Spitzmesser S. K., Advances in Non-Metallocene Olefin Polymerization Catalysis [J] Chem. Rev., 2003, 103: 283-315; (d) Ittel S. D., Johnson L. K., Brookhart M., Late-Metal Catalysts for Ethylene Homo- and Copolymerization Chem. Rev. 2000, 100:1169-1203; (e) Zhang J., Wang X., Jin G. -X., Polymerized metallocene catalysts and late transition metal catalysts for ethylene polymerization [J] Coord. Chem. Rev., 2006, 250: 95-109.
    [2] (a) Phomphrai K., Fenwick A., Sharma S., Fanwick P., Caruthers J., Delgass W. N., Abu-Omar M., Rothwell I. P., Diverse Pathways of Activation and Deactivation of Half-Sandwich Aryloxide Titanium Polymerization Catalysts [J] Organometallics 2006, 25(1): 214-220; (b) Lee M. H., Kim S. K., Do Y., Biphenylene-Bridged Dinuclear Group 4 Metal Complexes: Enhanced Polymerization Properties in Olef'm Polymerization [J] Organometallic 2005, 24(15): 3618-3620; (c) Byun D., Fudo A., Tanaka A., Fujiki M., Nomura K., Effect of Cyclopentadienyl and Anionic Ancillary Ligand in Syndiospecific Styrene Polymerization Catalyzed by Nonbridged Half-Titanocenes Containing Aryloxo, Amide, and Anilide Ligands: Cocatalyst Systems Macromolecules 2004, 37(15): 5520-30; (d) Antinolo A., Carrillo-Hermosilla F., Corrochano A., Fernandez-Baeza J., Lara-Sanchez A., Ribeiro M. R., Lanfranchi M., Otero A., Pellinghelli M. A., Portela M. F. J., Santos V., Synthesis of Zirconium(IV) Monocyclopentadienyl-Aryloxy Complexes and Their Use in Catalytic Ethylene Polymerization. X-ray Structure of (η~5-C_5Me_5)Zr{2,6-OC_6H_3(CH_3)_2}_3 Organometallics 2000,19: 2837-2843; (e) Nomura K., Komatsu T., Imanishi Y., Syndiospecific Styrene Polymerization and Efficient Ethylene/Styrene Copolymerization Catalyzed by (Cyclopentadienyl) (aryloxy)titanium(IV) Complexes-MAO System Macromolecules 2000, 33(22): 8122-8124; (f) Nomura K., Naga N., Miki M., Yanagi K., Olefin Polymerization by (Cyclopentadienyl)(aryloxy)titanium(IV) Complexes-Cocatalyst Systems Macromolecules 1998,31(22): 7588-7597; (g) Nomura K., Naga N., Miki M., Yanagi K., Imai A., Synthesis, Structure, and Ethylene/α-Olefin Polymerization Behavior of (Cyclopentadienyl)(nitroxide)titanium Complexes Organometallics 1998,17(11): 2152-54.
    [3] Mahanthappa M. K., Cole A. P., Waymouth R. M., Synthesis, Structure, and Ethylene/α-Olefin Polymerization Behavior of (Cyclopentadienyl)(nitroxide)titanium Complexes Organometallics 2004, 23: 836-45.
    [4] (a) Zhang Y., Sita L. R., Solid-supported stereospecific living Ziegler-Natta polymerization of a-olefins [J] Chem. Commun. 2003: 2358-2359; (b) Keaton R. J., Jayaratne K. C., Henningsen D. A., Koterwas L. A., Sita L. R., Dramatic Enhancement of Activities for Living Ziegler-Natta Polymerizations Mediated by "Exposed" Zirconium Acetamidinate Initiators: The Isospecific Living Polymerization of Vinylcyclohexane [J] J. Am. Chem. Soc., 2001, 123: 6197-98; (c) Jayaratne K. C., Sita L. R., Stereospecific Living Ziegler-Natta Polymerization of 1-Hexene [J] J. Am. Chem. Soc. 2000, 122: 958-59; (d) Jayaratne K. C., Keaton R. J., Henningsen D. A., Sita L. R., Living Ziegler-Natta Cyclopolymerization of Nonconjugated Dienes: New Classes of Microphase-Separated Polyolefin Block Copolymers via a Tandem Polymerization/Cyclopolymerization Strategy [J] J. Am. Chem. Soc. 2000, 122: 10490-91; (e) Vollmerhaus R., Shao P., Taylor N. J., Collins S., Synthesis of and Ethylene Polymerization Using Iminophosphonamide Complexes of Group 4 Organometallics 1999,18: 2731-33.
    [5] Stephan D. W., Stewart J. C., Guerin F., Spence R. E. v. H., Xu W., Harrison D. G., Phosphinimides as a Steric Equivalent Cyclopentadienyl: An Approach to Ethylene Polymerization Catalyst Design [J] Organometallics 1999,18: 1116-18.
    [6] Shah S. A. A., Dorn H., Voigt A., Roesky H. W., Parisini E.-G., Schmidt H., Noltemeyer M., Group 4 Metal Amido Fluorides and Chlorides: Molecular Structures and the First Comparison in Ethylene Polymerization Catalysis [J] Organometallics 1996,15: 3176-81.
    [7] Sanz M., Cuenca T., Galakhov M., Grassi A., Bott R. K. J., Hughes D. L., Lancaster S. J., Bochmann M., Monocyclopentadienyl Bis(phenoxo-imino) Zirconium Complexes as Precatalyst Species for Olefin Polymerization. Stereospecific Methylation of an Imino Group with Formation of a Zirconium-amido Bond [J] Organometallics 2004,23(22): 5324-31.
    [8] (a) Doherty S., Errington R. J., Jarvis A. P., Collins S., Clegg W., Elsegood M. R. J., Polymerization of Ethylene by the Electrophilic Mixed Cyclopentadienylpyridylalkoxide Complexes [CpM{NC_5H_4(CR_2O)_2}Cl_2] (M) Ti, Zr, R ) Ph, ~iPr) [J]Organometallics 1998, 17: 3408-10; (b) Huang J., Lian B., Qian Y., Zhou W., Macromolecules 2002, 35: 4871-74; (c) Bott R. K. J., Hughes D. L., Schormann M., Bochmann M., Lancaster S. J., Monocyclopentadienyl phenoxy-imine and phenoxy-amine complexes of titanium and zirconium and their application as catalysts for 1-alkene polymerization Syntheses of Titanium(IV) Complexes with Mono-Cp and Schiff Base Ligands and Their Catalytic Activities for Ethylene Polymerization and Ethylene/1-Hexene Copolymerization J. Organomet. Chem., 2003, 665: 135-49; (d) Coles S. R., Clarkson G. J., Gott A. L., Munslow I. J., Spitzmesser S. K., Scott P., Half-Sandwich Group 4 Salicyloxazoline Catalysts [J] Organometallics 2006, 25: 6019-29; (e) Park S., Do Y., Synthesis, characterization, and ethylene polymerizations of various N-O chelated mono Cp* titanium complexes [J]. J. Organmet. Chem., 2007, 692: 1633-40. (f) Yi J. J., Xu X. X., Jing Z. H., Synthesis of the novel titanium complex [O, N]CpTiCl_2 containing 8-hydroxy-qunioline ligand and its catalysis for ethylene polymerization [J] Acta Polym. Sinica 2001, 5: 678-82; (g) Chen J., Li Y. -S., Wu J.-Q., Hu N.-H., Synthesis and styrene polymerization behavior of new titanium complexes Cp*TiCl(OCHRCH_2NAr) J. Mol. Catal. A: Chem. 2005,232:1-7.
    [9] Kim II., Nishihara Y., Jordan R. F., Rogers R. D., Rheingold A. L., Yap G. P. A., Synthesis, Structures, Dynamics, and Olefin Polymerization Behavior of Group 4 Metal (pyCAr_2O)_2M(NR_2)_2 Complexes Containing Bidentate Pyridine-Alkoxide Ancillary Ligands [J] Organometallics 1997, 16(15): 3314-23.
    [10] (a) Yoon J., Mathers R. T., Coates G. W., Thomas E. L., Optically Transparent and High Molecular Weight Polyolefin BlockCopolymers toward Self-Assembled Photonic Band Gap Materials [J] Macromolecules 2006, 39: 1913-19; (b) Cherian A. E., Lobkovsky E. B., Coates G. W., Synthesis of Allyl-Terminated Syndiotactic Polypropylene: Macromonomers for the Synthesis of Branched Polyolefins Macromolecules 2005, 38: 6259-68; (c) Furuyama R., Saito J., Ishii S., Makio H., Mitani M., Tanaka H., Fujita T., Fluorinated bis(phenoxy-imine) Ti complexes with MAO: Remarkable catalysts for living ethylene and syndioselective living propylene polymerization [J] T. J. Organomet. Chem., 2005, 690(20): 4398-413; (d) Yoshida Y., Matsui S., Fujita T., Bis(pyrrolide-imine) Ti complexes with MAO: A new family of high performance catalysts for olefin polymerization J. Organomet. Chem., 2005, 690(20): 4382-97; (e) Mitani M., Saito J., Ishii S. -I., Nakayama Y., Makio H., Matsukawa N., Matsui S., Mohri J. -I., Furuyama R., Terao H., Bando H., Tanaka H., Fujita T., FI Catalysts: New Olefin Polymerization Catalysts for the Creation of Value-Added Polymers [J] Chem. Rec. 2004, 4(3): 137-58; (f) De Rosa C., Circelli T., Auriemma F., Mathers R. T., Coates G. W., Structure and Physical Properties of Syndiotactic Polypropylene from Living Polymerization with Bis(phenoxyimine)-Based Titanium Catalysts [J] Macromolecules 2004, 37: 9034-47; (g) Hustad P. D., Tian J., Coates G. W., Mechanism of Propylene Insertion Using Bis(phenoxyimine)-Based Titanium Catalysts: An Unusual Secondary Insertion of Propylene in a Group IV Catalyst System J. Am. Chem. Soc. 2002, 124: 3614-21; (h) Matsui S., Mitani M., Saito J., Tohi Y., Makio H., Matsukawa N., Takagi Y., Tsuru K., Nitabaru M., Nakano T., Tanaka H., Kashiwa N., Fujita T., A Family of Zirconium Complexes Having Two Phenoxy-Imine Chelate Ligands for Olefin Polymerization [J] J. Am. Chem. Soc., 2001, 123: 6847-56; (i) Hustad P. D., Coates G. W., J. Am. Chem. Soc. 2002,124: 11578; (j) Tian J., Coates G. W., evelopment of a Diversity-Based Approach for the Dicovery of Atereoselective Polymerization Catalysts: Identification of a Catalyst for the Synthesis of Synthesis of Syndiotactic Polypropylene [J]Angew. Chem., Int. Ed 2000, 39:3626-29.
    [11] (a) Bott R. K. J.,Hammond M.,Horton P. N., Lancaster S. J.,Bochmann M.,Scott, P. Group 4 salicyloxazolines are potent polymerization catalysts [J] Dalton Trans., 2005:3611-13; (b) Cozzi P. G., Gallo E., Floriani C., Chiesi-Villa A., Rizzoli C.,(Hydroxyphenyl)oxazoline: A Novel and Remarkably Facile Entry into the Area of Chiral Cationic Alkylzirconium Complexes Which Serve as Polymerization Catalysts Organometalics 1995, 14: 4994-96.
    [12] Bei X., Swenson D. C., Jordan R. F., Synthesis, Structures, Bonding, and Ethylene Reactivity of Group 4 Metal Alkyl Complexes Incorporating 8-Quinolinolato Ligands Organomentallics 1997,16,3282-302.
    [13] Inoue Y., Nakano T., Tanaka H., Kashiwa N., Fujita T., Chem. Lett., 2001,10: 1060.
    [14] (a) Zhang J., Tang G. -R., Jin G. -X., Half-sandwich beta-diketonato complexes of zirconium and their application as catalysts to ethylene polymerization Chin. Sci. Bull. 2006, 51(24): 2964-72; (b) Wang H. -Y., Meng X., Jin G.-X., Synthesis, molecular structure and norbornene polymerization behavior of three-coordinate nickel(I) complexes with chelating anilido-imine ligands [J] Dalton Tran. 2006, 21: 2579-85; (c) Zhang D., Jin G.-X., Weng L.-H., Wang F.-S., Synthesis, molecular structure and norbornene polymerization behavior ofthree-coordinate nickel(I) complexes with chelating anilido-imine ligands [J] Organometallics 2004, 23: 3270-75; (d) Zhang D., Jin G.-X., J. Polym. Sci., Part A: Polym. Chem. 2004, 42: 1018; (e) Zhang D., Jin G. -X., Hu N. -H., Self-immobilized catalysts for ethylene polymerization: neutral, single-component salicylaldiminato phenyl nickel(Ⅱ) complexes bearing allyl substituents [J] Chem. Commun. 2002: 574-75; (f) Zhang D., Jin G.-X., Radical co-polymerization of diiminedibromidenickel(Ⅱ)-functionalized olefin with styrene: synthesis of polymer-incorporated nickel(Ⅱ) alpha-diimine catalysts for ethylene polymerization Appl. Catal., A 2004, 262: 13-18, (g) Zhang D., Jin G. -X., Hu N. -H., Ethylene Polymerization by Self-Immobilized Neutral Nickel Catalysts Bearing Allyl Groups [J] Eur. J. Inorg. Chem., 2003: 1570-76; (h) Zhang D., Jin G.-X., Novel, highly active binuclear 2, 5-disubstituted Amino-p-benzoquinone-nickel(Ⅱ) ethylene polymerization catalysts Organometallics 2003, 22:2851-54.
    [15] (a) Varma R. S., Saini R. K., Prakasht O., Hypervalent Iodine Oxidation of Phenolic Schiffs Bases: Synthesis of 2-Arylbenzoxazoles, Tetrahedron Lett. 1997, 38, 2621-22; (b) Asada H., Ozeki M., Fujiwara M., MatsushitaT., Structures of four types of novel high-valent manganese complexes obtained by the reactions of KMnO_4 with tridentate Schiff base ligands, [J] Polyhedron, 2002, 21(12-13): 1139-48; (c) Ouyang J., Ouyang C., Fujii Y., Nakano Y., Shoda T., Nagano T., Synthesis and Fluorescent Properties of 2-(lH-Benzimidazol-2-yl)-phenol Derivatives [J] J. Heterocyclic Chem., 2004, 41: 359-64.
    [16] Redshaw C., Gibson V. C., Clegg W., Edwards A. J., Miles B., Pentamethylcyclopentadienyl tungsten complexes containing imido, hydrazido and amino acid derived N, O chelate ligands J. Chem. Soc., Dalton. Trans. 1997: 3343-47.
    [17] Severn J. R., Chadwick J. C., Duchateau R., Friederichs N., "Bound but Not Gagged"slmmobilizing Single-Site α-Olefin Polymerization Catalysts [J] Chem. Rev., 2005, 105: 4073-4147.
    [17] (a) Chien J. C. W., Wang B. P., Metallocene-Methylaluminoxane Catalysts for Olefin Polymerization. V. Comparison of Cp_2ZrCl_2 and CpZrCl_3 [J] J. Polym. Sci. Pol. Chem., 1990, 28:15-38; (b) Chiang R., Intrinsic Vascosity-Weight Average Molecular Weight Relations for Polymerization [J] J.Polym. Sci., 1959, 36: 91-103.
    [18] (a) Tajima K., Aida T., Controlled polymerizations with constrained geometries [J] Chem. Commun. 2000: 2399-2412; (b) Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B.F., Stucky G. D., [J] Science 1998, 279: 548-552.
    [19] Sheldrick G. M., SHELXTL ver. 5. 10, Program for Crystal Structure Determinations, Siemens Industrial Automation Inc., Madison, MI, 1997.
    [20] Beurskens P. T., AdmiraalG., Beurskens G., Bosman W. P., de Gelder R., Israel R., Smits J. M. M., The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
    [1] Hlatky G. G., Heterogeneous Single-Site Catalysts for Olefin Polymerization [J] Chem. Rev., 2000, 100: 1347-1376.
    [2] Severn J. R., Chadwick J. C., Duchateau R., Friederichs N., "Bound but Not Gagged"slmmobilizing Single-Site α-Olefin Polymerization Catalysts [J] Chem. Rev., 2005, 105: 4073-4147.
    [3] Zhang J., Wang X., Jin G. -X., Self-immobilized and polymerized miscellaneous metallocene catalysts for ethylene polymerization [J] Coord. Chem. Rev. 2006, 250: 95-109.
    [4] Mastrorilli P., Nobile C. F., Supported catalysts from polymerizable transition metal complexes [J] Coord. Chem. Rev. 2004, 248: 377-395.
    [5] Zheng X., Loos J., Morphology Evolution in the Early Stages of Olefin Polymerization [J] Macromol. Symp. 2006, 236: 249-258.
    [6] Cecchin G., Morini G., Pelliconi A., Polypropene product innovation by reactor granule technology [J] Macromol. Symp. 2001, 173: 195-209.
    [7] Cecchin G., Marchetti E., Baruzzi G., On the Mechanism of Polypropene Growth over MgCl_2/TiCl_4 Catalyst Systems[J] Macromol. Chem. Phys. 2001, 202: 1987-1994.
    [8] Tan Y., Kanoh H., Abrams L., Kaneko K., Mesopore-Modified Zeolites: Preparation, Characterization, and Applications [J]Chem. Rev. 2006, 106: 896-910.
    [9] Tajima K., Aida T., Controlled polymerizations with constrained geometries [J] Chem. Commun. 2000:2399-2412.
    [10] Ye Z., Zhu S., Wang W. -J., Alsyouri H., Lin Y. S., Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles [J] J. Polym. Sci. Polym. Phys. 2003, 41: 2433-2443.
    [11] Dong X., Wang L., Wang W., Yu H., Wang J., Chen T., Zhao Z., Preparation of nano-polyethylene fibers and floccules using MCM-41-supported metallocene catalytic system under atmospheric pressure [J] Eur. Polym. J. 2005, 41: 797-803.
    [12] Dong X., Wang L., Jiang G., Zhao Z., Sun T., Yu H., Wang W., MCM-41 and SBA-15 supported Cp_2ZrCl_2 catalysts for the preparation of nano-polyethylene fibres via in situ ethylene extrusion polymerization [J] J. Mol. Catal. A: Chem. 2005, 240: 239-244.
    [13] Dong X., Wang L., Wang W., Jiang G., Chen Y., Zhao Z., Wang J., Preparation of Nano-Polyethylene Fibers and Floccules by Extrusion Polymerization Under Atmospheric Pressure Using the SBA-15-Supported Cp2ZrC12 Catalytic System [J] Macromol. Mater. Eng., 2005, 290: 31-37.
    [14] Liang Y. -G., Guo C., Jin G. -X., Synthesis, structure and ethylene polymerization behavior of titanium complexes [C3H6(N=CH-Ar-O)(2)]TiCl2 [J] Chin. J. Inorg. Chem. 2004, 20: 763-769.
    [15] C. Guo, D. Zhang, G. -X. Jin, Mesoporous zeolite SBA-15 supported nickel diimine catalysts for ethylene polymerization [J] Chin. Sci. Bull. 2004, 49: 249-253.
    [16] Guo C., Jin G. -X., Wang F., Preparation and characterization of SBA-15 supported iron(Ⅱ)-bisimine pyridine catalyst for ethylene polymerization [J] J. Polym. Sci. Part A: Polym. Chem. 2004, 42: 4830-4837.
    [17] Guo C., Zhang D., Wang F., Jin G.-X., Nanofibers of polyethylene produced by SBA-15 supported zirconium catalyst [N-(3-tert-butylsalicylidene)-4'-allyloxylanilinato]_2Zr(IV)Cl_2 [J] J. Catal. 2005, 234: 356-363.
    [18] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., [J] Science 1998, 279: 548-552.
    [19] Nomura K., Naga N., Miki M., Yanagi K., Olefin Polymerization by (Cyclopentadienyl)(aryloxy)titanium(Ⅳ) Complexes-Cocatalyst Systems [J] Macromolecules 1998, 31: 7588-7597.
    [20] Nomura K., Naga N., Miki M., Yanagi K., Imai A., Synthesis of Various Nonbridged Titanium(Ⅳ) Cyclopentadienyl-Aryloxy Complexes of the Type CpTi(OAr)X_2 and Their Use in the Catalysis of Alkene Polymerization. Important Roles of Substituents on both Aryloxy and Cyclopentadienyl Groups [J] Organometallics 1998, 17: 2152-2154.
    [21] Nomura K., Oya K., Komatsu T., Imanishi Y., Effect of the Cyclopentadienyl Fragment on Monomer Reactivities and Monomer Sequence Distributions in Ethylene/r-Olefin Copolymerization by a Nonbridged (Cyclopentadienyl)(aryloxy)titanium(Ⅳ) Complex-MAO Catalyst System [J] Macromolecules 2000, 33:3187-3189.
    [22] Nomura K., Okumura H., Komatsu T., Naga N., Ethylene/Styrene Copolymerization by Various (Cyclopentadienyl)(aryloxy)titanium(Ⅳ) Complexes-MAO Catalyst Systems [J] Macromolecules 2002, 35: 5388-5395.
    [23] Nomura K., Tsubota M., Fujiki M., Efficient Ethylene / Norbornene Copolymerization by (Aryloxo)(indenyl)titanium(Ⅳ) Complexes-MAO Catalyst System [J] Macromolecules 2003, 36: 3797-3799.
    [24] Antinolo, A.; Carrillo-Hermosilla, F.; Corrochano, A.; Femandez-Baeza, J.; Lara-Sanchez, A.; Ribeiro, M. R.; Lanfranchi, M.; Otero, A.; Pellinghelli, M. A.; Portela, M. F. J.; Santos, V. Synthesis of Zirconium(Ⅳ) Monocyclopentadienyl-Aryloxy Complexes and Their Use in Catalytic Ethylene Polymerization. X-ray Structure of (η~5-C_5Me_5)Zr{2, 6-OC_6H_3(CH_3)_2}_3 [J]. Organometallics 2000, 19: 2837-43.
    [25] Chien J. C. W., He D., Olefin copolymerization with metallocene catalysts. Ⅲ. Supported metallocene/methylaluminoxane catalyst for olefin copolymerization [J] J. Polym. Sci. A: Polym. Chem. 1991, 29: 1603-1607.
    [26] Chandra K., Sharma R. K, Kumar N., Garg B. S., [J] Chemistry andlndustry 1980, 5: 288-288.
    [27] Elliott J. H., Horowitz K. H., Hoddock T., A one-point intrinsic viscosity method forp olyethylene and polypropylene [J] J Appl. Polym. Sci. 1970, 14: 2947-2963.
    [1] (a) Britovsek G. J. P., Gibson V. C., and Wass D. F., The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes [J]. Angew. Chem. Int. Ed. 1999, 38: 428-447; (b) Ittel, S. D., Johnson, L. K.; and Brookhart, M. Late-Metal Catalysts for Ethylene Homo- and Copolymerization [J]. Chem. Rev. 2000, 100: 1169-1203; (c) Gibson V. C, and Stefan K. S., Advances in Non-Metalllocene Olefin Polymerization Catalysis [J]. Chem .Rev. 2003, 103: 283-315.
    (2) (a) Johnson L. K., Killian C., and Brookhart M., New Pd(Ⅱ)and Ni(Ⅱ)-Based Catalysts for Polymerization of Ethylene and aOlefins [J]. J Am. Chem.Soc. 1995, 117: 6414-6415; (b) Gates D. P., Svejda S. A., Onate E., Killian C. M., Johnson L. K., White P. S., and Brookhart M., Synthesis of Branched Polyethylene Using (α-Diimine)nickel(Ⅱ) Catalysts: Influence of Temperature, Ethylene Pressure, and Ligand Structure on Polymer Properties [J]. Macromolecules 2000, 33: 2320-34; (c) Guan Z., Cotts P. M., McCord E. F., and McLain S. J., Chain Walking: A New Strategy to Control Polymer Topology [J]. Science 1999, 283: 2059-62; (d) Killiam C. M, and Brookhart M.. Living polymerization of α-olefins using Ni(Ⅱ)-diimine catalysts synthesis of block polymers based on α-olefins [J]. J Am. Chem. Soc 1996, 118:11664-11665.
    [3] (a) Soula R., Broyer J. P., Llauro M. F., Tomov A., Spitz R., Claverie J., Drujon X., Malinge J., and Saudemont T., Very Active Neutral P, O-Chelated Nickel Catalysts for Ethylene Polymerization [J] Macromolecules 2001,34: 2438-42; (b) Wang C., Friedrich S., Younkin T. R., Li R.-T., Grubbs R. H., Bansleben D. A., and Day M. W., Neutral Nickel(II)-Based Catalysts for Ethylene Polymerization [J]. Organometallics 1998, 17: 3149-3151; (c) Britovsek G. J. P., Bruce M., Gibson V. C., Kimberley B. S., Maddox P. J., Mastroianni S., McTavish S. J., Redshaw C., Solan G. A., Stromberg S., White A. J. P., and Williams D. J., Iron and Cobalt Ethylene Polymerization Catalysts Bearing 2,6-Bis(Imino)Pyridyl Ligands: Synthesis, Structures, and Polymerization Studies [J]. J. Am. Chem. Soc. 1999,121: 8728-40; (d) Small B. L., Brookhart M., and Bennett A. M. A., Highly Activity Iron and Cobalt Catalysts for the Polymerization of Ethylene [J]. J. Am. Chem.Soc. 1998, 120: 4049-4050; (e) Britovsek G. J. P., Gibson V. C., Kimberley B. S., Maddox P. J., McTavish S. J., Solan G. A., White A. J. P., and Williams D. J., Novel olefin polymerization catalysts based on iron and cobalt [J]. Chem. Commun. 1998: 849-850; (f) Younkin T. R., Connor E. F., Henderson J. I., Friedrich S. K., Grubbs R. H., and Bansleben D. A., Neutral, single-component nickel(II) polyolefin catalysts that tolerate heteroatoms [J]. Science 2000, 287: 460-462; (g) Connor E. F., Younkin T. R., Henderson J. I., Hwang S., Grubbs R. H., Roberts W. P., and Litzau J. J., Linear functionalized polyethylene prepared with highly active neutral Ni(II) complexes [J]. J. Polym. Sci. Part A: Polym. Chem. 2002, 40: 2842-54; (h) Carlini C., Martinelli M., Passaglia E., Raspolli A. M., Galletti A. M. R., and Sbrana G., Homopolymerization of Methyl Methacrylate by Novel Ziegler-Natta-Type Catalysts Based on Bis(chelate)-nickel(II) Complexes and Methylaluminoxane [J] Macromol. Rapid Commun. 2001, 22: 664-68; (i) Carlini C., Macinai A., Galletti A. M. R., and Sbrana G., Styrene polymerization by ziegler-natta catalysts based on bis(salicylaldiminate)nickel(II) complexes and methyl aluminoxane [J]. Macromol. Symp. 2004, 213: 209-220. (j) Yang Q.-Z., Kermagoret A., Agostinho M., Siri O., and Braunstein P., Nickel Complexes with Functional Zwitterionic N, O-Benzoquinonemonoimine-Type Ligands: Syntheses, Structures, and Catalytic Oligomerization of Ethylene [J]. Organometallics 2006,25: 5518-27.
    [4] (a) Janiak C., and Lassahn P. G., Metal catalysts for the vinyl polymerization of norbornene [J] J. Mol.Catal. A: Chem. 2001, 166: 193-209; (b) C. Janiak, and P. G. Lassahn, Macromol. Rapid Commun. 2001,22: 479; (c) Berchtold B., Lozan V., Lassahn P. -G., and Janiak C., Nickel(II) and palladium(II) complexes with α-dioxime ligands as catalysts for the vinyl polymerization of norbornene in combination with methylaluminoxane, tris(pentafluorophenyl)borane, or triethylaluminum cocatalyst systems [J]. J. Polym. Sci. Part A: Polym. Chem. 2002, 40: 3604-14; (d) C. Janiak, P. G. Lassahn, and V. Lozan, Metal Complexes for the Vinyl Addition Polymerization of Norbornene: New Compound Classes and Activation Mechanism with B(C6F_5)_3/AlEt_3 [J]. Macromol. Symp. 2006,236: 88-99.
    [5] (a) Maezawa H., Matsumoto Aiura J., H., and Asahi S., EP 445,755 (Idemitsu Kosan) (1991), Chem. Abstr. 1991, 115: 256943g; (b) Goodall B. L., Benedikt G. M. III, Mclntosh L. H., Barnes D. A., and Rhodes L. F., [P]. U. S. Patent 5,468,819 (B. F. Goodrich) (1995), Chem. Abstr. 1995, 125: 329750k; (c) Goodall B. L., Risse W., J. P., and Mathew U. S. [P]. Patent 5,705,503 (B. F. Goodrich) (1996), Chem. Abstr. 1996,126: 104552u.
    [6] Deming T. J., and Novak B. M., Preparation and reactivity studies of highly versatile, nickel-based polymerization catalyst systems [J]. Macromolecules 1993, 26: 7089-91.
    [7] (a) Patil A. O., Zushma S., Stibrany R. T., Rucker S. P., and Wheeler L. M., Vinyl-type polymerization of norbomene by nickel(II) bisbenzimidazole catalysts [J]. J. Polym. Sci., Part A: Polym. Chem. 2003, 41: 2095-2106; (b) Li X.-F., and Li Y.-S., Vinylic polymerization of norbomene by neutral nickel(II)-based catalysts [J]. J. Polym. Sci., Part A: Polym. Chem. 2002, 40: 2680-85; (c) Yang H., Li Z. and Sun W.-H., Highly active vinyl-polymerization of norbomene by [2-methyl-8-(diphenylphosphino) quinoline]nickel(II) dichloride/methylaluminoxane [J]. J. Mol. Catal. A: Chem. 2003, 206:23-28; (d) Mast C., Krieger M., Dehnicke K. and Greiner A., Vinyl-type polymerization of norbomene by a nickel-based catalyst with phosphoraneiminato ligands [J]. Macromol. Rapid Commun. 1999, 20: 232-35; (e) Berchtold B., Lozan V., Lassahn P. -G., and Janiak C., Nickel(II) and palladium(II) complexes with α-dioxime ligands as catalysts for the vinyl polymerization of norbomene in combination with methylaluminoxane, tris(pentafiuorophenyl)borane, or triethylaluminum cocatalyst systems [J]. J. Polym. Sci., Part A: Polym. Chem. 2002, 40: 3604-14; (f) Sun W.-H., Yang H., Li Z. and Li Y., Vinyl Polymerization of Norbomene with Neutral Salicylaldiminato Nickel(II) Complexes [J]. Organometallics2003, 22: 3678-83; (g) Lozan V., Lassahn P.-G., Zhang C., Wu B., Janiak C., Rheinwald G., and Lang H., Z Naturforsck, 2003, B 58: 1152; (h) Lassahn P.-G., Lozan V., Timco G. A., Christian P., Janiak C. and Winpenny R. E. P., Homo- and heterometallic carboxylate cage complexes as precatalysts for olefin polymerization-Activity enhancement through "inert metals" [J]. J. Catal. 2004, 222: 260-67.
    [8] (a) Stibrany R. T., Schulz D. N., Kacker S., Patil A. O., Baugh L. S., Rucker S. P., Zushma S., Berluche E., and Sissano J. A., Polymerization and Copolymerization of Olefins and Acrylates by Bis(benzimidazole) Copper Catalysts [J]. Macromolecules 2003, 36: 8584-86; (b) Gibson V. C., Tomov A., Wass D. F, and White A. J. P., Ethylene polymerisation by a copper catalyst bearing α-diimine ligands [J]. J. Chem. Soc., Dalton Trans. 2002: 2261-62; (c) Shibayama K., and Ogasa M, WO 98/35996.
    [9] (a) Suzuki Y., and Hayashi T., JP 97/10298231; (b) Stibrany R. T., Schulz D. N., Kacker S., and Patil A. O., WO 97/9930822; (c) Stibrany R. T., Schulz D. N., Kacker S., and Patil A. O., US (2000)/6037297; (d) Stibrany R. T., US (2001)/6180783.
    [10] (a) Carlini C., Giaiacopi S., Marchetti F., Pinzino C., Galletti A. M. R., and Sbrana G., Vinyl Polymerization of Norbornene by Bis(salicylaldiminate) copper(Ⅱ)/Methylalumoxane Catalysts [J]. Organomerallics 2006, 25: 3659-64. (b) Bao F., Ma R., and Jiao Y., Homo- and copolymerization of norbornene with styrene catalyzed by a series of copper(Ⅱ) complexes in the presence of methylaluminoxane [J]. Appl. Organometal, Chem.2006, 20: 368-374.
    [11] (a) Wang H. -Y., and Jin G. -X., Highly Active Neutral Nickel(Ⅱ) Complexes Bearing P, N-Chelate Ligands: Synthesis, Characterization and Their Application to Addition Polymerization of Norbornene [J]. Eur. J Inorg. Chem. 2005, 9: 1665-70. (b) Wang W.-H., and Jin G.-X., Synthesis, molecular structures and norbornene addition polymerization activity of the neutral nickel catalysts supported by N-naphthyl-salicylaldiminato ligands [J]. Inorg. Chem. Commun. 2005, 8:109-112. (c) Zhang D., Jin G. -X., Weng L. -H. and Wang F. -S., Synthesis, Molecular Structures, and Norbornene Addition Polymerization Activity of the Neutral Nickel Catalysts Supported by β-Diketiminato [N, N], Ketiminato [N, O], and Schiff-Base [N, O] Ligands [J] Organometallics 2004, 23: 3270-75; (d) Zhang D., Jin G. -X. and Hu N. -H., Ethylene Polymerization by Self-Immobilized Neutral Nickel Catalysts Bearing Allyl Groups [J]. Eur. J. lnorg. Chem., 2003: 1570-76; (e) Zhang D., and Jin G.-X., Novel, Highly Active Binuclear 2, 5-Disubstituted Amino-po benzoquinone-Nickel(Ⅱ) Ethylene Polymerization Catalysts [J]. Organometallics 2003, 22: 2851-54; (f) Zhang D., and Jin G.-X. Micron-granula polyolefin with self-immobilized nickel and iron diimine catalysts bearing one or two allyl groups [J] J. Polym. Sci., Part A: Polym. Chem. 2004, 42: 1018-24; (g) Zhang D., Jin G.-X., and Hu N.-H., Self-immobilized catalysts for ethylene polymerization: neutral, single-component salicylaldiminato phenyl nickel(Ⅱ) complexes bearing allyl substituents [J]. Chem. Commun. 2002: 574-75; (h) Zhang D., and Jin G.-X., Radical copolymerization of diiminedibromidenickel(Ⅱ)-functionalized olefin with styrene: synthesis of polymer-incorporated nickel~Ⅱ α-diimine catalysts for ethylene polymerization [J]. Appl. Catal., A 2004, 262: 13-18.
    [12] Park S., Kwon O. H., Kim S., Park S., Choi M. -G., Cha M., Park S. Y., and Jang D. -J., Imidazole-Based Excited-State Intramolecular Proton-Transfer Materials: Synthesis and Amplified Spontaneous Emission from a Large Single Crystal [J]. J. Am. Chem. Soc. 2005, 127: 10070-74.
    [13] R. Knoch, H. Elias, and H. Paulus, Configurational Isomerism in Bis(N-alkylsalicylaldiminato)nickel(Ⅱ) Complexes: The Equilibrium Planar .dblharw. Tetrahedral and Its Effect on the Kinetics and Mechanism of Ligand Substitution [J]. Inorg. Chem. 1995, 34: 4032- 40.
    [14] Connor E. F., Younkin T. R., Henderson J. I., Waltman A. W., and Grubbs R. H., Synthesis of neutral nickel catalysts for ethylene polymerization - the influence of ligand size on catalyst stability [J]. Chem. Commun. 2003: 2272-73.
    [15] Carlini C., Giaiacopi S., Marchetti F., Pinzino C., Galletti A. M. R., and Sbrana G., Vinyl Polymerization of Norbornene by Bis(salicylaldiminate) copper(II)/ Methylalumoxane Catalysts [J]. Organomerallics 2006, 25: 3659-64.
    [16] Benisvy L., Blake A. J., Collison D., Davies E. S., Garner C. D., McInnes E. J. L., McMaster J., and Whittaster G., Wilson C., A phenol-imidazole pro-ligand that can exist as a phenoxyl radical, alone and when complexed to copper(II) and zinc(II) [J]. Dalton 2003: 1975-85.
    [17] (a) Carlini C., Isola M., Liuzzo V., Galletti A. M. R., and Sbrana G., Ethylene oligomerization by novel catalysts based on bis(salicylaldiminate)nickel(II) complexes and organoaluminum co-catalysts [J]. Appl. Catal. A: General 2002, 231: 307-320; (b) Carlini C., Macinai A., Galletti A. M. R., and Sbrana G., Styrene polymerization by ziegler-natta catalysts based on bis(salicylaldiminate)nickel(II) complexes and methyl aluminoxane [J]. Macromol. Symp. 2004, 213: 209-220; (c) Jang Y., Sung H.-K., Lee S., and Bae C. Effects of tris(pentafluorophenyl)borane on the activation of zerovalent-nickel complex in the addition polymerization of norbornene [J] Polymer 2005,46: 11301-10.
    [18] Carlini C., Martinelli M., Galletti A. M. R., and Sbrana G., Vinyl polymerization of norbornene by bis(nitro-substituted-salicylaldiminate)nickel(II)/methylaluminoxane catalysts [J]. J. Polym. Sci. Part A: polym. Chem. 2006,44: 1514-21.
    [19] (a) Sacchi M. C., Sonzogni M., Losio S., Forlini F., Locatelli P., Tritto I., and Licchelli M., Vinylic Polymerization of Norbornene by Late Transition Metal-Based Catalysis [J]. Macromol. Chem. Phys. 2001, 202: 2052-58; (b) Bao F., Lu X.-Q., Gao H,, Gui G., and Wu Q., Vinylic and ring-opening metathesis polymerization of norbornene with bis(β-ketoamine) cobalt complexes [J]. J. Polym. Sci. Part A: Polym. Chem. 2005,43: 5535-44.
    [20] Gao H., Zhang J., Chen Y., Zhu F., and Wu Q., Vinyl-polymerization of norbornene with novel anilido-imino nickel complexes/methylaluminoxane: Abnormal influence of polymerization temperature on molecular weight of polynorbornenes [J]. J. Mol. Catal.A:chem. 2005, 240: 178-85.
    [21] Barnes D. A., Benedikt G. M., Goodall B. L., Hung S. S., Kalamarides H. A., Lenhard S., McIntosh L. H., Selvy K. T., Shick R. A., and Rhodes L. F., Addition Polymerization of Norbomene-Type Monomers Using Neutral Nickel Complexes Containing Fluorinated Aryl Ligands [J]. Macromolecules, 2003, 36: 2623-32.
    [22] Zhao C., do R Ribeiro. M., de Pinho M. N., Subrahmanyam V. S., Gil C. L., and de Lima A. P., Structural characteristics and gas permeation properties of polynorbomenes with retained bicyclic structure [J]. Polymer 2001, 42(6): 2455-62.
    [23] Mast C., Krieger M., Dehnicke K., and Greiner A., Vinyl-type polymerization of norbornene by a nickel-based catalyst with phosphoraneiminato ligands [J]. Macromol. Rapid Commun. 1999, 20: 232-35.
    [24] Tsujino T., Saegusa T., and Furukawa J., Die Mkromol. Chem. 1965, 85: 71.
    [25] (a) Kennedy J. P., and Makowski H. S., J. Macromol. Sci. (Chem.)1967, AI: 345; (b) Mi X., Ma Z., Cui N., Wang L., and Hu Y., Vinyl polymerization of norbomene with dinuclear diimine nickel dichloride/MAO [J] J. Appl. Polym. Sci. 2003, 88: 3273-78.
    [26] (a) Wang H. -Y., Zhang J., Meng X., and Jin G.-X., Nickel (Ⅱ) complexes with β-enaminoketonato chelate ligands: Synthesis, solid-structure characterization and reactivity toward the addition polymerization of norbornene [J]. J. Organomet. Chem., 2006, 691: 1275-81; (b) Wang H. -Y., Meng X., and Jin G. -X., Dalton Trans. 2006, 2579; (c) Wang X., Jin G-X., Preparation, Structure, and Ethylene Polymerization Behavior of Half-Sandwich Picolyl-Functionalized Carborane Iridium, Ruthenium, and Rhodium Complexes [J]. Chem. Euro. J., chem 2005, 11: 5758-64.
    [27] Haselwander T. F. A., Heitz W., and Maskos M., Vinylic polymerization of norbornene by Pd(Ⅱ)-catalysis in the presence of ethylene [J]. Macromol. Rapid Commun. 1997, 18: 689-697.
    [28] Sheldrick G. M., SHELXL-97; Universitat Gtotingen: Germany, 1997.
    [1] (a) Natta G., Pino P., Corradine P., Danusso F., Mantica E., Mazzanti G., and Moraglio G., Crystalline High Polymers of α-Olefins [J]. J. Am. Chem. Soc. 1955, 77(6): 1708-1710; (b)Natta G., Pasquon I., Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer [J] J Am. Chem. Soc. 1962, 84(8): 1488-1490.
    [2] (a) Carrick W. L., Mechanism of Ethylene Polymerization with Vanadium Catalysts [J]. J. Am. Chem. Soc. 1958, 80(23): 6455-6456; (b) Carrick W. L., Kluiber, R. W., Bonner E. F., Wartman L. H., Rugg, F. M., and Smith J., Transition Metal Catalysts. I. Ethylene Polymerization with Soluble Catalyst Formed from an Aluminum Halide, Tetraphenyltin and a Vanadium Halide [J]. J. Am. Chem. Soc. 1960, 82(15): 3883-3887; (c) Lehr M. H., and Carmen C. J., Electron Spin Resonance Evidence of Inactive Ⅴ(Ⅲ) Precursor to Catalytically Active Ⅴ(Ⅲ) in Vanadium Tetrachloride Ziegler Catalysts [J]. Macromolecules 1969, 2(2): 217-219; (d) Lehr M. H. The Active Oxidation State of Vanadium in Soluble Monoolefin Polymerization Catalysts [J]. Macromolecules 1968, 1(2): 178-184.
    [3] (a) Christman D. L., and Keim G. I., Reactivities of Nonconjugated Dienes Used in Preparation of Terpolymers in Homogeneous Systems, Macromolecules, 1968, 1(4): 358-363; (b) Doi Y., Suzuki S., and Soga K., Living coordination polymerization of propene with a highly active vanadium-based catalyst, Macromolecules [J]. 1986, 19(12): 2896-900; (c) Addisson E. J., Polym. Sci. Part A: Polym. Chem., 1994, 32, 1033-; (d) Davis S. C., von Hellens W., Zahalka H., In Polyiner Material Encylopedia Salamone, J. C., Ed., CRC Press Inc., 1996, Vol. 3.
    [4] (a) Zambelli A., Pasquon I., Signorini R., and Natta G., Makromol. Chem., 1968, 112: 160-; (b) Zambelli A., Natta G., Pasquon L., and Signorini R. J. Polym. Sci., Part C, 1967, 16: 2485; (c) Doi Y., Kinoshita J., Morinaga A., and Keii T., J. Polym. Sci. Polym. Chem. Ed., 1975, 13: 2491.
    [5] Carrick W. L., Mechanism of Ethylene Polymerization with Vanadium Catalysts, J. Am. Chem. Soc., 1958, 80(23): 6455-6456.
    [6] Natta G., Zambelli A., Lanzi G., Pasquon I., Mognaschi E. R., Segre A. L., and Centola P., Makromol. Chem., 1965, 81: 161.
    [7] (a) Hagen H., Boersma J., van Koten G., Homogeneous vandadium-based catalysts for the Ziegler-Natta Polymerization of α-Olefins, Chem. Soc. Rev., 2002, 31: 357-64; (b) Ma Y., Reardon D., Gambarotta S., Yap G., Vanadium-Catalyzed Ethylene-Propylene Co-polymerization: The Question of the Metal Oxidation State in Ziegler-Natta Polymerization Promoted by (β-diketonate)_3V, Organometallics 1999, 18(15): 2773-2781.
    [8] (a) Gambarotta S., van Bolhuis F., Chiang M., Monomeric versus dimeric vanadium(Ⅲ) aryloxide formation. Syntheses and crystal structures of [(O-2, 6-ArMe_2)_2(μ-O-2, 6-ArMe_2)Ⅴ(Ⅲ)]_2THF and [(μ-O-2, 6-ArMe_2)_3Ⅴ(Ⅲ)(py)_2]_2(O-2, 6-ArMe2=2, 6-dimethylphenoxide) [J]. Inorg. Chem. 1987, 26: 4301-03; (b) Desmangles N., Gambarotta S., Bensimon C., Davis S., Zahalka H., Preparation and characterization of (R_2N)_2VCl_2 [R=Cy, i-Pr] and its activity as olefin polymerization catalyst [J]. J. Organomet. Chem. 1997, 562: 53.
    [9] (a) Chan M. C., Cole J., Gibson V. C., Howard J. A. K., Novel μ-Methyl Complexes of Vanadium and Their Relevance to Bimolecular Deactivation of Homogeneous Imidovanadium Polymerisation Catalysts, Chem. Commun., 1997: 2345-2346; (b) Chan M. C. W., Chew K. C., Dalby C. L., Gibson V. C., Kohlmann A., Litle I. R., Reed W., P olystyrene Supports for Vanadium Ethylene Polymerisation catalysts, Chem. Commun., 1998:1673-1674.
    [10] (a) Nomura K., Sagara A., and Imanishi Y., Olefm Polymerization and Ring-Opening Metathesis Polymerization of Norbomene by (Arylimido)(aryloxo)vanadium(Ⅴ) Complexes of the Type ⅤⅩ_2(NAr)(OAr'). Remarkable Effect of Aluminum Cocatalyst for the Coordination and Insertion and Ring-Opening Metathesis Polymerization, M acromolecules 2002, 35(5): 1583-1590; (b) Wang W., and Nomura K., Remarkable Effects of Aluminum Cocatalyst and Comonomer in Ethylene Copolymerizations Catalyzed by (Arylimido)(aryloxo)vanadium Complexes: Efficient Synthesis of High Molecular Weight Ethylene/Norbomene Copolymer, Macromolecules 2005, 38(14): 5905-5913.
    [11] Lorer C., Donnadieu B., and Choukroun R., Synthesis and X-ray characterization of a m onomeric Cp-free d~l imido-vanadium(Ⅳ) complex, J Chem. Soc., Dalton Trans., 2000: 4497-498.
    [12] Ma Y. L., Reardon D., Gambarota S., Yap G., Zahalka H., and Lemay C., Vanadium- Catalyzed Ethylene-Propylene Copolymerization: The Question of the Metal Oxidation State in Ziegler-Natta Polymerization Promoted by (β-diketonate)3 V, Organometallics 1999, 18: 2773-2781.
    [13] (a) Brussee E. A. C., Meetsma A., Hessen B., and Teuben J. H., Electron-Deficient Vanadium(Ⅲ) Alkyl and Allyl Complexes with A midinate Ancillary Ligands, Organom etallics 1998, 17: 4090-4095; (b) Brussee E. A. C., Meetsma A., Hessen B., Teuben J. H., The N, N'-Bis(trimethylsilyl)pentafluorobenzamidinate Ligand: Enhanced Ethene Ol igomerisation with aNeutral Ⅴ(Ⅲ) Bis(benzamidinate) Alkyl Catalyst, Chem. Commun. 2000: 497-498.
    [14] Brandsma M. J. R., Brussee E. A. C., Meetsma A., Hessen B., and Teuben J. H., An A midinate Ligand with a Pendant Amine Functionality; Synthesis of a Vanadium(III) Complex and Ethene Polymerization Catalysis, Eur. J. Inorg. Chem., 1998:1867-1870.
    [15] Lorber C., Donnadieu B., and Choukroun R., Synthesis and Structure of Group 4 and 5 Metal Complexes with an Ancillary Sterically Demanding Diamido Ligand, Organometallics 2000, 19(10): 1963-1966.
    [16] Kim W., Fevpa M. J., Liable-Sands L. M.; Rheingold A. L., and Theopold K. H., [(Ph)_2 nacnac]MCl_2(THF)_2(M=Ti, V, Cr): A New Class of Homogeneous Olefin Polymerization Catalysts Featuring p-Diiminate Ligands, Organometallics 1998, 17(21): 4541-4543.
    [17] Takaoki K., Miyatake T., Macromol. Symp., 2000, 157:251-7.
    [18] Janas Z., Jerzykiewicz L. B., Richards R. L., and Sobota P., Synthesis and molecular structure of vanadium(Ⅲ) dithiolate complexes: a new class of alkene polymerization catalysts [J]. Chem. Commun., 1999: 1015-6.
    [19] Tomov A. K., Gibson V. C., Zaher D., Elsegood M. R. J., and DaleS. H., Bis(benzimidazole)amine vanadium catalysts for olefin polymerization and co-polymerisation: thermally robust, single-site catalysts activated bysimple alkylaluminium reagents [J] Chem. Commun., 2004: 1956-1957.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700