用户名: 密码: 验证码:
循环流化床锅炉风帽阻力特性与射流深度的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
循环流化床锅炉(CFB)具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,是目前煤洁净燃烧的主要应用方向。风帽作为CFB上的关键部件对锅炉的燃烧过程有着重要影响。本文搭建了循环流化床布风板风帽特性研究的多功能试验台,进行了不同形式风帽的阻力实验和风帽小孔的射流实验。
     针对包头第一热电厂循环流化床锅炉风帽的改造,并自主设计和制造了新型的多角度侧箭头型风帽,用U型压力计测量了各种典型风帽的阻力变化情况,得出了风帽结构的阻力系数,并定性比较了其优缺点。
     风帽作为循环流化床锅炉燃烧设计中的核心部件,其阻力特性从一个侧面反映了风帽的性能,而风帽在密相区,尤其是其附近气固流动行为可以通过风帽喷出气体射流的流动轨迹和射流穿透床层的距离来宏观地描述。本文对包头第一电厂9#、10#锅炉改造前后的两种风帽射流深度进行了理论分析和研究。根据动量定理和适当的物理简化,建立了风帽斜向下射流的物理模型,根据密度相近的模化条件建立了射流运动的等效水模化试验台,最后,对改造前后两种风帽在循环流化床锅炉密相区的射流深度进行了对比。结果表明:实测的射流穿透深度和理论计算值吻合,并得到改造前后风帽射流深度的变化情况,为工程设计中风帽的选型与优化和改造提供有益参考。
Boiler is one of the main steam power plants. Compared by the other boilers, CFB boiler has its own character .Especially as the advanced clean combustion technology, the large CFB boiler has a strong competitive in the market. So it has important theoretical and practical meaning to study the key problems of the large CFB boiler. This dissertation performs research on the nozzle structure, nozzle resistance character, penetrated depth of nozzle jet in the dense etc.
     Nozzle is the important burner in the CFB boiler, and its resistance coefficient is the base of the nozzle design. The nozzle resistance has great impact on the economy and stability of the running CFB boiler. The second chapter establishes on the nozzle test stand, and study four typical nozzle drag coefficient,Γtype, symmetrical arrow type and side arrow type which are developed independently, which compares qualitatively their own advantage and disadvantage. Thus the research helps to choose the nozzle in the engineering design。
     Jet’s moving in the dense phase from the nozzle is an important research subject. The third chapter based on the momentum theorem, simplified properly, physical models of the nozzle jet on the depth and the track of the jet in the dense phase which has been developed. Meanwhile, according to the simulated conditions of similar density, an equivalent water model test stand on the jet movement in the CFB dense-phase zone has been established. Compared with the physical model, the experiments agree well. The models can theoretically guide the structural design of the nozzle in the large CFB boiler and be value of engineering practice.
引文
[1]章名耀,李大骥,蔡宁生等.关于我国发展先进燃煤发电技术的建议.动力工程,1994.2
    [2]熊天柱,田子平,李军等.循环流化床锅炉的大型化.锅炉技术,2004(2):16
    [3]岑可法,倪明江,骆仲映等.循环流化床锅炉理论设计与运行.北京:中国电力出版社,1998第一版
    [4]党黎军.循环流化床锅炉的启动调试与安全运行.中国电力出版社,2000
    [5]缪正清,冯冰潇等.电站锅炉关键技术及其市场前景分析.模糊控制通讯,2006(4):133-141
    [6]付萍.循环流化床锅炉特性分析及其参数优化.华北电力大学硕士学位论文,2004
    [7]雍玉梅.循环流化床锅炉大型化的数值模拟,中国科学院工程热物理研究所博士学位论文.2005
    [8]欧阳洁,李静海.循环流化床中宏观非均匀结构的计算机模拟.化工冶金,1999,20(2):144-149
    [9]张磕,由长福,徐旭常等.循环流化床内气固两相流中稠密颗粒间碰撞的数值模拟.工程热物理学报,1998,19(2):256-260
    [10] Zhou,H.,Flamant,G,Gauthier,D.,Lu,J.,Lagrangian approach for simulating the gas-particle flow structure in a circulating fluidized bed riser.Int.J.MultiphaseFlow,2002,28(2):1801-1821
    [11] F.A.Zenz particulate Solids:The Third Phase in Chemical Engineering,Chemical Engineering,NO.24.1983
    [12]张全胜,叶四.DG440t/h循环流化床锅炉技术特点及存在的问题.热力发电, 2004(7):86-91
    [13]朱皑强,芮新红等.循环流化床锅炉设备及系统.北京:中国电力出版社,2004
    [14]阎维平,边疆等.CFB布风板漏渣与稳定性.动力工程,2004(1):1-4
    [15]吕清刚,那永洁,包绍麟.循环流化床锅炉的工作过程及系统集成.全国电力行业CFB机组技术交流资料汇编,2003(补充):27-37
    [16] JoaehimWerther.FluidizationtechnologydevelopmentTheindustry/aeademiaeollaborationissue.PowderTeehnology,2000(113):230-241
    [17]余申,包绍麟,乔晓辉等.捷克波兰循环流化床电厂考察报告.中国科学院工程热物理研究所内部报告,2000(1):227-293
    [18]李军.杭州循环流化床应用之现状及相关问题的讨论.全国电力行业CFB机组技术交流资料汇编,2003(3):34-42
    [19]李涛,国内首台超高压中间再热循环流化床锅炉简介及试运故障分析.全国电力行业CFB机组技术交流资料汇编,2003(2):174-178
    [20]戴德彦,刘文正.沈阳热电厂220t/h循环流化床锅炉运行情况及排渣系统改造.全国电力行业CFB机组技术交流资料汇编,2003(3):25-33
    [21]陈念祖,朱云鹏.我国首台自主知识产权的41Ot/h循环流化床锅炉调试简介.全国电力行业CFB机组技术交流资料汇编,2003(补充):87-93
    [22]安国银,边疆,赵建英等.保定热电厂技改工程450th/CFB锅炉的调试及运行.全国电力行业CFB机组技术交流资料汇编,2003(2):82-89
    [23]郝明月,李农强.DG410/9.81-9.9型CFB锅炉运行分析.全国电力行业CFB机组技术交流资料汇编,2003(2):97-101
    [24]余申,包绍麟,乔晓辉等.捷克波兰循环流化床电厂考察报告.中国科学院工程热物理研究所内部报告,2003:197-215
    [25]赵弦.内嵌逆流柱形风帽的冷态模化试验和三维流场的数值模拟.中国科学院工程热物理研究所硕士论文, 2006
    [26]缪正清,于忠义等风帽垂直向下射流穿透床层深度的研究.动力工程,2007(6):899-920
    [27]冯冰潇,缪正清等循环流化床布风板风帽特性及炉膛传热的研究.上海交通大学硕士论文,2007
    [28]荆有印,王保生,张福章等.煤粉锅炉改循环流化床锅炉的研究.电站系统工程, 2001,(04):42-48
    [29]张栋荆有印等470t/h循环流化床锅炉一次风室流场特性研究.华北电力大学(河北)硕士论文,2006
    [30]岑可法,池勇.洁净煤技术的研究和发展.动力工程,1997,17(5):15-20
    [31]骆仲怏,倪明江.循环流化床流体特性的实验研究.浙江大学学报,1987,21(6):84-92
    [32]石惠娴,王勤辉,骆仲怏等.PIV应用于气固多相流动的研究现状.动力工程,2002,(1):1589-1593
    [33]吴学成,王勤辉,骆仲怏,高琼,方梦祥,岑可法.高速数字摄影应用于流化床内颗粒旋转特性的测试.中国电机工程学报, 2005, 25(17): 72-77.
    [34]骆仲泱,吴学成,王勤辉,高琼,方梦祥,岑可法.循环流化床中颗粒旋转特性。化工学报, 2005, 56(10): 1869-1874.
    [35]王勤辉,高琼,石惠娴,吴学成,骆仲泱,岑可法.循环流化床中的颗粒团形成、结构及其运动.浙江大学学报(工学版), 2006, 40(1): 118-122.
    [36] Grace J R,Avidan A A,Knowlton T M.Circulating Fluidized Beds.London: Chapman&Hall Press,1997:99-113
    [37] Bai D,Shibuya E,Masuda Y,Nakagawa N,Kato K.Flow structure in a fast fluidized bed.Chem.Eng.Sci.,1996,51:957~966
    [38] Svensson A,Johnsson F,Leckner B.Bottom bed regimes in a circulating fluidized bed boiler..Int.J.Multiphase Flow,1996,22:1187~1204
    [39] Werther J,Wiesendorf V.Solids volume concentration and velocity measurement in industrial fluidized bed reactors.AIChE Annual Meeting.Miami B Florida:1998. Rhodes M J,Sollaart M,Wang X S.Flow structure in a fast bed.Powder Technology,1998,99:194~200
    [40] Schlichtharle P,Werther J.Axial pressure profile and solids concentration distributions in the CFB bottom zone.Chem. Eng.Sci.,1999,5 4:5485~5493
    [41] Schlichtharle P,Werther J.Axial pressure profile and solids concentration distributions in the CFB bottom zon.Chem.Eng.Sci.,1999,54:5485~5493
    [42] Zijerveld R C,Koniuta A,Johnsson F,Marzocchella A,Schouten J,van den Bleek CM.Axial solids distribution and bottom bed dynamics for circulating fluidized bed combustor application. Series,1997,93(317):97~102
    [43] Arena U,Marzocchella A,Massimilla L,Malandrino A.Hydrodynamic of circulating fluidized beds of different shape and Size.Powder Technology,1992,70:237,and 71:116
    [44] Westphalen D,Glicksman L.Lateral solid mixing measurement in circulating fluidized beds.Powder Technology,1995,82:153~157
    [45] Chen R C,Fan L-S.Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized Beds.Chem.Eng.Sci.,1992,47(13~14):3615~362247
    [46] Malcus S,Chaplin G,Pugsley T.The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography(ECT).Chem. Eng.Sci., 2000,55:4129~4138
    [47] Liu S,Yang W Q,Wang H,Jiang F,Su Y.Investigation of square fluidized bed susing capacitance tomography:preliminary results.Meas.Sci.&Tech.2001,12:1120~1125
    [48]乔娟,周善祥.钟罩式风帽在循环流化床锅炉上的应用.节能与环保, 2003(8):76-83
    [49]陆继敏、毛水星.浅谈风帽孔径变化对CFB锅炉运行的影响.能源与环境, 2005(2):44-51
    [50]黄飞舟.一次较成功的循环流化床炉风帽改进.水利电力机械,2004(4):62-69
    [51]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行.中国电力版社,1999.:612-618
    [52]李俊刚.循环流化床锅炉常用风帽出现的问题探讨.电力设备,2008(5):64-66
    [53]蔡宏伟,尹会坤,陈新.循环流化床锅炉定向风帽磨损的分析及应对措施.工业锅炉,2004(1):112-121
    [54]黄飞舟.一次较成功的循环流化床炉风帽改进.水利电力机械,2004(4):4-6
    [55] Qingjie Guo,Jiyu Zhang,Joachim Werther,Jetting transition velocity in a jetting ?uidized bed with two nozzles.Chemical Engineering Journal 92 (2003):63–67
    [56]易淑群,许晟,颜开,陈九锡等.水下高速喷气气水流场研究.水动力学研究与进展,2002(4):448-453
    [57]郭庆杰,高峰,张济宇等.气固射流床射流深度的研究.燃料化学学报,1998(1):38-45
    [58] Jennifer McMillan,Cedric Briens,Franco Berruti,Ed Chan, High velocity attrition nozzles in fluidized beds.Powder Technology 175 (2007) 133–141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700