用户名: 密码: 验证码:
根癌农杆菌介导深绿木霉(Trichoderma atroviride)T23转化体系的建立以及高效降解敌敌畏突变株筛选与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究成功建立了高效的农杆菌介导转化深绿木霉(Trichoderma atroviride)T23转化体系,转化效率可达50个转化子/107个孢子。从110株稳定遗传的突变株中筛选到7株敌敌畏降解率显著变化的突变子。其中两株(AMT-12和AMT-28)敌敌畏降解率较出发菌T23提高10%以上,生物学分析发现其产孢能力明显下降,但其对敌敌畏的耐受性与T23基本一致。另外,还有5株突变子AMT-18、AMT-25、AMT-44、AMT-64和AMT-92的降解率较T23降低70%,但产孢能力保持不变,它们对敌敌畏的耐受能力是T23的4倍(800μg/mL)。Southern杂交检测证实AMT-12和AMT-28是T-DNA单拷贝插入突变子,而另外5株降解率下降的突变子为T-DNA多拷贝插入。我们克隆了突变株AMT-12和AMT-28的侧翼序列,其长度分别为1845bp和1730bp。经BLAST分析发现序列与深绿木霉测序菌株IMI206040分别具有89%和88%的相似性。但是,这2个侧翼序列所在的基因与降解敌敌畏的关系还需深入研究。
     为了深入研究木霉在处理敌敌畏废水中的作用,试验以突变株AMT-28为例,采用海藻酸钙滴珠法建立了其孢子固定化技术体系,并探讨了深绿木霉菌生物降解敌敌畏的可能机制。在纯培养条件下,以海藻酸钙固定107个孢子(107孢子/100mL的3%海藻酸钠悬液)降解敌敌畏的效果最好。与固定化菌丝和非固定化菌丝相比,固定化孢子对敌敌畏的降解率有显著性提高。在重复利用实验中,固定化孢子和固定化菌丝小球在5个连续批次测试中显示了良好的降解能力,且随着批次增加,固定化孢子对敌敌畏的降解率有一定程度的提高。固定化菌丝小球在储存一个月后,其降解能力大大下降,而固定化孢子非但没有下降,还有某种程度的提高。为了监测菌丝体对敌敌畏的降解情况,实验中采用了HPLC法分析了突变株AMT-28的发酵液,确认AMT-28能够在7天内完全降解敌敌畏。同时,利用缺陷培养基纯培养发现,AMT-28能够在无外加碳源或者磷源的情况下降解敌敌畏,氮元素对AMT-28降解敌敌畏的影响很大。解吸附实验证实敌敌畏的减少是由于木霉的生物降解而非吸附作用。酶定位研究结果提示深绿木霉菌T23中存在诱导型胞内敌敌畏降解酶。实验末期降解液的pH与敌敌畏添加初始浓度成正相关,由此推测木霉降解敌敌畏是通过生物矿化作用完成的。
A protocol for efficient Agrobacterium tumefaciens-mediated transformation (ATMT) of biocontrol fungus Trichoderma atroviride strain T23 was developed to construct mutants with improved dichlorvos-degradation ability. A transformation frequency of 5×10-6 was achieved. Among 110 genetically stable T-DNA transformants of T. atroviride T23, two transformants, AMT-12 and AMT-28, confirmed by Southern blot analysis to have single-copy inserts of T-DNA, showed an increase in dichlorvos-degradation ability of more than 10% compared to that of the wild type, exhibited similar tolerance to the pesticide, but lower spore formation ability. Five transformants exhibited a reduction in degradation of more than 70%, exhibited wild-type spore formation, and tolerated up to 800μg/mL of dichlorvos. The left-flanking sequence of the insertion site in AMT-12 and AMT-28 were cloned as a 1845-bp and 1730-bp fragments and shown to have 89% and 88% identity to the DNA from T. atroviride IMI 206040, respectively; however, the involvement of these DNA fragments in dichlorvos degradation remains still to be determined. This study can promote both a more efficient isolation of DNA sequence flanking T-DNA integration site in T. atroviride mutants and a more rational utilization of these transformants in dichlorvos degradation.
     An immobilizing conidia approach was successfully established to study the degradation ability of dichlorvos in AMT-28, and the biodegradation mechanism of DDVP in this fungus was also investigated. The beads immobilized 10'conidia per 100 mL of Na-alginate solution exhibited the highest degradation rate compared to that of 105 and 109 conidia under the experimental conditions. The immobilized AMT-28 conidia showed improved degradation abilities than immobilized or free mycelia. The beads immobilized cells (conidia and mycelia) of AMT-28 kept good storage stability and reutilization capacity, the degradation abilities of them did not decrease, but there were somewhat degree of increase in five bathes of samples through one-month determination test. The dichlorvos in Burk medium with mycelia of AMT-28 was confirmed to be completely removed using HPLC analysis. The dichlorvos degradation in auxotrophic Burk media (designated as N-, P- and C-, respectively) varied with different nitrogen, phosphorus and carbon sources, and it was found to be dramatically affected by nitrogen sources. Dichlorvos could be adopted as a sole carbon or phosphorus source of AMT-28. Meanwhile, The results revealed that the major reason for dichlorvos removal in AMT-28 should be attributed to the fungal biodegradation and there was no detectable biosorption in this study. Inducible intracellular degrading enzyme of dichlorvos could be promoted by a small amount of dichlorvos at the initial stage of this organophosphorus compound stress. Overall, the dichlorvos degradation in AMT-28 was likely to be a kind of Biomineralization process.
引文
[1]Gianfreda L, Rao MA. Potential of extra cellular enzymes in remediation of polluted soils:a review[J]. Enzyme Microb. Technol.2004,35:339-354.
    [2]Singh BK, Walker A. Microbial degradation of organophosphorus compounds[J]. FEMS Microbiol Rev.2006,30:428-471.
    [3]Ragnarsdottir K. Environmental fate and toxicology of organophosphate pesticides[J]. Journal of the Geological Society.2000,157:859-876.
    [4]Sogorb MA, Vilanova E, Carrera V. Future applications of phosphotriesterases in the prophylaxis and treatment of organophosporus insecticide and nerve agent poisonings[J]. Toxicol. Lett.2004,151:219-233.
    [5]Chen W, Mulchandani A. The use of live biocatalysts for pesticide detoxification[J]. Trends Biotechnol.1998,16:71-76.
    [6]da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities[J]. Nature.2002,417:459-463.
    [7]Yair S, Ofer B, Arik E, Shai S, Yossi R, Tzvika D et al. Organophosphate Degrading Microorganisms and Enzymes as Biocatalysts in Environmental and Personal Decontamination Applications [J]. Crit. Rev. Biotechnol.2008, 28:265-275.
    [8]Cheng TC, DeFrank JJ, Rastogi VK. Alteromonas prolidase for organophosphorus G-agent decontamination[J]. Chem. Biol. Interact.1999,120:455-462.
    [9]Amitai G, Gaidukov L, Adani R, Yishay S, Yacov G, Kushnir M et al. Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase[J]. Febs J.2006,273:1906-1919.
    [10]Benning MM, Hong SB, Raushel FM, Holden HM. The binding of substrate analogs to phosphotriesterase[J]. J. Biol. Chem.2000,275:30556-30560.
    [11]Cho CMH, Mulchandani A, Chen W. Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents[J]. Appl. Environ. Microbiol.2002,68:2026-2030.
    [12]Efremenko E, Peregudov A, Kildeeva N, Perminov P, Varfolomeyev S. New enzymatic immobilized biocatalysts for detoxification of organophosphorus compounds[J]. Biocatal. Biotransform.2005,23:103-108.
    [13]Gopal S, Rastogi V, Ashman W, Mulbry W. Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX[J]. Biochem. Biophys. Res. Commun.2000,279:516-519.
    [14]Ortiz-Hernandez ML, Quintero-Ramirez R, Nava-Ocampo AA, Bello-Ramirez AM. Study of the mechanism of Flavobacterium sp for hydrolyzing organophosphate pesticides[J]. Fund Clin Pharmacol.2003,17:717-723.
    [15]Rastogi VK, DeFrank JJ, Cheng TC, Wild JR. Enzymatic hydrolysis of Russian-VX by organophosphorus hydrolase[J]. Biochem. Biophys. Res. Commun.1997, 241:294-296.
    [16]Geraldine P, Bhavan PS, Kaliamurthy J, Zayapragassarazan Z. Effects of dichlorvos intoxication in the freshwater prawn, Macrobrachium malcolmsonii.[J]. J. Environ. Biol.1999,20:141-148.
    [17]Druzina B, Stegu M. Degradation study of selected organophosphorus insecticides in natural waters[J]. Int. J. Environ. Anal. Chem.2007,87:1079-1093.
    [18]Matsumura F, Boush GM. Degradation of insecticides by a soil fungus, trichoderma viride[J]. J. Econ. Entomol.1968,61:610-612.
    [19]Koga M, Kadokami K, Shinohara R. Laboratory-scale ozonation of water contaminated with trace pesticides[J]. Water Science and Technology (United Kingdom).1992,26:2257-2260.
    [20]Lu MC, Chen JN, Chang CP. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton's reagent[J]. Chemosphere.1997,35:2285-2293.
    [21]Lu M, Chen J, Chang C. Oxidation of dichlorvos with hydrogen peroxide using ferrous ion as catalyst[J]. J. Hazard. Mater.1999,65:277-288.
    [22]Harada K, Hisanaga T, Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J]. Water Res.1990, 24:1415-1417.
    [23]Lu M, Roam G, Chen J, Huang C. Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass[J]. J. Photochem. Photobiol., A.1993,76:103-110.
    [24]Lu M. Photocatalytic oxidation of dichlorvos in the presence of hydrogen peroxide and ferrous ion[J]. Water Sci. Technol.1994,30:29-38.
    [25]Roam M, Huang J. Photocatalytic mineralization of toxic chemicals with illuminated TiO2[J]. Chem. Eng. Commun.1995,139:1-13.
    [26]Mengyue Z, Shifu C, Yaowu T. Photocatalytic degradation of organophosphorus pesticides using thin films of TiO2[J]. Journal of Chemical Technology & Biotechnology.2004,64:339-344.
    [27]Oancea P, Oncescu T. The photocatalytic degradation of dichlorvos under solar irradiation[J]. Journal of Photochemistry & Photobiology A:Chemistry.2008, 199:8-13.
    [28]Liu C, Qiang Z, Adams C, Tian F, Zhang T. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment[J]. Water Res.2009,43:3435-3442.
    [29]Schramm JD, Hua I. Ultrasonic irradiation of dichlorvos:Decomposition mechanism[J]. Water Res.2001,35:665-674.
    [30]Benoit-Marquie F, de Montety C, Gilard V, Martino R, Maurette MT, Malet-Martino M. Dichlorvos degradation studied by P-31-NMR[J]. Environ. Chem. Lett.2004,2:93-97.
    [31]Zhang Q, Qu X, Wang W. Mechanism of OH-initiated atmospheric photooxidation of dichlorvos:a quantum mechanical study[J]. Environ. Sci. Technol.2007, 41:6109-6116.
    [32]Oncescu T, Oancea P, Enache M, Popescu G, Dumitru L, Kamekura M. Halophilic bacteria are able to decontaminate dichlorvos, a pesticide, from saline environments[J]. Cent. Eur. J. Bio.2007,2:563-573.
    [33]Hussey N, Hughes J.Investigations on the use of dichlorvos in the control of the mushroom phorid, Megaselia halterata (Wood)[J]. Ann. Appl. Biol.1964, 54:129-139.
    [34]Lamoreaux R, Newland L. The fate of dichlorvos in soil[J]. Chemosphere.1978, 7:807-814.
    [35]Lieberman M, Alexander M. Microbial and nonenzymic steps in the decomposition of dichlorvos (2,2-dichlorovinyl O, O-dimethyl phosphate)[J]. J. Agric. Food. Chem.1983,31:265-267.
    [36]Tang J, Liu L, Hu S, Chen Y, Chen J. Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI)[J]. Bioresour. Technol.2009,100:480-483.
    [37]付文祥,郭立正.敌敌畏降解真菌的分离及其特性研究[J].环境科学与技术.2006,29:32-34.
    [38]付文祥.有机磷农药降解菌木霉FM10的生长条件研究[J].生物磁学.2005,5:29-31.
    [39]刘新,尤民生,魏英智,廖金英,叶绿绿,陈金.降解毒死蜱曲霉Y的分离和降解效能测定[J].应用与环境生物学报.2003,9:78-80.
    [40]刘新,尤民生,魏英智,蔡志成,廖金英.木霉Y对毒死蜱和甲胺磷的降解作用[J].福建农林大学学报(自然科学版).2002,31:455-458.
    [41]Harcourt RL, Home I, Sutherland TD, Hammock BD, Russell RJ, Oakeshott JG. Development of a simple and sensitive fluorimetric method for isolation of coumaphos-hydrolysing bacteria[J]. Lett. Appl. Microbiol.2002,34:263-268.
    [42]张瑞福,吴旭平,樊奔,何健,蒋建东,李顺鹏.污染土壤中有机磷农药降解菌的分离及其多样性[J].生态学报.2005,25:1502-1508.
    [43]Kahmann R, Basse C. REMI (Restriction Enzyme Mediated Integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants[J]. Eur J Plant Pathol.1999,105:221-229.
    [44]迟归兵,魏士平,潘洪玉,彭友良.稻瘟病REMI突变体库的构建[J].内蒙古民族大学学报(自然科学版).2004,19:287-289.
    [45]Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas P. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae[J]. The EMBO Journal.1995,14:3206-3214.
    [46]Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum:An efficient tool for insertional mutagenesis and gene transfer[J]. Phytopathology.2001,91:173-180.
    [47]De Groot M, Bundock P, Hooykaas P, Beijersbergen A. Agrobacterium tumefaciens-mediated transformation of filamentous fungi[J]. Nat. Biotechnol.1998, 16:839-842.
    [48]Covert S, Kapoor P, Lee M, Briley A, Nairn C. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum[J]. Mycol. Res.2001, 105:259-264.
    [49]Figueiredo JG, Goulin EH, Tanaka F, Stringari D, Kava-Cordeiro V, Galli-Terasawa LV et al. Agrobacterium tumefaciens-mediated transformation of Guignardia citricarpa[J]. J. Microbiol. Methods.2010,80:143-147.
    [50]Ji L, Jiang Z-D, Liu Y, Koh CMJ, Zhang L-H. A Simplified and efficient method for transformation and gene tagging of Ustilago maydis using frozen cells[J]. Fungal Genetics and Biology.2010,47:279-287.
    [51]Michielse C, Hooykaas P, van den Hondel C, Ram A. Agrobacterium-mediated transformation as a tool for functional genomics in fungi[J]. Current genetics.2005, 48:1-17.
    [52]高兴喜,杨谦,宋金柱,郭兆奎.根癌农杆菌介导的木霉菌遗传转化方法[J].高技术通讯.2004,5:32-35.
    [53]高兴喜,杨谦.根癌农杆菌介导的CryA(b)基因在哈茨木霉菌中的转化[J].科学通报.2004,49:2193-2197.
    [54]高兴喜,杨谦.根癌农杆菌介导的球毛壳菌遗传转化及T-DNA插入突变体的获得[J].微生物学报.2005,45:129-131.
    [55]赵湛,李文生.不同根癌农杆菌菌株类型对木霉菌遗传转化效率的影响[J].北方园艺.2006,3:14-15.
    [56]Zhong YH, Wang XL, Wang TH, Jiang Q. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis[J]. Appl. Microbiol. Biotechnol.2007,73:1348-1354.
    [57]Zhong YH, Wang TH, Wang XL, Zhang GT, Yu HN. Identification and characterization of a novel gene, TrCCDl, and its possible function in hyphal growth and conidiospore development of Trichoderma reesei[J]. Fungal Genetics and Biology.2009,46:255-263.
    [58]Cardoza R, Vizcaino J, Hermosa M, Monte E, Gutierrez S. A Comparison of the Phenotypic and Genetic Stability of Recombinant Trichoderma spp. Generated by Protoplast-and Agrobacterium-Mediated Transformation[J]. The Journal of Microbiology.2006:383-395.
    [59]Zeilinger S. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation[J]. Current genetics.2004,45:54-60.
    [60]伍宁丰,邓敏捷,史秀云,梁果义,姚斌,范云六.一种新的有机磷降解酶的分离纯化及酶学性质研究[J].科学通报.2003,48:2446-2450.
    [61]邓敏捷,伍宁丰,梁果义,初晓宇,姚斌,范云六.一种新的有机磷降解酶基因ophc2的克隆与表达[J].科学通报.2004,49:1068-1072.
    [62]Zhang R, Cui Z, Zhang X, Jiang J, Gu J, Li S. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer [J]. Biodegradation.2006,17:465-472.
    [63]Cui ZL, Li SP, Fu GP. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene[J]. Appl. Environ. Microbiol.2001, 67:4922-4925.
    [64]Liu YH, Liu Y, Chen ZS, Lian J, Huang X, Chung YC. Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillin lilacinum BP303[J]. Enzyme Microb. Tech..2004,34:297-303.
    [65]Mulbry W, Karns J. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein[J]. J. Bacteriol.1989,171:6740-6746.
    [66]Berne C, Montjarret B, Guountti Y, Garcia D. Tributyl phosphate degradation by Serratia odorifera[J]. Biotechnol. Lett.2004,26:681-686.
    [67]Deshpande NM, Sarnaik SS, Paranjpe SA, Kanekar PP. Optimization of dimethoate degradation by Brevundimonas sp MCM B-427 using factorial design:studies on interactive effects of environmental factors[J].World J Microb Biot.2004, 20:455-462.
    [68]Chaudhry G, Ali A, Wheeler W. Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp[J]. Appl. Environ. Microbiol.1988,54:288-293.
    [69]Cheng TC, Harvey SP, Chen GL. Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme[J]. Appl Environ Microbiol.1996, 62:1636-1641.
    [70]Ohshiro K, Kakuta T, Nikaidou N, Watanabe T, Uchiyama T. Molecular cloning and nucleotide sequencing of organophosphorus insecticide hydrolase gene from Arthrobacter sp. strain B-5[J]. J Biosci Bioeng.1999,87:531-534.
    [71]Home I, Sutherland TD, Harcourt RL, Russell RJ, Oakeshott JG. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate[J]. Appl Environ Microbiol.2002,68:3371-3376.
    [72]de Vasconcelo A, de Almeida D, Hungria M, Guimaraes C, Ant nio R, Almeida F et al. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability[J]. PNAS.2003, 100:11660-11665.
    [73]Zhou ZY, Yin TS, Tang YH. Catalytic spectrophotometric determination of trace dipterex[J]. Chin. J. Anal. Chem.1996,10:1190-1192.
    [74]Cho C, Mulchandani A, Chen W. Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos[J]. Appl. Environ. Microbiol.2004,70:4681-4685.
    [75]Sambrook J, Russell D. Molecular cloning:a laboratory manual[M] (2001) New York:CSHL press.
    [76]dos Reis M, Pelegrinelli Fungaro M, Delgado Duarte R, Furlaneto L, Furlaneto M. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana[J]. J. Microbiol. Methods.2004, 58:197-202.
    [77]Combier J, Melayah D, Raffier C, Gay G, Marmeisse R. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum[J]. FEMS Microbiol. Lett.2003,220:141-148.
    [78]McClelland C, Chang Y, Kwon-Chung K. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens[J]. Fungal Genetics and Biology.2005,42:904-913.
    [79]Zhong Y, Wang X, Wang T, Jiang Q. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis[J]. Appl. Microbiol. Biotechnol.2007,73:1348-1354.
    [80]Weld R, Eady C, Ridgway H. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum[J]. J. Microbiol. Methods.2006,65:202-207.
    [81]Gilliom RJ. Pesticides in U.S. Streams and Groundwater[J]. Environ. Sci. Technol. 2007,41:3408-3414.
    [82]Hofer W. Chemistry of metrifonate and dichlorvos[J]. Acta Pharmacol Toxicol (Copenh).1981,49 Suppl 5:7-14.
    [83]Lu CS, Barr DB, Pearson MA, Waller LA. Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children[J]. Environ. Health Perspect.2008,116:537-542.
    [84]Woo S, Scala F, Ruocco M, Lorito M. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants[J]. Phytopathology. 2006,96:181-185.
    [85]Karpouzas D, Singh B. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis[J]. Advances in Microbial Physiology. 2006,51:119-225.
    [86]Zboinska E, Maliszewska I, Lejczak B, Kafarski P. Degradation of organophosphonates by Penicillium citrinum[J]. Lett. Appl. Microbiol.1992, 15:269-272.
    [87]Benoit-Marquie F, de Montety C, Gilard V, Martino R, Maurette M, Malet-Martino M. Dichlorvos degradation studied by 31 P-NMR[J]. Environ. Chem. Lett.2004, 2:93-97.
    [88]Oancea P, Oncescu T. The photocatalytic degradation of dichlorvos under solar irradiation[J]. Journal of Photochemistry & Photobiology, A:Chemistry.2008, 199:8-13.
    [89]Zhang R, Cui Z, Jiang J, He J, Gu X, Li S. Diversity of organophosphorus pesticide-degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes[J]. Can. J. Microbiol.2005,51:337-343.
    [90]Li X, Jiang J, Gu L, Ali S, He J, Li S. Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples[J]. Int. Biodeterior. Biodegrad. 2008,62:331-335.
    [91]Liu Y, Huang N. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR[J]. Plant Molecular Biology Reporter.1998,16:175-175.
    [92]Blaise F, Remy E, Meyer M, Zhou L, Narcy J, Roux J et al. A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans[J]. Fungal Genetics and Biology.2007,44:123-138.
    [93]Jones DH. Panhandle PCR[J]. Genome Res.1995,4:195-201.
    [94]Betts M, Tucker S, Galadima N, Meng Y, Patel G, Li L et al. Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae[J]. Fungal Genetics and Biology.2007,44:1035-1049.
    [95]Kobaslija M, McQuade DT. Removable colored coatings based on calcium alginate hydrogels[J]. Biomacromolecules.2006,7:2357-2361.
    [96]Olivas GI, Barbosa-Canovas GV. Alginate-calcium films:Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity[J]. Lwt-Food Sci. Technol.2008,41:359-366.
    [97]Tam NFY, Wong YS, Wong MH. Novel technology in pollutant removal at source and bioremediation[J]. Ocean & Coastal Management.2009,52:368-373.
    [98]de-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants:Review of practical aspects[J]. Bioresource Technol.2010,101:1611-1627.
    [99]Quan C, Fan S, Ohta Y. Immobilization of Candida krusei cells producing phytase in alginate gel beads:an application of the preparation of myo-inositol phosphates[J]. Appl. Microbiol. Biotechnol.2003,62:41-47.
    [100]Arica M, Kacar Y, Gen Entrapment of white-rot fungus Trametes versicolor in Ca-alginate beads:preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution[J]. Bioresour. Technol.2001,80:121-129.
    [101]Manohar S, Kim CK, Karegoudar TB. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp strain NGK1 in polyurethane foam[J]. Appl. Microbiol. Biotechnol.2001,55:311-316.
    [102]Kim JW, Rainina El, Mulbry WW, Engler CR, Wild JR. Enhanced-rate biodegradation of organophosphate neurotoxins by immobilized nongrowing bacteria[J]. Biotechnol. Progr.2002,18:429-436.
    [103]Moreno-Garrido I. Microalgae immobilization:Current techniques and uses[J]. Bioresour. Technol.2008,99:3949-3964.
    [104]Park JK, Chang HN. Microencapsulation of microbial cells[J]. Biotechnol. Adv. 2000,18:303-319.
    [105]Zhou XY, Liu LX, Chen YP, Xu SF, Chen J. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii[J]. Can. J. Microbiol.2007,53:1033-1037.
    [106]Ha J, Engler CR, Wild JR. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads[J]. Bioresour. Technol.2009,100:1138-1142.
    [107]Ates S, Dingil N, Bayraktar E, Mehmetoglu U. Enhancement of citric acid production by immobilized and freely suspended Aspergillus niger using silicone oil[J]. Process Biochem.2002,38:433-436.
    [108]Demirel G, Yaykasli KO, Yasar A. The production of citric acid by using immobilized Aspergillus niger A-9 and investigation of its various effects [J]. Food Chem.2005,89:393-396.
    [109]Wu J, Yu HQ. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions[J]. Bioresour. Technol.2007, 98:253-259.
    [110]Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O. Adsorption of phenol by bentonite[J]. Environ. Pollut.2000,107:391-398.
    [111]Barriuso E, Calvert R, Benoit P. Biosorption characterization of herbicides,2,4-D and atrazine, and two chlorophenols on fungal mycelium[J]. Chemosphere.1998, 37:1271-1282.
    [112]Daughney CJ, Fein JB. Sorption of 2,4,6-Trichlorophenol by bacillus subtilis[J]. Environ. Sci. Technol.1998,32:749-752.
    [113]Unni L, Hannant M, Becker R. High-performance liquid chromatographic method using ultraviolet detection for measuring metrifonate and dichlorvos levels in human plasma[J]. J. Chromatogr.1992,573:99-103.
    [114]Behera S, Kar S, Mohanty RC, Ray RC. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar agar and Ca-alginate matrices[J]. Appl. Energy. 2010,87:96-100.
    [115]Dwyer D, Krumme M, Boyd S, Tiedje J. Kinetics of phenol biodegradation by an immobilized methanogenic consortium[J]. Appl. Environ. Microbiol.1986, 52:345-351.
    [116]Akimoto C, Aoyagi H, Tanaka H. Endogenous elicitor-like effects of alginate on physiological activities of plant cells[J]. Appl. Microbiol. Biotechnol.1999, 52:429-436.
    [117]Smith M, Haan A, Bont J. The effect of calcium alginate entrapment on the physiology of Mycobacterium sp. strain E3[J]. Appl. Microbiol. Biotechnol.1993, 38:642-648.
    [118]Chen D, Chen J, Zhong W, Cheng Z. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1[J]. Bioresour. Technol.2008, 99:4702-4708.
    [119]Liu YJ, Zhang AN, Wang XC. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03[J]. Biochemical Engineering Journal.2009,44:187-192.
    [120]Ting YP, Sun G. Comparative study on polyvinyl alcohol and alginate for cell immobilization in biosorption[J]. Water Sci. Technol.2000,42:85-90.
    [121]Chen j, Zhuang jh, Gao zg. The method of Trichoderma chlamydospore production[P](2005) China.p.1-7.
    [122]Balkaya N. Pesticide removal from wastewater[J]. Int. J. Water.2002,2:212-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700