用户名: 密码: 验证码:
Johnson-Cook本构模型和Steinberg本构模型的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极端条件下的物理学是21世纪物理学研究的一个重要方向,高温和高压复合环境,特别是借助强冲击波技术产生的高温高压复合环境下材料物性的研究,不仅是凝聚态物理领域的一个重要的基础性研究问题,而且在航天飞行器安全防护、武器物理、新能源及工程爆破等技术和工程科学研究中也有广泛的应用背景。
     强击波高温高压作用下金属材料的力学运动可用流体动力学方程组描述,材料特性方程采用流体弹塑性模型,并把流体部分和弹塑性部分作解耦处理。前者可以归结为对物态方程的研究,表示球量应力贡献部分;后者可以归结为对本构方程的研究,表示偏量应力贡献部分。高温高压下固体材料本构关系的研究其实质性问题是对高温高压环境下固体材料剪切模量G和屈服强度Y的精密测量问题,所涉及的物理难题主要有:(1)由于所关心的压力范围大多在几十吉帕以上,与传统弹塑形力学研究的低应力区的情形不同,静水压(球量应力)和温度对G、Y有显著影响,须利用高压物理方法来进行研究;(2)现有的高压物理实验方法中,对高温高压环境下G值的测量技术相对成熟,较易实现,但对Y值的测量成功率不高,而且测量值的不确定度也比较大。
     本文的研究思路是,选取铝、铜、钨三种材料作为低、中、高阻抗材料的代表(而且三种材料的晶体结构也不一样,铝和铜为面心立方结构,钨为体心立方结构),综合分析其一维应力和一维应变下的实验数据,以期获得三种材料的Johnson-Cook模型和Steinberg模型的本构参数,重点关注由冲击波加载下材料波剖面测量中表现出来的本构行为,对这两种本构模型的适用性进行比较研究。主要的研究成果包括以下几个方面:
     1.用低应力下的SHPB(Split Hopkinson Pressure Bar)动态压缩实验和MTS(Mechanical Test System)准静态压缩实验,测量了LY12铝的温度在25℃~400℃和应变率在10~(-4)/s~10~3/s范围的应力-应变曲线,并结合公开文献新近发表的10~(-4)/s~10~5/s应变率范围内实验数据,综合优选了铝、铜、钨的Johnson-Cook本构模型的材料参数和Steinberg本构模型中的有关材料参数。
     2.综合分析了公开文献发表的关于铝、铜、钨在4 GPa~200 GPa冲击压力范围内的波剖面测量结果,并进行了少量的验证实验,利用高压声速结果和对波剖面
Research of physics under extreme conditions is an important direction of physics study in 21st century. Material properties at high-pressure and high-temperature environments, especially induced by strong shock wave, are not only a fundamental problem of condensed matter physics, but also have comprehensive applications in safe protection of space aircraft, weapon physics, new energy, and engineering explosion, etc.
    Mechanical movement of metals subjected to strong shock wave is controlled by hydrodynamics equations. The elastic-plastic-flow model is adopted to characterize the dynamic behavior of metals. The hydro part is come down to EOS (equation of state) research field, and the elastic-plastic part belongs to constitutive equation research field. The substantial question of high-pressure and high-temperature constitutive equation research is how to measure shear modulus G and yield strength Y precisely. The following are puzzles: (1) because the pressure range is exceed to tenths of GPa, the effects of pressure and temperature to G and Y are considerably large, and the high-pressure physics technique must be utilized to study the G and Y ; (2) the measurement of Y is difficult and the measurement uncertainty is large, although the measurement of G under high-pressure and high-temperature is easy to realize relatively.
    In this paper, we selected Al, Cu and W as the representations of low, medium and high impedance materials (in addition, Al, Cu are FCC metal, and W is BCC metal). Then experimental data of one-dimensional stress experiments and one-dimensional strain experiments were systematically analyzed in order to obtain the material parameters of Johnson-Cook model and Steinberg model. The applicability of these two constitutive models is comparatively studied by means of numerical simulation method. The principle results are as follows:
    1. The stress-strain curves of aluminum under temperature ranging from 25 ℃ to 400 ℃ and strain-rate ranging from 10~(-4)/s to 10~3 /s were measured via SHPB (Split Hopkinson Pressure Bar) dynamic compression and MTS (Mechanical Test System) quasi-static compression experiments. Combined with the experimental data of literatures, the material parameters of Johnson-Cook model and Steinberg model for Al, Cu and W were educed.
引文
[1] 21世纪初科学发展趋势课题组.21世纪初科学发展趋势[M].北京:科学出版社,1996: 165-167
    [2] Wilkins M L Calculation of elastic-plastic flow[A]. In: Methods of computational physics, vol.3[C], Eds.Alder B, Fernbach S and Rosenberg M, Academic Press, 1964: 211~263
    [3] 经福谦.实验物态方程导引[M].第二版.北京:科学出版社,1999
    [4] 王礼立.应力波基础[M].第二版.北京:国防工业出版社,2005
    [5] 贾乃文.粘塑性力学及工程应用[M].北京:地震出版社,2000
    [6] 王仁,黄文彬,黄筑平.塑性力学引论(修订版)[M].北京:北京大学出版社,1992
    [7] 黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999
    [8] 钱学森.物理力学讲义[M].北京:科学出版社,1964
    [9] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[A]. In: Proc. 7th Int. Symp. Ballistics[C]. the Netherlands: the Hague, 1983
    [10] Zerilli F J, Armstrong R W. Dislocation-mechanics-based contitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61 (5): 1816~1825
    [11] Follansbee P S, Kocks U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metall., 1988, 36 (1): 81~93
    [12] Asay J R. Shock wave paradigms and new challenges[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds Furnish M D, Thadhani N N and Horie Y, American Institute of Physics, 2002:26~35
    [13] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamicssimulations[J]. Science, 1998, 280 (26): 2085~2088
    [14] Gupta Y M. The coupling between shock waves and condensed matter: constinuum mechanics to quantum mechanics[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds Furnish M D, Thadhani N N and Horie Y, American Institute of Physics, 2002:3~10
    [15] Gilman John J. Mechanical states of solids[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds Furnish M D, Thadhani N N and Horie Y, American Institute of Physics, 2002: 36~41
    [16] Meyers M A. Dynamic Behavior of Materials. John Wiley & Sons, Inc., 1994
    [17] 周喆,黄文彬,李明瑞等.有限变形下的等效应力和等效应变问题[A].见:钱学森技术科学思想与力学[C].庄逢甘,郑哲敏主编,北京:国防工业出版社,2001:379-386
    [18] 陈大年,刘国庆,俞宇颖等.高压、高应变率与低压、高应变率实验的本构关联性[J].高压物理学报,2005,19(3):193~200
    [19] Meyer L W and Hahn F. Dynamic material behavior under biaxial loading[A]. In: Fundamental issues and applications of shock-wave and high-strain-rate phenomena[C]. Eds. Staudhammer K P, Murr L E and Meyers M A, 2001: 11~24
    [20] Smith S and Almroth B O. An experimental investigation of plastic flow under biaxial stress[J]. Exp. Mech., 1970, 6:217~223
    [21] Albertini C and Montagnani M. Dynamic uniaxial and biaxial stress-strain relationships for austenitic stainless steels[J]. Nuclear Engineering and Design, 1980, 57:107~123
    [22] Chart K S, Lindholm U S and Bodner S R. High temperature inelastic deformation of the B 1900+Hf alloy under multiaxial loading: theory and experiment[J]. J. Eng. Mater. Tech., 1990, 112: 7~14
    [23] Liang Riqiang. Elastic-plastic constitutive modeling of tantalum and AerMet 100 steel due to quasi-static and dynamic loading[D]. Doctoral dissertation, USA: University of Maryland, 1999
    [24] Burakovsky L. and Preston D. Generalized Guinan-Steinberg formula for the shear modulus at all pressures[J]. Phys. Rev. B, 2005, 71(18): 184118
    [25] 王春奎.LY-6及LY-12铝高温凝聚态动力学性质研究—高温剪切模量的测定[J].高压物理学报,1994,8(3):213~219
    [26] Nadal M and Poac P L. Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation[J]. J. Appl. Phys., 2003, 93(5): 2472~2480
    [27] Holmquist T J and Johnson G R. Determination of constants and comparison of results for various constitutive models[J]. J. Phys. 1, 1991:C3-853-C3-860
    [28] Rule W K and Jones S E. A revised form for the Johnson-Cook strength model[J]. Int. J. Impact Engng., 1998, 21 (8): 609~624
    [29] Johnson G R and Holmquist T J. An improved computational constitutive model for brittle materials[A]. In: High pressure science and technology-1993[C]. Eds. Schmidt S C, Shaner J W, Samara G A and Ross M, New York: AIP Press, 1994
    [30] Johnson G R and Holmquist T J. An computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures[A]. In: Proceedings of the EXPLOMET Conference[C]. CA, San Diego, 1990
    [31] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strainrate[J]. J. Appl. Phys., 1980, 51 (3): 1498~1503
    [32] 王礼立.爆炸力学数值模拟中本构建模问题的讨论[J].爆炸与冲击,2003,23(2):97~104
    [33] Chua J O and Ruoff A L. Pressure dependence of the yield stress of potassium at low homologous temperature[J]. J. Appl. Phys., 1975, 46(11): 4659~4663
    [34] Spitzig W A and Richmond O. The effect of pressure on the flow stress of metals[J]. Acta Metall. 32(3), 1984:457~463
    [35] Bulatov V V, Richmond O and Glazov M V. An atomistic dislocation mechanism of pressure-dependent plastic flow in aluminum[J]. Acta Mater. 47(12), 1999:3507~3514
    [36] Salah Hanim and Said Ahzi. A unified approach for pressure and temperature effects in dynamic failure criteria[J]. Int. J. Plasticity, 2001, 17:1215~1244
    [37] Steinberg D J and Lund C M. A constitutive model for strain rates from 10~(-4) to 10~(-6) s~(-1)[J]. J. Appl. Phys., 1989, 65(4): 1528~1533
    [38] Steinberg D J. Comparison of experimental shock-wave profiles for tungsten and computer simulations using a rate-dependent constitutive model[R]. UCRL-89-100168
    [39] Steinberg D J. A rate-dependent constitutive model for molybdenum[J]. J. Appl. Phys., 1993, 74(6): 3827~3831
    [40] Preston D L, Tonks D L and Wallace D C. Model of plastic deformation for extreme loading conditions[J]. J. Appl. Phys., 2003, 93(1): 211~220
    [41] Munson D E and Barker L M. Dynamically determined pressure-volume relationships for aluminum, copper and lead[J]. J. Appl. Phys., 1966, 37(4): 1652~1660
    [42] Asay J R and Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material[J]. J. Appl. Phys., 1978, 49(7): 4242~4247
    [43] Asay J R, Chhabialdas L C. Determination of shear strength of shock compressed 6061-T6 aluminum[A]. In: Shock waves and high-strain-rate phenomena in metals[C]. Eds. Meyer M A, Murr L E, Plenum Press, 1981:417~423
    [44] Morris C E and Fritz J N. Relation of the "solid Hugoniot" to the "fluid Hugoniot" for aluminum and copper[J]. J. Appl. Phys., 1980, 51 (2): 1244~1246
    [45] Moss W C. The effect of material strength on determirfing pressures "on" and "off' the Hugoniot[J]. J. Appl. Phys., 1984, 55 (7): 2741~2746
    [46] Moss W C. Effect of material strength on the relationship between the principal Hugoniot and quasi-isentrope of beryllium and 6061-T6 aluminum below 35 GPa[J]. J. Appl. Phys., 1985, 57 (5): 1665~1670
    [47] 张江跃.材料强度对冲击绝热线的影响[D].硕士论文.合肥:中国科学技术大学,1996
    [48] GB 7314-1987金属压缩实验方法
    [49] 胡时胜.霍普金森压杆技术[J].兵器材料科学与工程,1991,11:40~47
    [50] Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading[J]. Proc. Phys. Soc. B, 1949, 62 (11): 676-700
    [51] Field J E, Walley S M and Bourne N K etc. Experimental methods at high rates of strain[J]. J. de Physique Ⅳ, 1994:C8-3~C8-22
    [52] 施绍裘,王礼立.材料在准一维应变下被动围压的SHPB试验方法[J].实验力学, 15(4):377~384
    [53] Chen W, Song B and Frew D J, etc. Dynamic small strain measurement of a metal specimen with a split Hopkinson pressure bar[J]. Exp. Mech., 2003, 43 (1): 20~23
    [54] Meng H and Li Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments[J]. Int. J. Impact and Engng., 2003, 28:537~555
    [55] 陈大年.高加载SHPB试验分析原理的再研究.(学术报告,未发表)
    [56] 朱如曾.钱学森开创的物理力学之路[A].见:钱学森技术科学思想与力学[C].庄逢甘,郑哲敏主编,北京:国防工业出版社,2001:69~83
    [57] Fowles R and Williams R F. Plane stress wave propagation in solids[J]. J. Appl. Phys., 1970, 41: 360
    [58] 寇绍全.波动问题的一个逆问题——从测得的应变波形建立材料的应力—应变—应变率关系[J].爆炸与冲击,1983,3(1):44~51
    [59] 尚嘉兰,白以龙,沈乐天等.酚醛玻璃钢动态本构关系的实验研究[J].爆炸与冲击, 1990,10(1):1~13
    [60] Keisuke Fujii, Eiichi Yasuda and Yasuhiro Tanabe. Dynamic mechanical properties of polycrystalline graphites and a 2K-C/C composite by plate impact[J]. Int. J. Impact and Engng., 2001, 25:473~491
    [61] Aidun J B and Gupta Y M. Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves. J. Appl. Phys., 1991, 69 (10): 6998~7014.
    [62] 华劲松.高温高压下钨合金的本构方程研究[D].博士论文.绵阳:中国工程物理研究院研究生部,1999
    [63] Lipkin J and Asay J R. Reshock and release of shock-compressed 6061-T6 aluminum[J]. J. Appl. Phys., 1977, 48(1): 182-189
    [64] Johnson J N, Hixson R S, GrayIII G T, etc. Quasielastic release in shock-compressed solids[J]. J.Appl. Phys., 1992, 72(2): 429-441
    [65] Swegle J W and Grady D E. Shock viscosity and the prediction of shock wave rise times[J]. J. Appl. Phys., 1985, 58 (2): 692-701
    [66] Swegle J. Non-steady wave profiles and the fourth-power law[A]. In: Shock Compression of Condensed Matter-1991 [C]. Eds. Schmidt S C, Dick R D and Forbes J W, American Institute of Physics, 1992: 249-252
    [67] Wallace D C. Irreversible thermodynamics of overdriven shocks in solids[J]. Phys. Rev. B, 1981, 24(10): 5597-5606
    [68] Wallace D C. Nature of the process of overdriven shocks in metals [J]. Phys. Rev. B, 1981, 24(10): 5607-5615
    [69] Hammerberg J E, Preston D L and Wallace D C. A new model of rate dependent elastic-plastic flow[A]. In: Shock Compression of Condensed Matter-1991 [C]. Eds. Schmidt S C, Dick RD and Forbes JW, American Institute of Physics, 1992: 383-386
    [70] Chhabildas L C and Barker L M. Dynamic quasi-isentropic compression of tungsten[A]. In: Shock Waves in Condensed Matter-1987 [C]. Eds. Schmidt S C, Holmes N C, American Institute of Physics, 1988: 111-114
    [71] Chhabildas L C and Asay J R. Recent advances in shock and quasi-isentropic compression techniques for dynamic material property studies[A]. In: Proceedings of the international symposium on intense dynamic loading and its effects[C]. Chengdu: Chengdu University of Science and Technology Press, 1992: 227-231
    [72] Hall C A, Asay J R, KnudsonMD, etc. Recent advances in quasi-isentropic compression experiments(ICE) on the Sandia Z accelerator[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds. Furnish M D, Thadhani N N and Horie Y, American Institute of Physics, 2002: 1163-1168
    [73] Tanner A B, McGinty R D and McDowell D L. Modeling temperature and strain rate history effects in OFHC Cu[J]. Int. J. Plasticity, 1999, 15: 575-603
    [74] Chen S R Gray III G T and Binger S R. Mechanical properties and constitutive relations for tantalum and tantalum alloys under high-rate deformation[R]. LA-UR-96-0602
    [75] Chen S R and Gray III G T. Constitutive behavior of tantalum and tantalum-tungsten alloys[J]. Metall. Mater. Tran. A, 1996, 27A.. 2994~3006
    [76] 张万甲,张玉松,宋春香.MB2镁等四种金属材料的本构关系和动态断裂研究[J].爆炸与冲击,1995,15(1):44~53
    [77] 张林,蔡灵仓,王悟等.钽在冲击载荷下的动态力学性能[J]. 高压物理学报,2001,15(4):265~270
    [78] 高玉华。铝合金LC4和LY12CZ应变率相关力学性能的实验研究[J].上海力学,1995,16(1).61~66
    [79] Chhabialdas L C and Asay J R. Dynamic yield strength and spall strength measurement under quasi-isentropic loading[R]. SAND-90-0833C
    [80] Asay J R, Chhabialdas L C, Kerley G I, etc. High pressure strength of shocked aluminum[A]. In: Shock Waves in Condensed Matter-1985 [C]. Eds. Gupta Y M, American Institute of Physics, 1986:145~149
    [81] Chhabialdas L C, Furnish M D, Reinhart W D. Shock induced melting in aluminum: wave profile measurements[A]. In: Shock Compression of Condensed Matter-1999 [C]. Eds. Furnish M D, Chhabildas L C and Hixson R S, American Institute of Physics, 2000:97~100
    [82] McQueen R G, Fritz J N and Morris C E. The velocity of sound behind strong shock wave in 2024 Al[A]. In: Shock Waves in Condensed Mutter-1983 [C]. Eds. Asay J R, Graham R A, and Straub G K, 1984:95
    [83] Hayes D, Hixson R S and McQueen R G High pressure elastic properties, solid-liquid phase boundary and liquid equation of state from release wave measurements in shock-loaded copper[A]. In: Shock Compression of Condensed Matter-1999 [C]. Eds. Furnish M D, Chhabildas L C and Hixson R S, American Institute of Physics, 2000: 483~488
    [84] 卡涅尔,拉扎列诺夫,乌特金等,韩钧万译.凝聚介质中的冲击波现象.中物院流体物理研究所内部资料
    [85] Lesuer D. R., Kay G J., and LeBlanc M. M. Modeling large strain, high rate deformation in metals[R]. UCRL-JC-134118 (2001)
    [86] Banerjee B. An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals [E]. http://arxiv.org/abs/cond-mat/0512466(2005)
    [1] 余同希.塑性力学[M].北京:高等教育出版社,1989
    [2] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[A]. In: Proc. 7th Int. Symp. Ballistics[C]. the Netherlands.. the Hague, 1983
    [3] Zerilli F J, Armstrong R W. Dislocation-mechanics-based contitutive relations for material dynamics calculations[J]. J. Appl. Phys., 1987, 61 (5): 1816~1825
    [4] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strainrate[J]. J. Appl. Phys., 1980, 51 (3): 1498~1503
    [5] Hoge K G and Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum[J]. J. Mater. Sci., 1977, 12: 1666-1672
    [6] Dora J E, and Rajlak S. Nucleation of kink pairs and the Peierls' mechanism of plastic deformation[J]. Trans. Metall. Soc. AIME, 1964, 230: 1052-1064
    [7] Steinberg D. J. A rate-dependent constitutive model for molybdenum[J]. J. Appl. Phys., 1993, 74 (6): 3827-3829
    [8] Steinberg D J. Comparison of experimental shock-wave profiles for tungsten and computer simulations using a rate-dependent constitutive model[R]. UCRL-100168
    [9] Steinberg D J. Modeling release behavior in shocked BCC metals[R]. UCRL-JC-125744
    [10] Lesuer D R. Experimental investigation of material models for Ti-6A1-4V Titanium and 2024-T3 aluminum[R]. DOT/FAA/AR-00/25(2000)
    [11] Lesuer D R, Kay G J, LeBlanc M M. Modeling large strain, high rate deformation in metals[R]. UCRL-JC-134118(2001)
    [12] Follansbee P S and Kocks U F. A constitutive description of the deformation of copper based on the use of the Mechanical Threshold Stress as an internal state variable[J]. Acta Metall., 1988, 36: 81-93
    [13] 郭伟国.高导无氧铜在大变形、不同温度和不同应变率下的流动应力和本构模型[J].爆炸与冲击.2005,25(3):244-250
    [14] Lennon A M, Ramesh K T. The thermoviscoplastic response of polycrystalline tungsten in compression[J]. Mater. Sci. Eng. A, 2000, 276:9-21
    [15] Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading[J]. Proc. Phys. Soc. B, 1949, 62 (11): 676-700
    [16] 胡时胜.霍普金森压杆技术.兵器材料科学与工程[J],199l,11:40~47
    [17] 王礼立.应力波基础[M].第二版.北京:国防工业出版社,2005
    [18] Meyers M A. Dynamic Behavior of Materials. John Wiley & Sons, Inc., 1994
    [1] Soderlind P and Moriarty J A. First principles theory of Ta up to 10 Mbar pressure Structural and mechanical properties[J]. Phys. Rev. B, 1998, 57 (17): 57-68
    [2] Xiang S K, Cai L C, Jing F Q and Wang S J. Thermal properties of Al at high pressures and temperatures[J]. Phys. Rev. B, 2004, 70: 174102
    [3] Millett J C F, Bourne N K, Rosenberg Z, and Field J E. Shear strength measurements in a tungsten alloy during shock loading[J]. J. Appl. Phys., 1999, 86(12): 6707-6710
    [4] Gray Ⅲ G T, Bourne N K, and Millett J C F. Shock response of tantalum: Lateral stress and shear strength through the front[J]. J. Appl. Phys., 2003, 94(10): 6340-6346
    [5] Rosenberg Z and Partom Y. Lateral stress measurement in shock-loaded targets with transverse piezoresistance gauge[J]. J. Appl. Phys., 1985, 58(8): 3072~3076
    [6] Feng R, Gupta Y M. Determination of lateral stresses in shocked solids: Simplified analysis of piezoresistance gauge data[J]. J. Appl. Phys., 1998, 83(2): 747-753
    [7] Dai Lan-hong. Shear strength measurements in LY-12 aluminum alloy during shock loading[J]. Chin. Phys. Lett., 2004, 21(4): 707-709
    [8] Frutschy K J, Clifton R J, and Mello M. High-temperature pressure-shear plate impact studies on OFHC copper and pure WC[J]. In: Shock Compression of Condensed Matter-1997[C], Eds. Schmidt, Dandekar and Forbes, 463-467
    [9] Frutschy K J and Clifton R J. High-temperature pressure-shear plate impact experiments on OFHC copper[J]. J. Mech. Phys. Solids, 1998, 46 (10): 1723-1743
    [10] Asay J R. The use of shock-structure methods for evaluating high-pressure material properties[J]. Int. J. Impact Engng, 1997, 20:27-61
    [11] Asay J R and C hhabildas L M. Determination of the shear strength o f shocked compressed 6061-T6 aluminum[A]. In: Shock waves and high-strain-rate phenomena in metals[C]. Eds. Meyers M A and Murr L E, Plenum, New York, 1981: 417-431
    [12] Asay J R and Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material[J]. J. Appl. Phys., 1978, 49(7): 4242-47
    [13] 华劲松.高温高压下钨合金的本构方程研究[D].博士论文.绵阳:中国工程物理研究院,1999
    [14] 经福谦.实验物态方程导引[M].第二版.北京:科学出版社,1999
    [15] 谭华.实验冲击波物理导引[M].中物院研究生教材(内部资料),2006
    [16] Al'tshuler L V, Kormer S B, Brazhnik M I. The Isentropic Compressibility of Aluminum, Copper, Lead, and Iron at High Pressures[J]. Soviet Physics, JETP, 1960, 11(4): 766-775
    [17] McQueen RG, Hopson JW and Fritz JN. Rev. Sci. Instru., 1982, 53(2): 245-250
    [18] Brown M and Shaner J W. Rarefaction Velocities in Shocked Tantalum and the High Pressure Melting Point[A]. In: Shock Wave in Condensed Matter-1983[C], Eds. Asay J R, Graham R A, and Straub G K, Elsevier Science Publishers B.V., 1984:91-94
    [19] Barker L M and Hollenbach R E. Laser Interferometer for Measuring High Velocities of any Reflecting Surface[J]. J. Appl. Phys., 1972, 43:46694675
    [20] Baker L M and Hollenbach R E.Shock-Wave Studies of PMMA, Fused Silica, and Sapphire[J]. J. Appl. Phys, 1970, 41(10): 208-4226
    [21] Asay J R, Chhabildas L C, Kerley G I. High-pressure strength of aluminum[A]. In: Shock waves in condensed matter[C], Ed. Gupta Y M, New York: Plenum Press, 1985:145
    [22] McQueen R G, Fritz J N, and Morris C E. The velocity of sound behind strong shock wave in 2024 Al[A]. In: Shock Waves in Condensed Matter-1983[C], Eds. Asay J R, Graham R A, and Straub G K, Elsevier Science Publisher, 1983: 95
    [23] Hayes D, Hixson R S, and McQueent R G High pressure elastic properties, solid-liquid phase boundary and liquid equation of state from release wave measurements in shock-loaded copper[A]. In: Shock Compression of Condensed Matter-1999. Eds. Furnish M D, Thadhani N N and Horie Y, New York: American Institute of Physics, 2000:26
    [24] Chhabildas L C and Asay J R. Time-Resolved wave profile measurements in copper to Megabar pressure[A]. In: High pressure in research and industry VI[C]. Eds. Backman C M, Johanisson T, and Tegner L, Uppsala, Sweden, 1982: 183
    [25] 胡金彪,经福谦,程菊鑫.铜的高压声速和冲击熔化[J].高压物理学报,1989,3(3):187~197
    [26] Chhabildas L C, Asay J R and Barker L M. Shear strength of tungsten under shock-and quasi-isentropic loading to 250 GPa[R]. SAND-88-0306
    [27] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strain rate[J]. J. Appl. Phys., 1980, 51 (3): 1498~1503
    [28] Crockett S, Chisolm E, and Wallace D. A comparison of theory and experiment of the bulk sound velocity in aluminum using a two-phase EOS[A]. In: Shock Compression of Condensed Matter-2003. Eds. by Furnish M D, Gupta Y M and Forbes J W, New York: American Institute of Physics, 2003:45
    [29] 宋萍.私人通讯
    [30] 胡建波.经退火处理得LY12铝在强动载下的剪切模量和屈服强度[D].硕士论文,绵阳:中国工程物理研究院研究生部,2005
    [31] 宋萍.无氧铜卸载路径研究[D].硕士论文.绵阳:中国工程物理研究院研究生部,2003
    [32] 张江跃.材料强度对冲击绝热线的影响[D].硕士论文.合肥:中国科学技术大学,1996
    [33] Grady D E and Asay J R. Calculation of thermal trapping in shock deformation of aluminum[J]. J. Appl. Phys., 1982, 53(11): 7350-7355
    [34] Lipkin J. and Asay J R. Reshock and release of shock-compressed 6061-T6 aluminum[J]. J. Appl. Phys., 1977, 48:182
    [35] Vogler T J and Asay J R. A distritrubutional model for elastic-plastic behavior of shock-loaded materials[A]. In: Shock Compression of Condensed Matter-2003[C]. Eds. Fumish M D, Gupta Y M and Forbes J M, New York: American Institute of Physics, 2004:617
    [36] 王礼立.应力波基础[M].第二版.北京:国防工业出版社,2005
    [37] Steinberg D J and Lund C M. A constitutive model for strain rates from 10~(-4) to 10~(-6) s~(-1)[J]. J. Appl. Phys., 1989, 65(4): 1528~1533
    [38] Steinberg D J. Comparison of experimental shock-wave profiles for tungsten and computer simulations using a rate-dependent constitutive model[R]. UCRL-89-100168
    [39] Steinberg D J. A rate-dependent constitutive model for molybdenum[J]. J. Appl. Phys., 1993, 74(6): 3827~3831
    [40] Huang H. and Asay J. R. Compressive strength measurements in aluminum for shock compression over the stress range of 4-22 GPa[J]. - J. Appl. Phys., 2005, 98:033524
    [41] Yu Y Y, Tan H, Dai C D et al. Sound velocity and release behavior of shock-compressed LY12 Al[J]. Chin. Phys. Lett., 2005, 22 (7): 1745-1747
    [42] Morris C E, Fritz J N, and Holian B L. Quasi-elastic high-pressure waves in 2024 Al and copper[R]. Report No. LA-UR-81-1897(.1981)
    [43] Lalle P and Courchinoux R. Quasi elastic behavior of tantalum, vanadium and copper at high dynamic pressure[A], In: Metallurgical and Materials Applications of Shock-wave and high-strain-rate Phenomena[C], Eds. Murr M E, Staudhammer K P and Meyers M A, 1995: 691~698
    [44] He D and Duffy T. S. 2006 X-ray diffraction study of the static strength of tungsten to 69 GPa. Phys. Rev. B, 2006, 73(13): 134106
    [1] Wilkins M L. Modeling the behavior of materials[R]. UCRL-ID-113198
    [2] Wilkins M L. Calculation of elastic-plastic flow[A]. In: Methods of computational physics, vol.3[C]. Eds. Alder B, Fernbach S and Rosenberg M, Academic Press, 1964:211~263
    [3] 马晓青.冲击动力学[M].北京:北京理工大学出版社,1992
    [4] Meyers M A. Dynamic Behavior of Materials. John Wiley & Sons, Inc., 1994
    [5] Asay J R. The use of shock-structure methods for evaluating high-pressure material properties[J]. Int. J. Impact Engng., 1997, 20: 27-61
    [6] Asay J R. Shock wave paradigms and new challenges[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds. Furnish M D, Thadhani N N, and Horie Y, American Institute of Physics, 2002: 26~35
    [7] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium moleeular-dynamicssimulations[J]. Science, 1998, 280 (26): 2085~2088
    [8] Gupta Y M. The coupling between shock waves and condensed matter: constinuum mechanics to quantum mechanics[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds Furnish M D, Thadhani N N and Horie Y, American Institute of Physics, 2002: 3~10
    [9] Holian B L. Chapter 4: What is a shock wave—the view from the atomic scale[A]. In: High-pressure Shock Compression of Condensed Matter[C]. Eds. Davison L and Horie Y, Springer, 2002:149~166
    [10] Barker L M and Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. J. Appl. Phys., 1972, 43:4669
    [11] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[A]. In: Proc. 7th Int. Symp. Ballistics[C]. the Netherlands: the Hague, 1983
    [12] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strainrate[J]. J. Appl. Phys., 1980, 51 (3): 1498~1503
    [13] Steinberg D J and Lund C M. A constitutive model for strain rates from 10~(-4) to 10~(-6) s~(-1)[J]. J. Appl. Phys., 1989, 65(4): 1528~1533
    [14] LS-DYNA theoretical manual. Livermore Software Technology Cooperation. 1998
    [15] Asay J R, Chhabildas L C, and Barker L M. Projectile and impactor designs for plate-impact experiments[R]. SAND85-2009
    [16] 经福谦.实验物态方程导引[M].第二版.北京:科学出版社,1999
    [17] 王礼立.应力波基础[M].第二版.北京:国防工业出版社,2005
    [18] 董玉斌,张万甲,经福谦,等.动态断裂过程的数值分析及LY-12铝的层裂[J].高压物理学报,1998,3(1):1
    [19] Royce E B. A three-phase eqution of state for metals[R]. UCRL-51121(1971)
    [20] Marsh S. P. LASL Shock Hugoniot Data[M]. University of California Press, 1980
    [21] von Neumann J, and Richtmyer R D. A method for the numerical calculation of the hydrodynamical shocks[J]. J. Appl. Phys., 21, 195021: 232
    [22] Wilkins M.L. Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comp. Phys., 1980, 36: 281
    [23] Melosha H J. Shock viscosity and rise time of explosion waves in geologic media[J]. J. Appl. Phys., 2003, 94(7): 4320-4326
    [24] Fanget A. Stability analysis of numerical solutions of wave propagation when pseudoviscosity is replaced by real viscosity[J]. J. Appl. Phys., 1993, 74 (3): 1469-1471
    [25] Swegle J W, Grady D E. Shock viscosity and the prediction of shock wave rise times[J]. J. Appl. Phys., 1985, 58(2): 692-701
    [26] Gilman J J. Mechanical states of solids[A]. In: Shock Compression of Condensed Matter-2001 [C]. Eds. Fumish M D, Thadhani N N and Horie Y, American Institute of Physics, 2002:36~41
    [27] Gilman J J. Elastic-plastic impact(some persistent mis-coneeptions)[A]. In: Fundamental issues and applications of shock-wave and high-strain-rate phenomena[C]. Eds. Staudhammer K P, Murr L E, and Meyers M A, New York: Elsevier Science Ltd., 2000: 3~9
    [28] Wallace D C. Irreversible thermodynamics of flow in solids[J]. Phys. Rev. B, 1980, 22 (4): 1477-1486
    [29] Wallace D C. Flow process of weak shocks in solids[J]. Phys. Rev. B, 1980, 22 (4): 1487-1494
    [30] Wallace D C. Equation of state from weak shocks in solids[J]. Phys. Rev. B, 1980, 22 (4): 1495-1502
    [31] Wallace D C. Irreversible thermodynamics of overdriven shocks in solids[J]. Phys. Rev. B, 1981, 24(10): 5597-5606
    [32] Wallace D C. Nature of the process of overdriven shocks in metals[J]. Phys. Rev. B, 1981, 24 (10): 5607-5615
    [33] Steinberg D J and Lurid C M. A constitutive model for strain rates from 10~(-4) to 10~(-6) s~(-1)[J]. J. Appl. Phys.,1998, 65(4): 1528~1533
    [34] Huang H. and Asay J. R. Compressive strength measurements in aluminum for shock compression over the stress range of 4-22 GPa[J]. J. Appl. Phys., 2005, 98:033524
    [35] Asay J R and C hhabildas L M. Determination of the shear strength o f shocked compressed 6061-T6 aluminum[A]. In: Shock waves and high-strain-rate phenomena in metals[C]. Eds. Meyers M A and Murr L E, Plenum, New York, 1981: 417-431
    [36] Asay J R, Chhabildas L C, Kerley G I. High-pressure strength of shocked aluminum[A]. In: Shock waves in condensed matter[C], Ed. Gupta Y M, New York: Plenum Press, 1985:145
    [37] Chhabildas L C and Asay J R. Time-Resolved wave profile measurements in copper to Megabar pressure[A]. In: High pressure in research and industry V1[C]. Eds. Backman C M, Johanisson T, and Tegner L, Uppsala, Sweden, 1982:183
    [38] 宋萍.无氧铜等熵卸载路径的研究[D].硕士论文,绵阳:中物院流体物理研究所,2004
    [39] Chhabildas L C, Asay J R, and Barker L M. Shear strength of tungsten under shock and quasiisentropic loading to 250 GPa[R]. SAND-88-0306
    [40] 陈大年,刘国庆,俞宇颖等.高压、高应变率与低压、高应变率实验的本构关联性[J].高压物理学报,19(3),2005:193~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700